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Abstract

Relations between entities can be represented
by different instances, e.g., a sentence contain-
ing both entities or a fact in a Knowledge Graph
(KG). However, these instances may not well
capture the general relations between entities,
may be difficult to understand by humans, even
may not be found due to the incompleteness
of the knowledge source. In this paper, we in-
troduce the Open Relation Modeling problem–
given two entities, generate a coherent sentence
describing the relation between them. To solve
this problem, we propose to teach machines
to generate definition-like relation descriptions
by letting them learn from defining entities.
Specifically, we fine-tune Pre-trained Language
Models (PLMs) to produce definitions condi-
tioned on extracted entity pairs. To help PLMs
reason between entities and provide additional
relational knowledge to PLMs for open rela-
tion modeling, we incorporate reasoning paths
in KGs and include a reasoning path selection
mechanism. Experimental results show that
our model can generate concise but informative
relation descriptions that capture the represen-
tative characteristics of entities.1

1 Introduction

People are always interested in relations between
entities. To learn about a new concept, people want
to know how this concept relates to the ones they
are familiar with; when getting two related entities
of interest, people ask how exactly they are related.

However, although existing systems identify
related entities, they do not provide features for
exploring relations between entities. For instance,
in Figure 1, the top is the ScienceDirect Topics
feature of Elsevier, which lists several related terms
without any annotation; the bottom is the “see
also” feature of Wikipedia, where the annotation
of deep learning is not specific to the context of

1Code and data are available at https://github.
com/jeffhj/open-relation-modeling.

Figure 1: Examples of two current services: Elsevier’s
ScienceDirect Topics (top) and Wikipedia’s “see also”
(bottom), both of which lack open relation modeling.

natural language processing. Users cannot get
how deep learning and NLP are related by reading
the annotation, while deep learning is used heavily
recently for NLP.

Besides, even relations are represented, they may
not be interpretable to humans. There are different
ways to represent relations between entities. For
example, if two entities co-occur in a sentence, they
are possibly related and the relation can be implied
by the sentence. From a structured perspective, a
relation can be represented as a fact or a multi-hop
reasoning path between two entities in a Knowl-
edge Graph (KG). However, for humans without
too much prior knowledge about the entities, it is
still difficult to understand the relations by reading
them. For example, from sentence “we study data
mining and database.” or fact “(data mining, facet
of, database)”, humans can guess data mining and
database are related fields, but they cannot know
exactly how they are related. Besides, due to the
limited size of the corpus or the incompleteness
of the KG, for many related entities, we may not
extract a sentence or a fact containing both entities.

Based on the above observation, a system for
exploring relations between entities needs to meet
the following requirements: 1) interpretability:
providing interpretable relation descriptions, with
which humans can easily understand relations be-
tween entities; 2) openness: dealing with a wide
range of related entities, including those neither co-
occur in a corpus nor be connected in a knowledge
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graph, where types of relations are not required to
be explicitly pre-specified.

To achieve a system meeting with the above
requirements, we introduce a novel task– Open
Relation Modeling, i.e., generating coherent sen-
tences describing general relations between enti-
ties, where types of relations do not need to be
pre-specified. Different from open relation extrac-
tion, which aims to extract relational facts between
entities from an open-domain corpus (Banko et al.,
2007), open relation modeling aims to generate
a concise but informative sentence, capturing the
representative characteristics of the given entities
and their relation. From the perspective of inter-
pretability, compared to open relation extraction
whose outputs are phrases with low interpretability,
e.g., (data mining methods, to be integrate within,
the framework of traditional database systems) by
Ollie (Schmitz et al., 2012), open relation modeling
improves the interpretability of entity relations. For
example, for data mining and database, we want
to generate a sentence like “data mining is a pro-
cess of extracting and discovering patterns in large
data sets involving methods at the intersection of
machine learning, statistics, and database systems.”
Such a relation description is informative and easy
to understand since it contains important and pre-
cise information about entities and their relation.

To solve the task, we propose to teach machines
to learn from defining entities. Definitions of enti-
ties are highly summarized sentences that capture
the most representative characteristics of entities,
where the general relations between the defined
entity and other entities in the definitions are well
captured. Therefore, we suggest to find the gen-
eral relation between two entities by defining one
entity in terms of the other entity. To achieve this,
we first collect definitions of entities and extract
entity pairs from the definitions. Then we teach
machines to generate definition-like relation de-
scriptions by training a language generation model
to produce definitions of entities conditioned on
extracted entity pairs.

To generate informative relation descriptions,
machines need knowledge about entities and re-
lations. Therefore, we apply Pre-trained Language
Models (PLMs) (Radford et al., 2019; Brown et al.,
2020; Lewis et al., 2020a; Raffel et al., 2020),
which have recently been shown to contain rich
relational knowledge of entities (Petroni et al.,
2019; Roberts et al., 2020; Wang et al., 2020; Liu

et al., 2021a). To utilize knowledge to describe
relations between entities, machines also need to
reason between entities. We incorporate reasoning
paths in KGs to help PLMs do multi-hop reasoning
and provide additional relational knowledge to
PLMs. We also design a reasoning path selection
mechanism by confidence estimation of PLMs
to select interpretable and informative reasoning
paths, which are then incorporated by PLMs for
open relation modeling.

