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Abstract

While the prompt-based fine-tuning methods
had advanced few-shot natural language un-
derstanding tasks, self-training methods are
also being explored. This work revisits the
consistency regularization in self-training and
presents explicit and implicit consistency reg-
ularization enhanced language model (EICO).
By employing both explicit and implicit con-
sistency regularization, EICO advances the per-
formance of prompt-based few-shot text clas-
sification. For implicit consistency regulariza-
tion, we generate pseudo-label from the weakly-
augmented view and predict pseudo-label from
the strongly-augmented view. For explicit con-
sistency regularization, we minimize the dif-
ference between the prediction of the augmen-
tation view and the prediction of the original
view. We conducted extensive experiments on
six text classification datasets and found that
with sixteen labeled examples, EICO achieves
competitive performance compared to existing
self-training few-shot learning methods.

1 Introduction

Recently, (Schick and Schütze, 2021a,b) proposed
a cloze-style few-shot learning method, PET. By
filling the gap between pre-training and fine-tuning
with prompt and verbalizer, PET achieved com-
petitive performance with GPT-3 (Brown et al.,
2020) with smaller language models like BERT
(Devlin et al., 2019), T5 (Lester et al., 2021) and
GPT-2 (Radford et al.; Liu et al., 2021). How-
ever, the lack of labeled data still limits the perfor-
mance of few-shot learning. Although acquiring la-
beled data is costly, unlabeled data is relatively easy
to obtain. Leveraging unlabeled data to improve
the performance of the few-shot language model
through semi-supervised learning is a promising
way. In this paper, we focus on advancing the
performance of the few-shot language model via
semi-supervised learning.

Semi-supervised learning is a method that can
leverage both labeled and unlabeled data. A com-
mon yet effective semi-supervised method is self-
learning, which uses a trained teacher model to gen-
erate pseudo-labels for unlabeled examples, and
then trains a student model on both labeled and
pseudo-labeled examples to utilize the domain-
relevant information contained in the unlabeled
data. FixMatch (Sohn et al., 2020) and its nat-
ural language processing adaption SFLM (Chen
et al., 2021) are robust self-training implementa-
tions, which generate pseudo-label on the weakly-
augmented view of an example and predict pseudo-
label by the strongly-augmented view. How-
ever, the implicit consistency regularization intro-
duced by the above training scheme may be sub-
optimal since class distribution information is lost
in pseudo-label generation.

To address the above problem, we propose ex-
plicit and implicit consistency regularization en-
hanced language model (EICO). Beside implicit
consistency regularization, EICO utilizes explicit
consistency regularization by minimizing the differ-
ence between the prediction of the augmented view
and the prediction of the original view. To validate
the effectiveness and robustness of EICO, we con-
duct extensive experiments on six natural language
understanding tasks. The result of our experiments
confirms that EICO can be leveraged to improve
the performance of the few-shot text classification.
Moreover, we find that EICO presents robustness
among different low resources situations and dif-
ferent model size by ablation study.

2 Methodology

2.1 Problem Setting

In this paper, we study the task of learning a model
to map an input x ∈ X ⊆ Rd onto a label y ∈ Y .
Moreover, in semi-supervised learning, the training
dataset consists of labeled examples and unlabeled
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Figure 1: The framework of EICO. Firstly, the appropriate prompt will be added to the input example. Secondly,
multiple augmented view will be generated from the prompted input example. Lastly, the corresponding loss
function will be applied to the different combinations of views. The augmentation strategies presented in this figure
are for demonstration. We will explore multiple combinations of the augmentation strategies in Section 3.

examples. Let Dl be the labeled training examples,
and Du be the unlabeled examples, and they are
defined as follows:

Dl := {(xi, yi) , i = 1, . . . , Nl}
Du := {xui , i = 1, 2, . . . , Nu}

(1)

where Nl is the number of the labeled examples,
and Nu is the number of the unlabeled examples.

2.2 EICO

In EICO, we leverage a loss function con-
tains prompt-based classification loss, self-training
loss, explicit consistency regularization loss, and
masked language modeling loss, which will be de-
scribed in the following sections.

Prompt-based Classification Loss: The
prompt-based fine-tuning method was proposed by
PET (Schick and Schütze, 2021a,b), where the gap
between the natural language classification tasks
and the masked language modeling pre-training
task are filled by the prompts and verbalizers. The
probability of class prediction yi ∈ Y is defined as
following:

pm (yi | xi) = pm
(
[MASK] = M

(
yi | xprompt

i

))
.

(2)
where M is a verbalizer from class labels to

the corresponding words, and x
prompt
i is the recon-

structed input sentence with the template.
The pre-trained masked language modeling head

can produce the probability over the label word

from the verbalizer instead of placing a linear clas-
sifier on the top of the backbone model. Therefore,
we could use the following cross-entropy loss:

Lce =
1

B

B∑
i=1

H (yi, pm (yi | xi)) (3)

where B is the batch size. H(·) is the cross-
entropy function.

