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Abstract

We investigate Referring Image Segmentation
(RIS), which outputs a segmentation map cor-
responding to the natural language description.
Addressing RIS efficiently requires consider-
ing the interactions happening across visual
and linguistic modalities and the interactions
within each modality. Existing methods are
limited because they either compute different
forms of interactions sequentially (leading to
error propagation) or ignore intramodal interac-
tions. We address this limitation by performing
all three interactions simultaneously through
a Synchronous Multi-Modal Fusion Module
(SFM). Moreover, to produce refined segmen-
tation masks, we propose a novel Hierarchical
Cross-Modal Aggregation Module (HCAM),
where linguistic features facilitate the exchange
of contextual information across the visual hi-
erarchy. We present thorough ablation studies
and validate our approach’s performance on
four benchmark datasets, showing considerable
performance gains over the existing state-of-
the-art (SOTA) methods.

1 Introduction

Traditional computer vision tasks like detection
and segmentation have dealt with a pre-defined set
of categories, limiting their scalability and practi-
cality. Substituting the pre-defined categories with
natural language expressions (NLE) is a logical ex-
tension to counteract the above problems. Indeed,
this is how humans interact with objects in their
environment; for example, the phrase “the kid run-
ning after the butterfly" requires localizing only the
child running after the butterfly and not the other
kids. Formally, the task of localizing objects based
on NLE is known as Visual Grounding. Existing
works either approach the grounding problem by
predicting a bounding box around the referred ob-
ject or a segmentation mask corresponding to the
referred object. We focus on the latter approach,
as a segmentation mask can effectively pinpoint

Figure 1: Unlike existing methods which model interac-
tions in a sequential manner, we synchronously model
the Intra-Modal and Inter-Modal interactions across vi-
sual and linguistic modalities. Here, Mv and Mt repre-
sent Visual and Linguistic Modalities, and {-} represents
interactions between them.

the exact location and capture the actual shape of
the referred object. The task is formally known as
Referring Image Segmentation (RIS).

RIS requires understanding both visual and lin-
guistic modalities at an individual level, specifically
word-word and region-region interactions. Addi-
tionally, a mutual understanding of both modalities
is required to identify the referred object from the
linguistic expression and localize it in the image.
For instance, to ground a sentence “whatever is
on the truck", it is necessary to understand the re-
lationship between words as grounding just the
individual words will not work. Similarly, region-
to-region interactions in visual modality help group
semantically similar regions, e.g., all regions be-
longing to the truck. Finally, to identify the referent
regions, we need to transfer the distinctive informa-
tion about the referent from the linguistic modality
to the visual modality; this is taken care of by the
cross-modal word-region interactions. The current
SOTA methods (Yang et al., 2021; Feng et al., 2021;
Huang et al., 2020; Hui et al., 2020; Hu et al., 2020)
take a modular approach, where these interactions
happen in parts, sequentially.

Different methods differ in how they model these
interactions. (Huang et al., 2020) first perform a
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region-word alignment (cross-modal interaction).
The second stage takes these alignments as input
to select relevant image regions corresponding to
the referent. (Yang et al., 2021) and (Hui et al.,
2020) use the dependency tree structure of the re-
ferring expression for the reasoning stage instead.
(Hu et al., 2020) select a suitable combination of
words for each region, followed by selecting the
relevant regions corresponding to referent based
on the affinities with other regions. The perfor-
mance of the initial stages bounds these approaches.
Furthermore, they ignore the crucial intra-modal
interactions for RIS.

In this paper, we perform all three forms of inter-
actions simultaneously. We propose a Synchronous
Multi-Modal Fusion Module (SFM) which cap-
tures the inter-modal and intra-modal interactions
between visual and linguistic modalities in a single
step. Intra-modal interactions handle the cases for
identifying the relevant set of words and semanti-
cally similar image regions. Inter-modal interac-
tions transfer contextual information across modali-
ties. Additionally, we propose a novel Hierarchical
Cross-Modal Aggregation Module (HCAM) to ex-
change contextual information relevant to referent
across visual hierarchies and refine the referred
object’s segmentation mask.