We conduct both quantitative and qualitative ex-
periments. Experimental results show that, after
learning from definitions of entities, PLMs have
a great ability to describe relations between enti-
ties concisely and informatively. By incorporating
reasoning paths and including the reasoning path
selection mechanism, machines can often gener-
ate relation descriptions well capturing relations
between entities, with only minor errors that do
not affect the understanding of relations. We also
conduct error analysis for the proposed methods
and suggest several directions for future work.

2 Open Relation Modeling

2.1 Problem Statement

The problem of Open Relation Modeling can be
described as: given two entities x and y, corre-
sponding to head and tail, the task is to generate
a coherent sentence s that describes the general
relation between x and y, where types of relations
do not need to be pre-specified. More specifically,
the expected output is a concise but informative
sentence that captures the representative character-
istics of the entities and their relation (examples of
data mining and database as shown in Section 1).

2.2 Open Relation Modeling: Learning from
Definitions

We formulate open relation modeling as a condi-
tional sentence generation task, i.e., generating
sentences capturing general relations between
entities conditioned on entity pairs. Formally,
we apply the standard sequence-to-sequence
formulation: given an entity pair (x, y), the
probability of the output relation description
s = [w1, . . . , wm] is calculated as:

P (s|x, y) =
m∏
i=1

P (wi|w0, w1, . . . , wi−1, x, y),

where w0 is a special start token.
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To generate a sentence capturing the general
relation between x and y, machines need to
know the semantic meanings of x and y, reason
between them, and learn to describe their relation
in a concise but informative form. Definitions
of entities, which are highly summarized (i.e.,
concise but informative) sentences, capture the
most representative characteristics of entities. To
define an entity, other entities may be included,
and the relations between the defined entity and
other entities are well captured.

Therefore, we propose to teach machines to de-
scribe relations between entities by letting them
learn from defining entities. The key idea is to
find the general relation between two entities by
defining one entity in terms of the other entity. To
achieve this, we first collect definitions of entities
and extract entity pairs from these definitions to
form entities-definition pairs (more details are in
Section 3.1). After that, we teach machines to
generate relation descriptions with the desired char-
acteristics by training a language generation model
to produce definitions of entities conditioned on
extracted entity pairs.

With the key idea in mind, the next step is to
design the generation model. Recently, Bevilac-
qua et al. (2020) show that, by fine-tuning with
context-gloss pairs, pre-trained language genera-
tion models can generate the glosses/definitions
for definiendums that are not seen in the training
data. Besides, recent studies (Petroni et al., 2019;
Wang et al., 2020; Liu et al., 2021a) demonstrate
that pre-trained language models contain rich rela-
tional knowledge, and such relational knowledge
is essential to describing relations between entities.

Therefore, we apply pre-trained language mod-
els for open relation modeling. Particularly, we
employ BART (Lewis et al., 2020a)– a recent
transformer-based encoder-decoder model. In our
framework, we train BART to produce the defi-
nitions of entities with extracted entity pairs as
input. Specifically, we encode the entity pair (x, y)
as x; y, e.g., Haste;Germany, and fine-tune the
model to generate the corresponding sentence s,
e.g., “Haste is a municipality in the district of
Schaumburg, in Lower Saxony, Germany”. By fine-
turning on the training data, the model can learn the
knowledge about entities and learn to connect two
entities in a coherent sentence based on its “knowl-
edge”. When given a new entity pair, the model
can generate a definition-like relation description

that possesses the desired characteristics. We refer
to this model as RelationBART-Vanilla.

2.3 Reasoning Path-Enriched Relation
Modeling

While PLMs can generate coherent relation de-
scriptions with fine-tuning on the entities-definition
pairs, their ability is still limited. Recent studies
(Forbes et al., 2019; Zhou et al., 2020; Richardson
and Sabharwal, 2020) show that it is difficult for
PLMs to reason based on their knowledge. Besides,
although PLMs contain rich relational knowledge
implicitly, they cannot recover all the relational
knowledge in a knowledge base.

Knowledge graphs, in contrast, contain rich re-
lational knowledge explicitly. Relations between
entities can be represented by reasoning paths ex-
tracted from KGs directly. A good reasoning path
can guide PLMs to do multi-hop reasoning and pro-
vide additional relational knowledge to PLMs for
open relation modeling.

Therefore, we want to inject relational knowl-
edge of KGs into PLMs and incorporate reasoning
paths to help PLMs reason between entities. We
achieve this by a simple encoding scheme with-
out changing the architecture of PLMs and re-pre-
training. Given a knowledge graph G, for an en-
tity pair (x, y), if there exists a reasoning path
p(x, y) = {x, r1, e1, r2, . . . , rk, y} in G, we en-
code (x, y) as x; r1: e1; r2: . . . ; rk: y; if not, we
encode (x, y) as x; unknown: y. With fine-tuning
on the path-sentence pairs, the model can learn to
utilize the relational knowledge in a reasoning path
to reason between two entities and generate a coher-
ent sentence describing the relation between them.