Self-training Loss: After FixMatch (Sohn et al.,
2020), SFLM (Chen et al., 2021) demonstrates that
the method which generate pseudo-label on the
strongly-augmented view and predict pseudo-label
on weakly-augmented view can be transferred to
natural language understanding tasks.

For each unlabeled example xu
i , we obtain the

weakly-augmented version α (xu
i ) and the strongly-

augmented version A (xu
i ), where α and A refers

to the augmentation strategies correspondingly.
The self-training process consists of two stages.
Firstly, we assign a pseudo label to each unla-
beled sentence in the batch by computing the out-
put probability distribution corresponding to the
weakly-augmented input sentence α (xu

i ), defined
as qi = pm (yi | α (xu

i )). The pseudo label, q̂i,
is obtained by q̂i = argmax (qi). Secondly, we
compute the prompt-based cross-entropy loss be-
tween q̂i and the prediction corresponding to the
strongly-augmented input sentence A (xu

i ). The
self-training loss is defined as follows,
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K = 16 Yelp AGNews SST-5 MPQA SUBJ QQP Avg.
Lce + Lmlm (MLM) 86.74(1.1) 81.63(2.1) 42.37(1.5) 81.68(4.7) 87.92(2.1) 63.45(6.4) 73.96(3.0)

UDA (MLM + Lcon)
aBT 89.28(0.9) 83.99(1.0) 42.14(1.2) 80.58(4.3) 87.54(1.8) 62.2(8.9) 74.29(3.0)

aMASK 88.77(1.1) 84.36(0.6) 41.56(2.7) 81.45(3.7) 88.8(1.2) 62.16(9.5) 74.52(3.1)

SFLM (MLM + Lst)
αBT, AMASK 88.24(2.2) 84.37(1.1) 41.95(1.5) 80.16(5.5) 89.04(1.3) 61.63(11.2) 74.23(3.8)

αDROP, AMASK 88.32(2.1) 84.96(0.5) 42.19(1.3) 81.30(4.5) 88.52(1.2) 61.62(11.1) 74.48(3.5)

Ours
aBT, αBT, AMASK 89.33(3.0) 84.99(0.6) 42.81(1.7) 81.19(3.8) 89.66(1.3) 63.46(10.8) 75.24(3.5)

aBT, αDROP, AMASK 90.11(0.5) 85.72(0.6) 43.07(1.8) 81.39(3.5) 88.95(2.4) 63.37(11.0) 75.43(3.3)

aMASK, αBT, AMASK 89.46(1.0) 85.16(0.7) 41.4(3.4) 81.19(3.8) 90.22(0.7) 65.67(4.0) 75.52(2.3)

aMASK, αDROP, AMASK 89.94(1.4) 84.74(1.1) 41.44(3.4) 82.30(3.4) 89.71(1.0) 66.66(4.4) 75.80(2.5)

Table 1: Main results. We use 16 labeled examples for each class. The results are the average metric of 5 different
random seeds. The bold text indicates the best performance on the specific dataset, and the number in brackets is
the standard deviation. The last column report the average score over six datasets. a, α and A indicate different
augmentation strategy with superscript. The implementation details are explained in Section 3.

Lst =
1

µB

µB∑
i=1

1 (max (qi) ≥ τ)

H (q̂i, pm (yi | A (xui )))

(4)

where 1(·) is an indicator function, τ defines
the threshold above which we retain a pseudo-label
and µ is the unlabeled example ratio.

Consistency Regularization Loss: EICO adds a
explicit consistency regularization loss in the train-
ing procedure. Motivated by UDA (Xie et al., 2020)
and (Lowell et al., 2021), we minimize the Kull-
back–Leibler divergence between the augmented
view of the example and the original view of ex-
ample. For the loss function, inspired by R-Drop
(Liang et al., 2021), EICO adopts the loss function
Lcon as follows:

Lcon =
1

2
(DKL (pm(yi|xui )∥pm (yi | a(xui )))+

DKL (pm (yi | a(xui )) ∥pm (yi | xui ))
(5)

where a is an augmentation strategy used in
consistency regularization. And DKL is the Kull-
back–Leibler divergence.

Above all, EICO minimize the following loss
function:

L = Lce + λ1Lst + λ2Lcon + λ3Lmlm (6)

where Lmlm is the masked language modeling
loss introduced in BERT (Devlin et al., 2019), λ1,
λ2, λ3 are hyper-parameters.

3 Experiment

3.1 Setup

We evaluate our model on six datasets of differ-
ent natural language understanding tasks includ-
ing Yelp (Zhang et al., 2015) and SST-5 (Socher
et al., 2013) for sentiment analysis, AG’s News for
news classification, MPQA (Wiebe et al., 2005)
for opinion polarity classification, SUBJ (Pang and
Lee, 2004) for subjectivity classification, and QQP
(Dolan and Brockett, 2005) for semantic equiva-
lence classification.