We motivate the benefits of simultaneous inter-
actions over sequential in Figure 1 by presenting
a failure case of the latter. For the given referring
expression "anywhere, not on the people", sequen-
tial approaches fail to identify the correct word to
be grounded, and the error gets propagated till the
end. CMPC (Huang et al., 2020) which predicts the
referent word from the expression in the first stage,
identifies "people" as the referent (middle image in
Figure 1) and completely misses "anywhere" which
is the correct entity to ground. Similarly, (Yang
et al., 2021), and (Hui et al., 2020), which utilize
dependency tree structure to govern their reasoning
process, identify the referred entity "anywhere" as
an adverb from the dependency tree. However, con-
sidering the expression in context with the image,
the word "anywhere" should be perceived as a "pro-
noun". The proposed SFM module successfully
addresses the aforementioned limitations. Overall,
our work makes the following contributions:-

1. We propose SFM to reason over regions,
words, and region-word features in a syn-
chronous manner, allowing each modality to
focus on relevant semantic information to

identify the referred object.
2. We propose a novel HCAM module, which

routes hierarchical visual information through
linguistic features to produce a refined seg-
mentation mask.

3. We present thorough quantitative and qualita-
tive experiments to demonstrate the efficacy of
our approach and show notable performance
gains on four RIS benchmarks.

2 Related Work

Referring Expression Comprehension: Local-
izing a bounding box/proposals based on an NLE
is a task commonly referred to as Referring Ex-
pression Comprehension (REC). The majority of
methods for REC learn a joint embedding space for
visual and linguistic modalities and differ in how
joint space is computed and how it is used. Earlier
methods, (Hu et al., 2016b; Rohrbach et al., 2016;
Plummer et al., 2018) used joint embedding space
as a metric space to rank proposal features with
linguistic features. Later methods like (Yang et al.,
2019; Deng et al., 2018; Liu et al., 2020) utilized
attention over the proposals to select the appro-
priate one. More Recent Methods like (Lu et al.,
2019; Chen et al., 2020) utilize transformer-based
architecture to project multi-modal features to com-
mon semantic space. Specifically, they utilize a
self-attention mechanism to align proposal-level
features with linguistic features. In our work, we
utilize pixel-level image features which are cru-
cial for the task of RIS. Additionally, compared to
(Lu et al., 2019), we explicitly capture inter-modal
and intra-modal interactions between visual and
linguistic modalities.

Referring Image Segmentation: Bounding Box-
based methods in REC are limited in their capabil-
ities to capture the inherent shape of the referred
object, which led to the proposal of the RIS task.
It was first introduced in (Hu et al., 2016a), where
they generate the referent’s segmentation mask by
directly concatenating visual features from CNN
with tiled language features from LSTM. (Li et al.,
2018) generates refined segmentation masks by in-
corporating multi-scale semantic information from
the image. Since each word in expression makes a
different contribution in identifying the desired ob-
ject, (Shi et al., 2018) model visual context for each
word separately using query attention. (Ye et al.,
2019) uses a self-attention mechanism to capture
long-range correlations between visual and textual
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Figure 2: The proposed network architecture. Synchronous Multi-Modal Fusion captures pixel-pixel, word-word
and pixel-word interaction. Hierarchical Cross-Modal Aggregation exchanges information across modalities and

hierarchies to selectively aggregate context relevant to the referent.

modalities. Recent works (Hu et al., 2020; Huang
et al., 2020; Hui et al., 2020) utilize cross-modal
attention to model multi-modal context, (Hui et al.,
2020; Yang et al., 2021) use dependency tree struc-
ture and (Huang et al., 2020) use coarse labelling
for each word in the expression for selective context
modelling. Most of the existing works capture Inter
and Intra modal interactions separately to model
the context for referent. In this work, we concur-
rently model the comprehensive interactions across
visual and linguistic modalities.