However, there may exist multiple reasoning
paths between two entities in a KG, while not all
reasoning paths are equally helpful. Among the
reasoning paths between two entities, the shortest
one usually indicates the most direct relation. For
example, if two entities have a direct relation in a
KG, the shortest reasoning path should be a 1-hop
path p(x, y) = {x, r1, y}. This path can represent
a reasonable relation between two entities because
this is the reason why the KG includes such a fact.
Based on this observation, formally, given an entity
pair (x, y), the selected reasoning path is

p̂(x, y) = argmin
p(x,y)∈P(x,y)

len(p(x, y)),

where P(x, y) is the set of reasoning paths con-
necting x and y extracted from the KG and len(·)
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is the length of the reasoning path. We name the
model trained with the shortest reasoning paths2 as
RelationBART-SP. To keep the presented model
simple and easy to be verified, we leave the more
complex mechanism of sampling reasoning paths
as future work (Lao et al., 2011; Xiong et al.,
2017; Chen et al., 2018). In the next section, we
will show that PLMs can select interpretable and
informative reasoning paths automatically based
on confidence estimation.

2.4 Open Relation Modeling with Reasoning
Path Selection

While shortest reasoning paths can represent
the most direct relations between entities, from
the perspective of human/machine understanding,
these paths may not be the most interpretable
and informative. For instance, given entity pair
(Haste,Germany), with sentence description s =
“Haste is a municipality in the district of Schaum-
burg, in Lower Saxony, Germany”, the short-
est reasoning path in Wikidata KG is p1 =
{Haste, country,Germany}. This reasoning path
is not interpretable since we only know Haste is
in Germany, but we have no idea whether Haste
is a municipality or a district of Germany. How-
ever, from reasoning path p2 = {Haste, located in
the administrative territorial entity, Schaumburg,
country, Germany}, we can know Haste is a
smaller administrative region than Schaumburg–
possibly a municipality. Besides, compared to p1,
p2 is more informative. With p1, to generate s, ma-
chines need to “guess” the district of Haste. How-
ever, with p2, machines can predict the district of
Haste is Schaumburg with a high confidence.

A more interpretable and informative reasoning
path can guide and help machines to generate a
more reasonable and precise relation description
with the desired characteristics. This is because ma-
chines can more easily reason between entities with
the path and incorporate more important informa-
tion from the path. Therefore, instead of using the
shortest paths, we design a mechanism to select the
most interpretable and informative reasoning paths
automatically. We achieve this by the confidence
estimation of PLMs, which is motivated by related
work on machine translation and speech recogni-
tion for accessing the quality of the prediction (Siu
and Gish, 1999; Ueffing and Ney, 2007; Niehues

2If there exist multiple shortest paths for an entity pair, we
randomly choose one.

and Pham, 2019). Given an entity pair (x, y), with
a reasoning path p(x, y), a trained model M, and
the corresponding prediction M(p(x, y)), the con-
fidence of the prediction can be evaluated by the
posterior probability P (M(p(x, y))|p(x, y))3. We
select the reasoning path associated with the high-
est confidence score:

p̂(x, y) = argmax
p(x,y)∈P(x,y)

P (M(p(x, y))|p(x, y)).

Reasoning path selection by confidence estima-
tion is intuitive since 1) if a reasoning path is more
interpretable, which means the path is easier to
convert to a precise relation description, PLMs can
“reason” between entities based on their knowledge
with less effort; 2) if a reasoning path is more infor-
mative, which means the reasoning path provides
useful relational knowledge, PLMs can incorporate
such information into the prediction without
guessing the necessary information. In both cases,
the confidence of the prediction will be higher.

With the reasoning path selection mechanism,
given an entity pair (x, y), the generated relation
description is M(p̂(x, y)), where p̂(x, y) is the
reasoning path associated with the highest con-
fidence score. The selected reasoning path can
also serve as a support of the prediction and help
users to understand the relation in a structured view.
To get the trained model M, we can directly ap-
ply RelationBART-SP introduced in Section 2.3.
We name RelationBART-SP with reasoning path
selection as RelationBART-SP + PS4 To make
the training more robust and let PLMs learn more
features from valid reasoning paths, for each en-
tity pair, we can sample more than one reasoning
path, e.g., the shortest n reasoning paths with hops
≤ k, to train the model. We refer to this model as
RelationBART-MP + PS.

3 Experiments

3.1 Dataset Construction and Analysis

We use Wikipedia and Wikidata (Vrandečić and
Krötzsch, 2014) to build a benchmark dataset for
open relation modeling.

3We use the posterior probability of BART implemented by
fairseq. The estimation may be further improved through
calibration (Jiang et al., 2021).