In semi-supervised learning setting, We set the
number of the training labeled examples K = 16
for each class (and the number of the develop-
ment examples is also 16 for each class), the unla-
beled data ratio is µ = 20. Following (Gao et al.,
2021a), we randomly sample five different splits
of (Dtrain

l ,Ddev
l ,Du) from the original training set.

Five different models are trained with these splits.
Then, we report the average performance of these
five models on the original development set. Fol-
lowing (Sohn et al., 2020), We set τ to 0.95. The
batch size B = 16. The learning rate is set to 1e−5.
The sequence length is set to 256. We report main
result based on the six-layer pre-trained language
model namely DistilRoBERTa-base (Sanh et al.,
2019). In our experiment, most of runs achieve
best metrics on development set within 150 opti-
mization steps, therefore, we set max optimization
steps to 200. For simplicity, we set λ1, λ2, λ3 to
1. Following (Perez et al., 2021), we only use de-
velopment set of K examples to select the best
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model, and all hyper-parameters are not tuned with
external datasets.

3.2 Baseline

We compare our EICO to several baselines includ-
ing consistency regularization method, i.e., UDA
(Xie et al., 2020) (Lce + λ2Lcon + λ3Lmlm) and
self-training method, i.e., SFLM (Chen et al., 2021)
(Lce + λ1Lst + λ3Lmlm). For exploring the im-
pact of augmentation strategies, we select dropout
(·)DROP (Gao et al., 2021b; Liang et al., 2021), back-
translation (·)BT (Xie et al., 2020) and random to-
ken masking (·)MASK (Devlin et al., 2019) in our ex-
periments. For back-translation augmentation, we
use a online translation system publicly available
in AliYun1. We use French as the middle language.
For dropout, we set the embedding dropout rate
to 0.1. For random token masking, we randomly
mask 15% tokens.

3.3 Main Result

From Table 1 we can see both two types of
consistency regularization method outperform the
masked language modeling baseline method. Sur-
prisingly, with only explicit consistency regular-
ization (UDA) applied, the random token mask-
ing strategy is slightly better than the sophisticated
back-translation strategy. And for SFLM method,
using dropout as weakly augmentation strategy is
also slightly outperform the back-translation strat-
egy. And for ours EICO, the performance of four
combinations of the augmentation strategies are
both better than SFLM and UDA, which demon-
strates that EICO has better ability to leverage the
information provided by the unlabeled examples.
Within the results from EICO, using random token
masking as the augmentation strategy in regulariza-
tion consistency, and dropout as weak augmenta-
tion, random token masking as strong augmenta-
tion has the best performance by average, which
improves 1.84% compared to baseline and 1.32%
compared to SFLM.

3.4 Impact of Model Size

In order to explore the robustness of EICO on dif-
ferent model size, we use a larger language model
namely RoBERTa-base (Liu et al., 2019) for ab-
lation study, which have twelve-layer transformer
blocks. The hyper-parameters keep the same as
Table 1. We report the best performance among all

1https://www.aliyun.com/product/ai/alimt

DistilRoBERTa RoBERTa
MLM 73.96 77.81
UDA 74.52 77.74
SFLM 74.48 77.65
EICO (Ours) 75.80 78.53

Table 2: Impact of Model Size. We report the best per-
formance among all combinations of the augmentation
strategies. DitilRoBERTa (Sanh et al., 2019) is a six-
layer version of RoBERTa, RoBERTa (Liu et al., 2019)
is a twelve-layer base model.

combinations of the augmentation strategies in Ta-
ble 2. As a result, we found that EICO can achieve
competitive performance among two pre-trained
language model with different size consistently.

3.5 Impact of K

K = 8 K = 32

MLM 72.48 76.05
UDA 73.88 76.86
SFLM 73.08 76.44
EICO (Ours) 74.18 77.21

Table 3: Impact of K. We modified K with all other
hyper-parameters keep the same as main result in Table
1. The model is a six-layer DistilRoBERTa.

In order to explore the robustness of EICO on
different number of labeled examples K, we con-
duct experiments on K = 8 and K = 32, and the
rest of hyper-parameters keep the same as in Table
1. From Table 3, we can find that EICO consistently
outperform baseline methods in different K.

4 Conclusion

In this work, we propose EICO, a simple yet effec-
tive self-training prompt-based few-shot text classi-
fication method, where explicit consistency regu-
larization is provided by the agreement of the aug-
mented views of example, and implicit consistency
regularization by the pseudo-label technique are uti-
lized. We conducted comprehensive experiments
over six text classification datasets and found that
EICO outperformed existing methods. Moreover,
in the ablation study, we explore the impact of the
number of labeled examples K and two different
model sizes and found that EICO can consistently
achieve competitive performance.
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