3 Method

Given an image and a natural language referring
expression, the goal is to predict a pixel-level seg-
mentation mask corresponding to the referred en-
tity described by the expression. The overall ar-
chitecture of the network is illustrated in Figure 2.
Visual features for the image are extracted using
a CNN backbone, and linguistic features for the
referring expression are extracted using a LSTM. A
Synchronous Multi-Modal Fusion Module (SFM)
simultaneously aligns visual regions with textual
words and jointly reasons about both modalities
to identify the multi-modal context relevant to the
referent. SFM is applied to hierarchical visual fea-
tures extracted from CNN backbone since hierar-
chical features are better suited for segmentation
tasks (Ye et al., 2019; Chen et al., 2019; Hu et al.,
2020). A novel Hierarchical Cross-Modal Aggrega-
tion module (HCAM) is applied to effectively fuse
SFM’s multi-level output and produce a refined
segmentation mask for the referent. We describe

the feature extraction process in the next section,
and both SFM and HCAM modules are described
in the subsequent sections.

3.1 Feature Extraction

Our network takes an image and a natural language
expression as input. We extract hierarchical vi-
sual features for an image from a CNN backbone.
Through pooling and convolution operations, all hi-
erarchical visual features are transformed to the
same spatial resolution and channel dimension.
Final visual features for each level are of shape
RCv×H×W , with H , W and Cv being the height,
width, and channel dimension of the visual features.
Final visual features are denoted as {V2, V3, V4},
corresponding to layers 2, 3 and 4 of the CNN
backbone. For ease of readability, we denote the
visual features as V . GloVe embeddings for each
word in the referring expression are then passed
as input to LSTM. The hidden feature of LSTM at
ith time step li ∈ RCl , is used to denote the word
feature for the ith word in the expression. The fi-
nal linguistic feature of the expression is denoted
as L = {l1, l2, ..., lT }, where T is the number of
words in the referring expression.

3.2 Synchronous Multi-Modal Fusion

In this section, we describe the Synchronous Multi-
Modal Fusion Module (SFM). To successfully seg-
ment the referent, we need to identify the semantic
information relevant to it in both the visual and
linguistic modalities. We capture comprehensive
intra-modal and inter-modal interactions explicitly
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in a synchronous manner, allowing us to jointly
reason about visual and linguistic modalities while
considering the contextual information from both.

Hierarchical visual features V ∈ RCv×H×W

and linguistic word-level features L ∈ RCl×T are
passed as input to SFM, with Cv = Cl = C. We
flatten the spatial dimensions of visual features and
perform a lengthwise concatenation with linguis-
tic feature, followed by layer normalization to get
multi-modal feature X of shape RC×(HW+T ). We
then add separate positional embedding Pv and Pl

to visual Xv ∈ RC×HW and linguistic Xl ∈ RC×T

part of X to distinguish between visual and linguis-
tic part. Finally, we apply multi-head attention
over X to capture the inter-modal and intra-modal
interactions between visual and linguistic modali-
ties. Specifically, pixel-pixel, word-word and word-
pixel interactions are captured. Pixel-pixel and
word-word interactions help in independently iden-
tifying semantically similar pixels and words in
their respective modalities, pixel-word interaction
helps in identifying corresponding pixels and words
with similar contextual semantics across modalities.

X = LayerNorm(V ⊙ L)

X = X + (Pv ⊙ Pl)

F = MultiHead(X)

(1)

Here, ⊙ is length-wise concatenation, F is the
final output of SFM module having same shape
as X . We process all hierarchical visual features
{V2, V3, V4} individually through SFM, resulting
in hierarchical cross-modal output {F2, F3, F4}.

3.3 Hierarchical Cross-Modal Aggregation

Hierarchical visual features of CNN capture differ-
ent aspects of images. As a result, depending on
the hierarchy, visual features can focus on differ-
ent aspects of the linguistic expression. In order
to predict a refined segmentation mask, different
hierarchies should be in agreement regarding the
image regions to focus on. Therefore, all visual
hierarchical features should also focus on image
regions corresponding to linguistic context from
other hierarchies. This will ensure that all hierarchi-
cal features are focusing on common regions. We
propose a novel Hierarchical Cross-Modal Aggre-
gation (HCAM) module for this purpose. HCAM
includes two key steps: (1) Hierarchical Cross-
Modal Exchange, and (2) Hierarchical Aggrega-
tion. Both steps are illustrated in Figure 3.