4We encourage the model to select relatively short paths
since long paths are likely to introduce redundant information
and the reasoning will not be intuitive, e.g., {Haste, shares
border with, Hohnhorst, shares border with, Bad Nenndorf,
country, Germany}.
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train dev test test*
number 5,434,158 27,431 55,226 7,302

1-hop 2-hop 3-hop > 3-hop
ratio (%) 35.14 17.80 7.33 39.73

Table 1: The statistics of the data.

The first sentences of Wikipedia are definition-
like sentences connecting different entities. For
instance, the first sentence of page Deep Learning
is s = “[Deep learning] (also known as deep struc-
tured learning) is part of a broader family of [ma-
chine learning] methods based on [artificial neural
networks] with [representation learning].” The
head entity of this sentence is deep learning, and
there are three tail entities: machine learning, arti-
ficial neural networks, and representation learning,
which are linked to other pages and can be easily
extracted with simple text preprocessing. Combin-
ing the head entity and the three tail entities, we
can construct three entity pairs, whose expected re-
lation descriptions are all s. The version we used is
2021-03-20 dump5 of English Wikipedia. For each
page, we extract the plain text by WikiExtractor6

and further extract the first sentence. We randomly
split entity pairs to build train/dev/test sets, where
the head entities do not overlap in each set.

To provide reasoning paths for open relation
modeling, we sample part of Wikidata to build
a knowledge graph. Specifically, we keep facts
whose head and tail entities both appear in
Wikipedia. The extracted KG contains 5,033,531
entities and 23,747,210 fact triples. The relation
between two entities is considered as k-hop if the
shortest reasoning path between them is k-hop.

Analysis and Filtering. To assess the quality of
the dataset, we randomly sample 100 examples
from the test set and ask human annotators to
judge whether each sentence well represents entity
relationships. As a result, 87% of the sentences are
considered as good relation descriptions.

To improve the quality of evaluation, we design
a rule-based method to construct a high-quality sub-
test set. Specifically, we collect dependency graph
for each relation description, and calculate the de-
pendency coverage: the ratio of tokens covered by
the shortest dependency path from the head to the
tail compared to all the tokens in the sentence; and

5https://dumps.wikimedia.org/enwiki/
20210320

6https://github.com/attardi/
wikiextractor

surface coverage: the ratio of tokens between the
head and the tail (including head and tail) com-
pared to all the tokens in the sentence. For instance,
given entity pair (Walton East, parish) and relation
description “Walton East is a small rural village
and parish established around a church at least as
early as Norman times.” The shortest dependency
path from the head to the tail only contains tokens
{Walton, East, is, parish}, so the dependency cov-
erage is 4/20. And there are 9 tokens between the
head and tail, so the surface coverage is 9/20.

A low dependency coverage and surface cov-
erage indicate that many tokens in the sentence
may not be important to characterize the rela-
tion between the head and the tail; therefore, the
sentence may not be a good relation description.
We keep examples whose (dependency coverage +
surface coverage)/2 > 0.6. After filtering, 96% of
the sentences are judged as good relation descrip-
tions by the human annotators. Here we note that
while the above method filters out bad examples, it
also filters out many good relationship descriptions.
Table 1 summarizes the statistics of the data (test*
denotes the filtered sub-test set).

3.2 Experimental Setup

Baselines. Because our task on open relation
modeling is new, there is no existing baseline for
model comparison. We design the following base-
lines/variants for evaluation:
• DefBART: Since the expected output is a

definition-like sentence, the model proposed in
(Bevilacqua et al., 2020) can be applied directly,
i.e., generating the definition of the head entity
with the head entity as input. We can observe the
performance gain of relation modeling compared
to definition modeling in terms of generating def-
initions and see the difference between them.

• RelationBART-Vanilla: The vanilla version of
our model introduced in Section 2.2.

• RelationBART-SP: The shortest-path version of
our model introduced in Section 2.3.

• RelationBART-SP + PS: The shortest-path ver-
sion of our model, combining with the reasoning
path selection mechanism (Section 2.4).

• RelationBART-MP + PS: The multiple-path ver-
sion of our model, combining with the reasoning
path selection mechanism (Section 2.4).
Without additional notation, we apply the BART-

base model and denote “Large” when using the
BART-large model. “w/o PT” means the BART-
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BL R-L MT BS

DefBART 20.67 41.82 18.84 81.56
RelationBART-Vanilla (w/o PT) 26.01 50.84 23.65 85.37
RelationBART-SP (w/o PT) 26.60 51.86 24.15 85.79
RelationBART-SP (w/o PT) + PS 27.60 52.70 24.75 85.99
RelationBART-MP (w/o PT) + PS 28.75 53.46 25.34 86.43
RelationBART-Vanilla 26.81 51.48 24.14 85.73
RelationBART-SP 27.78 52.59 24.79 86.20
RelationBART-SP + PS 28.83 53.48 25.42 86.40
RelationBART-MP + PS 29.51 53.74 25.64 86.51
RelationBART-Vanilla (Large) 27.93 52.10 24.72 86.03
RelationBART-SP (Large) 29.21 53.01 25.37 86.43
RelationBART-SP (Large) + PS 30.31 53.85 25.99 86.61
RelationBART-MP (Large) + PS 29.72 54.10 25.89 86.70

Table 2: Results of open relation modeling on the full
test set (test).