Tile

Reshape

Conv

Conv

Length-Wise Average

Element-Wise Sum

Hierarchical Cross-Modal Exchange

Tile

Element-Wise Product

Element-Wise Sum

Hierarchical Aggregation

Figure 3: Our Novel Hierarchical Cross-Modal Aggre-
gation Module consisting of Hierarchical Cross-Modal
Exchange and Hierarchical Aggregation steps.

Hierarchical Cross-Modal Exchange: During
the HCME step, we calculate the affinity weights
Λij between the jth layer’s linguistic context f l

j and
the spatial regions for ith layer’s visual features fv

i ,
where fv

i and f l
i are the visual and linguistic part

of ith layer’s output of SFM Fi.

Λij = σ(Conv([fv
i ; f

lavg
j ])) (2)

Here Λij ∈ RC×H×W , f lavg
j ∈ RC is the global

linguistic context for jth layer and is computed as
length-wise average of linguistic features f l

j , σ is

the sigmoid function. Here, f lavg
j act as a bridge

to route linguistic context from jth layer to spatial
regions of ith layer’s visual hierarchy. Similarly,
Λik is computed with i ̸= j ̸= k, allowing for
cross-modal exchange between all permutations of
visual and linguistic hierarchical features.

Hierarchical Aggregation: After computing
the affinity weights Λij , we perform a layer-wise
contextual aggregation. For each layer, visual con-
text from other hierarchies is aggregated in the
following way:

gi = fv
i +

∑
j ̸=i

Λij ◦ fv
j

G = Conv3D([g2; g3; g4])

(3)

Here, ◦ is element-wise product and [; ] repre-
sents stacking features along length dimension, ie:-
R3×C×H×W dimensional feature. gi ∈ RC×H×W

contains the relevant regions corresponding to the
linguistic context from the other two hierarchies.
Finally, we use 3D convolution to aggregate gi’s to
include the common regions corresponding to the
linguistic context from all visual hierarchies. G is
the final multi-modal context for referent.
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3.4 Mask Generation

Finally, G is passed through Atrous Spatial Pyra-
mid Pooling (ASPP) decoder (Chen et al., 2018)
and Up-sampling convolution to predict final seg-
mentation mask S. Pixel-level binary cross-entropy
loss is applied to predicted segmentation map S and
the ground truth segmentation mask Y to train the
entire network end-to-end.

4 Experiments

4.1 Experimental Setup

We conduct experiments on four Referring Image
Segmentation datasets. UNC (Yu et al., 2016) con-
tains 19,994 images taken from MS-COCO (Lin
et al., 2014) with 142,209 referring expressions
corresponding to 50,000 objects. Referring Expres-
sions for this dataset contain words indicating the
location of the object. UNC+ (Yu et al., 2016)
is also based on images from MS-COCO. It con-
tains 19,992 images, with 141,564 referring expres-
sions corresponding to 50,000 objects. In UNC+,
the expression describes the object based on their
appearance and context within the scene without
using spatial words. G-Ref (Mao et al., 2016) is
also curated using images from MS-COCO. It con-
tains 26,711 images, with 104,560 referring expres-
sions for 50,000 objects. G-Ref contains longer
sentences with an average length of 8.4 words;
compared to other datasets which have an aver-
age sentence length of less than 4 words. Referit
(Kazemzadeh et al., 2014) comprises of 19,894
images collected from IAPR TC-12 dataset. It in-
cludes 130,525 expressions for 96,654 objects. It
contains unstructured regions (e.g., sky, mountains,
and ground) as ground truth segmentations.

4.2 Implementation details

We experiment with two backbones,
DeepLabv3+ (Chen et al., 2018) and Resnet-101
for image feature extraction. Like previous
works (Ye et al., 2019; Chen et al., 2019; Hu et al.,
2020), DeepLabv3+ is pre-trained on Pascal VOC
semantic segmentation task while Resnet-101
is pre-trained on Imagenet Classification task,
and both backbone’s parameters are fixed during
training. For multi-level features, we extract
features from the last three blocks of CNN back-
bone. We conduct experiments at two different
image resolutions, 320× 320 and 448× 448 with
H = W = 18. We use GLoVe embeddings (Pen-
nington et al., 2014) pre-trained on Common

Crawl 840B tokens to initialize word embedding
for words in the expressions. The maximum
number of words in the linguistic expression is set
to 25. We use LSTM for extracting textual features.
The network is trained using AdamW optimizer
with batch size set to 50; the initial learning rate
is set to 1.2e−4 and weight decay of 9e−5 is used.
The initial learning rate is gradually decreased
using polynomial decay with a power of 0.7. We
train our network on each dataset separately.