BL R-L MT BS

DefBART 25.98 47.38 22.39 83.41
RelationBART-Vanilla (w/o PT) 34.70 59.57 28.85 88.01
RelationBART-SP (w/o PT) 35.48 60.55 29.40 88.43
RelationBART-SP (w/o PT) + PS 38.62 62.60 31.07 89.05
RelationBART-MP (w/o PT) + PS 40.52 63.73 32.06 89.53
RelationBART-Vanilla 35.45 59.92 29.33 88.25
RelationBART-SP 36.58 61.15 30.04 88.75
RelationBART-SP + PS 39.93 63.32 31.80 89.39
RelationBART-MP + PS 41.43 64.15 32.45 89.64
RelationBART-Vanilla (Large) 36.53 60.54 29.90 88.50
RelationBART-SP (Large) 37.65 61.34 30.57 88.89
RelationBART-SP (Large) + PS 41.21 63.56 32.41 89.53
RelationBART-MP (Large) + PS 41.46 64.36 32.62 89.79

Table 3: Results of open relation modeling on the fil-
tered test set (test*).

base model is not pre-trained.

Metrics. Following existing works on text gen-
eration, we apply several widely-used metrics to
automatically evaluate the performance of open re-
lation modeling, including BLEU (Papineni et al.,
2002), ROUGE-L (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005), and BERTScore (Zhang et al.,
2019). Among them, BLEU (BL) and ROUGE-
L (R-L) are based on simple string matches, and
METEOR (MT) also incorporates word stems, syn-
onyms, and paraphrases for matching. These three
metrics mainly focus on measuring surface similar-
ities. BERTScore (BS) is based on the similarities
of contextual token embeddings. We also conduct
human evaluation by asking three human annota-
tors to assign graded values (1-4) to the sampled
predictions according to Table 8.7

3.3 Open Relation Modeling
Tables 2 and 3 summarize the experimental re-
sults of open relation modeling with the automatic

7Details about implementation are in Appendix A.

hard-to-reason (> 3-hop) BL R-L MT BS

RelationBART-Vanilla 22.99 47.25 22.21 84.39
RelationBART-SP 23.07 47.36 22.32 84.42
RelationBART-SP + PS 23.07 47.36 22.32 84.42
RelationBART-MP + PS 22.63 46.91 21.99 84.24
RelationBART-Vanilla (Large) 24.24 47.97 22.88 84.76
RelationBART-SP (Large) 24.50 47.81 22.90 84.70
RelationBART-SP (Large) + PS 24.50 47.81 22.90 84.70
RelationBART-MP (Large) + PS 22.92 47.45 22.34 84.55

reasonable (≤ 3-hop) BL R-L MT BS

RelationBART-Vanilla 29.61 54.25 25.56 86.61
RelationBART-SP 31.24 56.00 26.62 87.35
RelationBART-SP + PS 33.04 57.48 27.73 87.70
RelationBART-MP + PS 34.52 58.21 28.36 87.99
RelationBART-Vanilla (Large) 30.64 54.81 26.08 86.86
RelationBART-SP (Large) 32.66 56.42 27.20 87.56
RelationBART-SP (Large) + PS 34.55 57.81 28.29 87.85
RelationBART-MP (Large) + PS 34.69 58.45 28.54 88.11

Table 4: Results of open relation modeling for reason-
able and hard-to-reason pairs.

metrics. We observe that RelationBART-Vanilla
achieves much better performance than DefBART,
which demonstrates the necessity of the tail entity
in terms of generating definition-like sentences that
imply relations between entities. Besides, Relation-
BART variants outperform the versions without
pre-training, which indicates that knowledge stored
in PLMs after pre-training is helpful for open rela-
tion modeling. However, the improvement is not
significant, which may be because the size of our
training data is large; thus the model can learn rich
knowledge about entities from definitions without
pre-training. To verify this, we also train the model
with smaller sizes of data in Appendix B.

Compared to RelationBART-Vanilla, the mod-
els with reasoning paths all achieve better perfor-
mance, which demonstrates that reasoning paths
can help PLMs reason between entities and provide
additional relational knowledge to PLMs for open
relation modeling. Besides, the models with rea-
soning path selection mechanism outperform the
ones without it, which indicates PLMs can select
more interpretable and informative reasoning paths
based on confidence estimation, and the selected
reasoning paths can guide PLMs to generate more
reasonable and precise relation descriptions.