Evaluation Metrics: Following previous
works (Ye et al., 2019; Chen et al., 2019; Hu et al.,
2020), we evaluate the performance of our model
using overall Intersection-over-Union (overall IoU)
and Precision@X as metrics. Overall IoU met-
ric calculates the ratio of the intersection and the
union computed between the predicted segmenta-
tion mask and the ground truth mask over all test
samples. Precision@X metric calculates the per-
centage of test samples having IoU greater than the
threshold X , with X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

4.3 Comparison with State of the Art

We evaluate our method’s performance on four
benchmark datasets and present the results in Table
1. Since three of the datasets are derived from MS-
COCO and have significant overlap with each other,
pre-training on MS-COCO can give misleading re-
sults and should be avoided. Hence, we only com-
pare against methods for which the backbone is pre-
trained on Pascal VOC. Unless specified, all the ap-
proaches in Table 1 are at 320×320 resolution. Our
approach, SHNet (SFM+HCAM), achieves state-
of-the-art performance on three datasets without
post-processing. In contrast, most previous meth-
ods present results after post-processing through a
Dense Conditional Random Field (Dense CRF).

The expressions in UNC+ avoid using positional
words while referring to objects; instead, they are
more descriptive about their attributes and rela-
tionships. Consistent performance gains on the
UNC+ dataset at all splits showcases the effec-
tiveness of utilizing comprehensive interactions
simultaneously across visual and linguistic modal-
ities. Similarly, our approach gains 1.68% over
the next best performing method EFN (Feng et al.,
2021) on the Referit dataset, reflecting its ability
to ground unstructured regions (e.g., the sky, free
space). We also achieve solid performance gains on
the UNC dataset at both resolutions, indicating that
our method can effectively utilize the positional
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Method UNC UNC+ G-Ref Referit
val testA testB val testA testB val test

RRN (Li et al., 2018) 55.33 57.26 53.95 39.75 42.15 36.11 36.45 63.63
CMSA (Ye et al., 2019) 58.32 60.61 55.09 43.76 47.60 37.89 39.98 63.80

STEP (Chen et al., 2019) 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13
BRIN (Hu et al., 2020) 61.35 63.37 59.57 48.57 52.87 42.13 48.04 63.46

LSCM (Hui et al., 2020) 61.47 64.99 59.55 49.34 53.12 43.50 48.05 66.57
CMPC (Huang et al., 2020) 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53

BUSNet* (Yang et al., 2021) 62.56 65.61 60.38 50.98 56.14 43.51 49.98 -
EFN* (Feng et al., 2021) 62.76 65.69 59.67 51.50 55.24 43.01 51.93 66.70

SHNet* (320× 320) 63.98 67.51 60.48 51.79 56.49 43.83 48.95 68.38
SHNet* (448× 448) 65.32 68.56 62.04 52.75 58.46 44.12 49.90 69.19

Table 1: Comparison with State-Of-the-Arts on Overall IoU metric, ∗ indicates results without using DenseCRF
post processing. Best scores are shown in red and the second best are shown in blue. Our method uses DeepLabv3+
backbone for both resolutions.

Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 Overall IoU
1 Baseline 61.47 54.01 43.74 27.47 7.21 54.70
2 Only HCAM 68.44 61.58 52.10 35.63 9.71 59.53
3 Only SFM 72.56 66.58 57.91 40.73 12.82 62.16
4 SFM+ConvLSTM 74.34 68.89 60.67 42.95 13.35 63.30
5 SFM+Conv3D 74.07 68.74 60.50 43.14 13.58 63.16
6 SHNet w/o Glove 74.23 68.42 59.77 42.47 13.66 62.19
7 SHNet w/o P.E 74.0 68.36 59.71 43.15 13.36 63.07
8 SHNet 75.18 69.36 61.21 46.16 16.23 63.98

Table 2: Ablation Studies on Validation set of UNC, SHNet is the full architecture with both SFM and HCAM
modules. The input image resolution is 320× 320 in each case.

words to localize the correct instance of an object
from multiple ones. EFN (Feng et al., 2021) (un-
derlined in Table 1) gives the best performance on
G-Ref dataset; however, it is fine-tuned on the UNC
pre-trained model. With similar fine-tuning, SHNet
achieves 56.44% overall IoU, surpassing EFN by a
large margin. However, such an experimental setup
is incorrect, as there is a significant overlap be-
tween G-Ref test and UNC training set. Hence, in
Table 1 we report performance on a model trained
on G-Ref from scratch. Performance of SHNet
is marginally below BusNet on the G-Ref dataset.
Feature maps in SHNet have a lower resolution of
18 × 18 compared to 40 × 40 resolution used by
other methods and that possibly leads to a drop in
performance on G-Ref, which has extremely small
target objects. We could not train SHNet on higher
resolution feature maps due to memory limits in-
duced by multi-head attention (on RTX 2080Ti
GPU); however, training on higher resolution input
improves results.

4.4 Ablation Studies

We perform ablation studies on the UNC dataset’s
validation split. All methods are evaluated on
Precision@X and Overall IoU metrics, and the
results are illustrated in Table 2. Unless specified,

the backbone used for ablations is DeepLabv3+
trained at 320× 320 resolution. The feature extrac-
tion process described in Section 3.1 is used for all
ablation studies. ASPP + ConvUpsample decoder
is also common to all the experiments.

Baseline: The baseline model involves direct
concatenation of visual features with the tiled tex-
tual feature to result in multi-modal feature of
shape R(Cv+Cl)×H×W . This multi-modal feature
is passed as input to ASPP + ConvUpsample de-
coder.

HCAM without SFM: “Only HCAM" network
differs with baseline method only on the fusion
process of hierarchical multi-modal features. Intro-
ducing the HCAM module over baseline results in
4.83 % improvement on the Overall IoU metric and
an improvement of 2.5 % on the prec@0.9 metric
(illustrated in Table 2), indicating that the HCAM
module results in refined segmentation masks.

SFM without HCAM: Similarly, the “Only
SFM" network differs from the baseline method in
how different types of visual-linguistic interactions
are captured. We observe significant performance
gains of 7.46 % over the baseline, indicating that
simultaneous interactions help identify the referent.

SFM + X: We replace HCAM module with
other multi-level fusion techniques like ConvL-
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Figure 4: Qualitative results comparing the baseline against SHNet.

“the right half of the sandwich on the left"

(a) Original Image (b) Only HCAM module (c) Only SFM module (d) SHNet (e) Ground Truth

Figure 5: Qualitative results corresponding to combinations of proposed modules. In (b) we show results when only
HCAM module is used, (c) result with only SFM module being used, (d) output mask when both SFM and HCAM
modules are used

STM and Conv3D. Comparing the performance
of SFM+ConvLSTM with SHNet (SFM+HCAM),
we observe that HCAM is indeed effective at fus-
ing hierarchical multi-modal features (Table 2). For
SFM+Conv3D, we stack multi-level features along
a new depth dimension resulting in 3D features,
and perform 3D convolution on them. The same
filter is applied to different level features that re-
sult in each level feature converging on a common
region in the image. SFM+Conv3D achieves a
similar performance as SFM+ConvLSTM while
using fewer parameters. Using Conv3D achieves
higher Precision@0.8 and Precision@0.9 than Con-
vLSTM, suggesting that it leads to more refined
maps. It is worth noting that HCAM also uses
Conv3D at the end, and the additional gains of
SHNet over SFM+Conv3D suggest the benefits of
hierarchical information exchange in HCAM.

Glove and Positional Embeddings: We verify
Glove embeddings’ significance by replacing it
with one hot embedding. We also validate the use-
fulness of Positional Embeddings (P.E.) by training
a model without them. Both variants observe a
drop in performance (Table 2), with the drop being

more significant in the variant without Glove em-
beddings. These ablations suggest the importance
of capturing word-level semantics and positional-
aware features.