We also divide the testing examples into two
groups: reasonable, where the entities can be rea-
soned within 3 hops in the Wikidata knowledge
graph, and hard-to-reason, where the entities can-
not be reasoned within 3 hops. From the results
shown in Table 4, we observe that, for the reason-
able pairs, the performance improvement is signif-
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Rating (1-4)

RelationBART-Vanilla (Large) 2.67
RelationBART-SP (Large) 2.82
RelationBART-MP (Large) + PS 3.01

Table 5: Qualitative results of open relation modeling.

icant, while for the hard-to-reason pairs, there is
not much difference in model performance. This
is because, for hard-to-reason pairs, PLMs cannot
incorporate additional relational knowledge from
KGs only with encoding “x; unknown: y”– which
shows the training of the model is stable and the
variance of the results is low. Besides, all the mod-
els perform much better on reasonable pairs, which
indicates if two entities can be reasoned in existing
KGs with fewer hops, it is easier to generate their
relation descriptions with PLMs, no matter whether
a reasoning path is incorporated or not.

Qualitative Evaluation. We also perform a qualita-
tive evaluation by asking three annotators to assign
graded values to relation descriptions generated by
our models according to Table 8. We randomly
sample 100 reasonable entity pairs from the test
set for evaluation. The average pairwise Cohen’s
kappa is 0.67, which indicates a substantial agree-
ment (0.61-0.8) (Landis and Koch, 1977).

From Table 5, we observe the performance is
satisfactory. Our best model RelationBART-MP
(Large) + PS achieves a rating of about 3, which
means the model can often generate a relation de-
scription that well captures the relation, where only
minor errors that do not affect the understanding
of the relation are included. In addition, the qual-
itative evaluation results are consistent with the
quantitative evaluation results in Table 2 and Table
4, which validates the function of reasoning paths
and reasoning path selection mechanism.

3.4 Reasoning Path Selection
Results in Tables 2, 3, 4, and 5 indicate machines
can select better reasoning paths for open relation
modeling by confidence estimation. We also test
the quality of the selected reasoning paths from a
human understanding perspective.

We randomly select 300 entity pairs from the test
set and ensure all the pairs are associated with at
least two reasoning paths with hops ≤ 3. For each
entity pair, we randomly select 2 reasoning paths
and manually label which one is more interpretable
and informative, i.e., humans can understand the re-
lation between two entities more easily by reading

Accuracy (%)

Random Walk 64.43
Shortest Path 61.34
RelationBART-SP (Large) 72.68
RelationBART-MP (Large) 80.93

Table 6: Results of reasoning path selection.

the reasoning path. We skip pairs that are difficult
to judge which path is better. Among the 300 pairs,
106 pairs were skipped.

Table 6 reports the results of reasoning path se-
lection with different methods. The Random Walk
baseline selects the reasoning path by the proba-
bility of generating the path starting from the head
entity, which is suggested by (Lao et al., 2011).
The Shortest Path baseline selects the path with a
shorter length (for 52 cases where the length of two
paths is the same, we randomly choose one).

We can see the performance of RelationBART-
MP (Large) is quite impressive, where machines
make the same choices as humans in more than
80% of the cases. In addition, results in Table 6
are consistent with results in Table 2, which indi-
cates a better reasoning path selection mechanism
can promote machines to generate better relation
descriptions.

3.5 Generation Examples and Error Analysis

Table 7 shows some generation examples via the
RelationBART-MP (Large) model. The first row of
each group is the reference definition in Wikipedia.
1) The first group contains reasoning paths connect-
ing Romeries and France, we can see the second
reasoning path is the most interpretable and infor-
mative, where the confidence score is the highest,
and the generated relation description is the same as
the ground truth. 2) The second group contains four
entity pairs whose head entity is data mining, and
the reasoning path in each row is the one associated
with the highest confidence score. By reading these
generated relation descriptions, humans can better
understand data mining and its relationship with
other terms. 3) The third group contains five hard-
to-reason entity pairs whose head entity is evalua-
tion. We can see the reference definition of evalua-
tion is quite abstract that cannot capture the relation
between evaluation and a specific field, while by
reading the generated ones, humans can understand
what evaluation means in different fields and how
it relates to them.
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Input Reasoning Path (Encoding) Output Score

Romeries [reference] - Romeries is a commune in the Nord department in northern France. -

(Romeries, France)

Romeries; country: France [NOT selected] Romeries is a commune in the Somme department in Hauts-de-France in northern France. -0.29
Romeries; located in the administrative territorial entity:
Nord; country: France [selected]

Romeries is a commune in the Nord department in northern France. -0.13

Romeries; shares border with: Solesmes; country:
France [NOT selected]

Romeries is a commune in the Marne department in north-eastern France. -0.31

data mining [reference] - Data mining is a process of extracting and discovering patterns in large data sets involving
methods at the intersection of machine learning, statistics, and database systems.

-

(data mining, artificial intel-
ligence)

data mining; facet of: machine learning; subclass of:
artificial intelligence

Data mining is a subfield of machine learning and artificial intelligence concerned with the
collection, processing, and analysis of large amounts of data.

-0.95

(data mining, database) data mining; facet of: database Data mining is the process of extracting information from a data set, such as a database. -0.94
(data mining, statistics) data mining; facet of: machine learning; partially coin-

cident with: statistics
Data mining is the process of collecting, processing, and analyzing large amounts of data in
the form of statistics and machine learning.

-1.04

(data mining, data) data mining; facet of: machine learning; partially coin-
cident with: statistics; studies: data

Data mining is the process of extracting useful information from data. -0.81

evaluation [reference] - Evaluation is a systematic determination of a subject’s merit, worth and significance, using
criteria governed by a set of standards.

-

(evaluation, machine learn-
ing)

evaluation; unknown: machine learning In computer science, evaluation is the process of evaluating a machine learning algorithm to
determine whether the algorithm is performing well.

-1.30

(evaluation, algorithm) evaluation; unknown: algorithm In computer science, evaluation is the process of evaluating an algorithm to determine whether
it is correct.

-1.13

(evaluation, robotics) evaluation; unknown: robotics In robotics, evaluation is the process of determining whether or not a particular component of
a system is working properly.

-1.54

(evaluation, software engi-
neering)

evaluation; unknown: software engineering In computer science and software engineering, evaluation is the process of determining whether
a particular feature or feature should be added to a product or service.

-1.26

(evaluation, computer secu-
rity)

evaluation; unknown: computer security In computer security, evaluation is the process of determining the security of a computer
system.

-1.09

The Association for Com-
putational Linguistics [refer-
ence]

- The Association for Computational Linguistics (ACL) is the international scientific and profes-
sional society for people working on problems involving natural language and computation.

-

(The Association for Compu-
tational Linguistics, natural
language processing)

The Association for Computational Linguistics; un-
known: natural language processing

The Association for Computational Linguistics (ACL) is a professional association in the field
of natural language processing (NLP).

-0.60

(The Association for Compu-
tational Linguistics, artificial
intelligence)

The Association for Computational Linguistics; un-
known: artificial intelligence

The Association for Computational Linguistics (ACL) is a professional association for linguists
working in the field of computational linguistics, including artificial intelligence, machine
learning, natural language processing, and computational linguistics.

-0.67

Table 7: Sample of relation descriptions generated by RelationBART-MP (Large).

Error Analysis. To further understand the quality
of the outputs produced by our model and identify
the remaining challenges, we investigate the error
cases found by examining the generated relation
descriptions. As a result, we found most errors can
refer to as hallucinations, i.e., producing irrelevant
or contradicted facts. This type of error is mainly
due to knowledge coming from pre-training, fine-
tuning, and reasoning paths is not sufficient.

Taking entity pair (Romeries,France) in Table
7 as an example, if the model takes the shortest
reasoning path, i.e., Romeries; country: France,
as input, a relation description that wrongly pre-
dicts the department of Romeries will be generated.
This is because knowledge about the department
is missing from the reasoning path, and such de-
tailed knowledge is also difficult to obtain from the
parameters of the trained model.

Another example is (Play It Loud, rock music),
where the reference relation description is “Play
It Loud is the second studio album by the British
rock group Slade.” The reasoning path selected
by RelationBART-MP (Large) is {Play It Loud,
performer, Slade, genre, hard rock, subclass of,
rock music}. This reasoning path contains detailed
knowledge about the performer; however, it is still
difficult to judge whether Play It Loud is a song or
an album. As a result, the model generates “Play It

Loud is a song by the British rock band Slade.”
Hallucination is a common issue and challeng-

ing problem in text generation. From the results
in Table 5 and the generation examples, we can
observe hallucination is reduced by incorporating
reasoning paths and the reasoning path selection
mechanism. How to further alleviate it for open re-
lation modeling will be our further work direction.
We discuss some possible solutions in Section 4.

4 Discussion

Limitation of Definitional Sentences. Although
a considerable number of relations can be well
captured by definitional sentences, there are types
of relations that are not natural to be represented
by definitional sentences. For instance, for Kobe
Bryant and Shaq O’neal (both are NBA players in
Los Angeles Lakers), it is not natural to assume one
would appear in the other’s definition. In this case,
we can include a third related entity to help users
to understand their relation. For example, we can
include Los Angeles Lakers (which can be found
from a knowledge graph or a corpus); and then, we
can generate two sentences: 1) “Kobe Bryant was
an NBA player in Los Angeles Lakers”; 2) “Shaq
O’neal was an NBA player in Los Angeles Lakers”.
With these two sentences, users can easily under-
stand their relation. It is also possible to design
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a model to synthesize these two sentences to one
(Becker et al., 2021), e.g., “Kobe Bryant and Shaq
O’neal were both NBA players played in Los An-
geles Lakers”. We leave a comprehensive solution
to solve this limitation as future work.

Open Relation Modeling with Diversity. In the
real world, multiple important relations can be as-
sociated with one entity pair. Considering this,
as future work, we may generate diverse relation
descriptions for one entity pair with different rea-
soning paths selected.