In Table 3, we present ablations with differ-
ent backbones at different resolution. The results
demonstrate that our approach does not heavily rely
on backbone for its performance gains, as even with
a vanilla Imagenet pre-trained Resnet101 backbone,
not fine-tuned on segmentation task, we outperform
existing methods at both resolutions. Predictably,
using a backbone fine-tuned on a segmentation task
gives further performance gain.

backbone resolution val testA testB

Resnet101 320 x 320 63.76 67.05 60.15
448 x 448 64.88 68.08 60.82

DeepLabv3+ 320 x 320 63.98 67.51 60.48
448 x 448 65.29 68.56 62.04

Table 3: Result with different backbone at different
input resolutions on UNC dataset.

We also present ablations with different aggrega-
tion modules in Table 4. We use the modules pre-
sented in MGATE (Ye et al., 2019), TGFE (Huang
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“top bowl" “left plate on top" “left plate on bottom" “front bowl" “right bowl" “empty plates in center"

Figure 6: Output predictions of SHNet for an anchored image with varying linguistic expressions.

Aggregation Module Overall IOU
320x320 448x448

MGATE (Ye et al., 2019) 62.59 63.35
TGFE (Huang et al., 2020) 62.94 63.72
GBFM (Hui et al., 2020) 62.72 63.83

HCAM 63.98 65.32

Table 4: Comparing performance of recent Aggrega-
tion Modules on the UNC val dataset at different input
resolutions

Word-Pixel Attention

center case on floor with squares

Pixel-Pixel Attention center case on floor with squares Word-Word Attention

Figure 7: Visualization of Inter-modal and Intra-modal
interactions in SFM.

et al., 2020) and GBFM (Hui et al., 2020), for
which codes were publicly available. HCAM con-
sistently outperforms other methods by clear mar-
gins at both resolution.

4.5 Qualitative Results

Figure 4 presents qualitative results comparing
SHNet against the baseline model. SHNet local-
izes heavily occluded objects (Figure 4 (a) and (b));
reasons on the overall essence of the highly ambigu-
ous sentences (e.g. “person you cannot see", “right
photo not left photo") and; distinguishes among
multiple instances of the same type of object based
on attributes and appearance cues (Figure 4 (b),
(c), and (e)). While, without any reasoning stage,
the baseline model struggles to segment the correct
instance and confuse it with similar objects. Figure
4 (d) and (f) illustrate the ability of SHNet to lo-
calize unstructured non-explicit objects like “dark
area" and “blue thing". The potential of SHNet to

perform relative positional reasoning is highlighted
in Figure 4 (b), (e), and (f).

We outline the contributions of both SFM and
HCAM modules in Figure 5. “Only HCAM" net-
work does not involve any reasoning, however, it
manages to predict the left sandwich with refined
boundaries. “Only SFM" network understands the
concept of “the right half of the sandwich" and
leads to much better output; however, the output
mask bleeds around the boundaries, and an extra
small noisy segment is visible. The full model
benefits from the reasoning in “SFM," and when
combined with HCAM facilitates information ex-
change across hierarchies to predict correct refined
mask as output. In Figure 6, we anchor an image
and vary the linguistic expression. SHNet is able
to reason about different linguistic expressions suc-
cessfully and ground them. Inter-modal and Intra-
modal interactions captured by SFM are illustrated
in Figure 7. Pixel-pixel interactions highlight im-
age regions corresponding to the referent. For the
given expression, “squares" contains the differenti-
ating information and is assigned high importance
for different words. Additionally, for each word
appropriate region in the image is attended.

Additional qualitative examples with success
and failure cases are provided in the supplementary
material.

5 Conclusion

In this work, we tackled the task of Referring Im-
age Segmentation. We proposed a simple yet ef-
fective SFM to capture comprehensive interactions
between modalities in a single step, allowing us to
simultaneously consider the contextual information
from both modalities. Furthermore, we introduced
a novel HCAM module to aggregate multi-modal
context across hierarchies. Our approach achieves
strong performance on RIS benchmarks without
any post-processing. We present thorough quanti-
tative and qualitative experiments to demonstrate
the efficacy of all the proposed components.
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