Open Relation Modeling with More Knowledge.
Open relation modeling is a knowledge-intensive
task (Lewis et al., 2020b), where knowledge about
entities and relations is essential to solving this
task. In this work, we incorporate knowledge
from model pre-training, definitions of entities,
and reasoning paths. The proposed model can
achieve impressive performance, especially for
reasonable entity pairs. As future work, we can
leverage more external information of entities, e.g.,
sentences/paragraphs containing the target entities
from corpora, to provide more knowledge for open
relation modeling.

5 Related Work

Previously, Voskarides et al. (2015) study the
problem of extracting sentences that describe
relations between entities with direct relations
in a knowledge graph. They model this task as
a learning to rank problem and design a super-
vised learning model with manually annotated
sentences. As follow-up work, Huang et al.
(2017) solve this task with training data built by
leveraging clickthrough data from Web search, and
Voskarides et al. (2017) generate the description
of a relationship instance in a knowledge graph by
filling created sentence templates with appropriate
entities. The ability of these models is limited
since they heavily rely on features of entities
and relations; thus these models can only handle
entities with several pre-specified types (only 10
in (Voskarides et al., 2017)) of explicit relations
in KGs (e.g., isMemberOfMusicGroup), while our
methods can deal with a large number of types of
relations, including implicit ones (e.g., evaluation
and algorithm), i.e., in an “open” setting.

Recently, Lin et al. (2020); Liu et al. (2021b)
study a constrained text generation problem that
aims to generate coherent sentences describing ev-
eryday scenarios containing the given common con-

cepts. Different from them, we aim to generate sen-
tences that can explain the relation between entities
intuitively and explicitly. Dognin et al. (2020);
Agarwal et al. (2021) study the data-to-text genera-
tion problem (Kukich, 1983) that converts the KG
into natural text with language models. The focus
of these works is to convert knowledge graphs into
natural language, while we propose to discover rela-
tion descriptions between entities with pre-trained
language models. Besides, only common concepts
or entities with direct relations are studied in these
works, while our methods deal with entities with
multi-hop relations, even including entities that
cannot be reasoned in existing KGs.

6 Conclusion

In this paper, we introduce and study the novel
open relation modeling problem– generating coher-
ent sentences describing general relations between
entities, where the relations can be multi-hop, even
cannot be reasoned in an existing KG. We achieve
this by teaching PLMs to learn from defining enti-
ties and select/utilize reasoning paths. We believe
this work will open a door for modeling relations
between entities. As for future work, we plan to im-
prove our model as discussed in Section 4 and apply
our methods to downstream applications, e.g., a sys-
tem for users to explore relations between entities,
which can be further applied to explore a taxonomy
or ontology. We can also use the generated relation
descriptions to help some related tasks, such as rela-
tion extraction (Bach and Badaskar, 2007), knowl-
edge graph construction and completion (Ji et al.,
2021). The trained models can be further fine-tuned
for open relation modeling on specific domains.
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Rating Criterion

4 The relation is well captured, and important informa-
tion about entities is included and correctly predicted.

3 The prediction contains minor error(s) that do not
affect the understanding of the relation.

2 The prediction contains major error(s) that affect the
understanding of the relation, while the relation can
still be inferred to some extent.

1 The prediction contains major error(s) that will mis-
lead the understanding of the relation.

Table 8: Annotation guidelines excerpt.

A Implementation Details

We employ the fairseq library8 to build the Re-
lationBART model and adopt the key hyperparam-
eters as suggested in (Lewis et al., 2020a). We
manually set the learning rate as 5 × 10−5 and
batch-size of 1,024 tokens based on some prelim-
inary experiments and the memory size of GPUs.
We set the maximum reasoning length as 3 since
the number of reasoning paths with hops > 3 is
very large and the quality of these paths is gen-
erally low. For RelationBART-MP and reasoning
path selection, we sample at most 5 reasoning paths
with hops ≤ 3. All the models were trained on
NVIDIA Quadro RTX 5000 GPUs, and the train-
ing converged in 50 epochs. The training time
of RelationBART-Vanilla, RelationBART-MP, and
RelationBART-MP (Large) for one epoch with 3
GPUs are 80 minutes, 4 hours, and 7 hours respec-
tively.

B Open Relation Modeling with Different
Sizes of Training Data

100% BL R-L MT BS

RelationBART-Vanilla (w/o PT) 26.01 50.84 23.65 85.37
RelationBART-Vanilla 26.81 51.48 24.14 85.73

10% BL R-L MT BS

RelationBART-Vanilla (w/o PT) 22.88 48.50 22.07 84.31
RelationBART-Vanilla 24.31 49.89 22.99 85.16

1% BL R-L MT BS

RelationBART-Vanilla (w/o PT) 17.30 44.12 19.02 81.56
RelationBART-Vanilla 20.99 47.11 21.23 84.04

Table 9: Results of open relation modeling with 100%,
10%, and 1% training data.

From Table 9, we observe that when the train-
ing data become smaller, the performance of the

8https://github.com/pytorch/fairseq/
tree/master/examples/bart

version without pre-training decreases much faster
than the one with pre-training.

308

https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart

