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Abstract

Prior studies use one attention mechanism
to improve contextual semantic representa-
tion learning for implicit discourse relation
recognition (IDRR). However, diverse relation
senses may benefit from different attention
mechanisms. We also argue that some linguis-
tic relation in between two words can be fur-
ther exploited for IDRR. This paper proposes a
Multi-Attentive Neural Fusion (MANF) model
to encode and fuse both semantic connection
and linguistic evidence for IDRR. In MANF,
we design a Dual Attention Network (DAN)
to learn and fuse two kinds of attentive rep-
resentation for arguments as its semantic con-
nection. We also propose an Offset Matrix
Network (OMN) to encode the linguistic rela-
tions of word-pairs as linguistic evidence. Our
MANF model achieves the state-of-the-art re-
sults on the PDTB 3.0 corpus.

1 Introduction

Implicit Discourse Relation Recognition (IDRR)
is to detect and classify some latent relation in be-
tween a pair of text segments (called arguments)
without an explicit connective word. It is of great
importance for many downstream Natural Lan-
guage Processing (NLP) applications, such as ques-
tion answering (Liakata et al., 2013), machine trans-
lation (Guzmán et al., 2014), information extrac-
tion (Xiang and Wang, 2019), sentiment analy-
sis (Wang and Wang, 2020), and etc. However,
due to the absence of an explicit connective word,
inferring discourse relations from the contextual
semantics of arguments is still a challenging task.

Conventional machine learning based methods
usually train a relation classifier by using many
handmade features to capture lexical, syntactic reg-
ularity and contextual information of arguments,
which is time-consuming and labor-intensive (Pitler
et al., 2009, 2008). Deep learning based methods
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design diverse neural networks to automatic learn
the contextual semantic representation of each ar-
gument, such as the Shallow Conventional Neural
Network (SCNN) (Zhang et al., 2015), Tree-like
Long Short-Term Memory (Tree-LSTM) (Ruther-
ford et al., 2017), and BiLSTM-CNN frame-
work (Guo et al., 2019). Although these neural
networks can autonomously learn a kind of deeper
contextual semantics of arguments, they do not dif-
ferentiate arguments’ words in the representation
learning.

Recently, some attention mechanisms have been
employed in neural networks to unequally treat
words in representation learning. For example, the
self-attention computes the local contextual impor-
tance of each word in one argument, which gen-
erally prioritizes content words for better learning
substantive meaning of an argument (Zhou et al.,
2016). The interactive attention weights each word
in one argument according to its interaction with
the representation of another argument, which usu-
ally focuses on the rhetorical device of two argu-
ments, like prioritizing some function words with
little substantive meaning but potentially indicating
the connection of two arguments (Liu and Li, 2016;
Guo et al., 2018).

Both kinds of attention mechanisms have been
proven effective for IDRR, as each can well exploit
either content semantics or rhetorical devices of an
argument pair. We regard these contextual seman-
tic information derived from argument content as
a kind of semantic connection for relation recog-
nition. However, the IDRR task normally needs
to recognize diverse senses of relations, while dif-
ferent senses may benefit from different attentions.
To enjoy both advantages, we propose to learn two
kinds of argument representation, each based on
one attention mechanism. They are next fused to
encode an argument pair as the semantic connec-
tion for relation recognition in this paper.

Besides semantic connection, we argue that a
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kind of linguistic evidence can be obtained from
word distributed representation for relation recog-
nition. Indeed, many pre-trained language mod-
els, like the word2vec (Mikolov et al., 2013) and
BERT (Devlin et al., 2019), are learned from a large
amount of unlabeled text by encoding the linguistic
regularities and patterns in an unsupervised way.
As a word embedding contains inherent meaning
of the word, it can be used to infer some linguistic
relation in between two words by linear transla-
tion. This motivates us to encode such linguistic
relations of word-pairs as linguistic evidence.

In this paper, we propose a Multi-Attentive Neu-
ral Fusion (MANF) model to encode and fuse both
semantic connection and linguistic evidence for
the IDRR task. The MANF model contains two
modules. One is a Dual Attention Network (DAN)
: It builds upon a BiLSTM to first encode a self-
attentive representation and an inter-attentive repre-
sentation for each argument. To adapt to different
relation senses, we next use a fusion gate to in-
tegrate the two representations into the semantic
connection representation. Another is an Offset
Matrix Network (OMN): It first computes the offset
between word embeddings of a word-pair that con-
tains one word from the first argument and another
word from the second argument. Upon the offset
matrix, we next design an offset attention layer and
a multilayer perceptron to encode the linguistic ev-
idence representation. Finally, we design another
fusion gate to integrate both semantic connection
and linguistic evidence representation for relation
recognition. Our MANF Model achieve the state-
of-the-art results on the PDTB 3.0 corpus. Our
main contributions are as follows:
• Propose a MANF model to encode and fuse

semantic connection and linguistic evidence for the
IDRR task.
• Propose a DAN to enjoy both self-attention

and interactive attention for semantic connection
encoding.
• Propose an OMN to encode word-pairs’ offsets

as linguistic evidence.
• Provide a new baseline result for the IDRR

task on the PDTB 3.0 corpus.

2 The Multi-Attentive Neural Fusion
Model

Fig. 1 illustrates our MANF model, including the
DAN, the OMN, and a hierarchical fusion mecha-
nism.

2.1 Dual Attention Network
Our DAN is built upon a BiLSTM or BERT to
encode a self-attentive representation and an inter-
attentive representation for each argument, which
are next fused to output the semantic connection
representation for an argument pair. We note that
a BiLSTM has been widely used to capture word
contextual semantics for its good sequential encod-
ing capability. In our experiments, we also replace
the word2ve by a fine-tuned BERT for comparison.

The DAN model is illustrated in the left part of
Fig. 1, which consists of a BiLSTM layer, a dual
attention layer, and a fusion gate layer. We use pre-
trained word2vec word embeddings x ∈ Rdw to
input the BiLSTM. An argument pair (Arg1;Arg2)
can be denoted by:

Arg1 : [x
1
1,x

1
2, . . . ,x

1
L1
]; (1)

Arg2 : [x
2
1,x

2
2, . . . ,x

2
L2
], (2)

where x1
i and x2

j represents the i-th word embed-
ding in the 1st argument and the j-th word embed-
ding in the 2nd argument respectively, and dw the
word embedding dimension.

BiLSTM layer: After the BiLSTM, we obtain
two hidden states

−→
h i and

←−
h i for each word in one

argument from the forward and backward sequence
respectively, which are concatenated to obtain an
intermediate state hi = [

−→
h i,
←−
h i]. We use a ma-

trix H = [h1,h2, . . . ,hL] to denote an argument
encoding after the BiLSTM, where hi ∈ R2dh ,
H ∈ RL×2dh , dh is the dimension of hidden state.

Dual attention layer: To enjoy both advantages
of self-attention and interactive attention, we pro-
pose a dual attention mechanism to encode an ar-
gument pair. For self-attention, the representa-
tion of each argument rs is formed by weighted
sum of intermediate state vectors produced by BiL-
STM (Zhou et al., 2016):

αs = softmax(wT
s H), (3)

rs = HαT
s , (4)

where αs ∈ RL is the self-attention weight vector
of an argument computed by local contextual im-
portance of each word, ws a learnable parameter
vector.

For interactive attention, we use the represen-
tation of one argument to weight each word in
another argument (Ma et al., 2017; Meng et al.,
2016). We sum up the intermediate states hi to ob-
tain an intermediate argument representation, i.e.,
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Figure 1: Illustration of our multi-attentive neural fusion model.

S =
∑L

i=1 hi. The weight vector αi ∈ RL is com-
puted by taking inner product between S and H
cross two arguments, and followed by a softmax
function as follows:

α1
i = softmax(H1S

T
2 ) (5)

α2
i = softmax(H2S

T
1 ) (6)

Finally, we weighted sum the intermediate state
vectors with corresponding weight vector to form
the interactive attention representation ri for each
argument:

r1i = H1(α
1
i )

T, r2i = H2(α
2
i )

T. (7)

Fusion gate layer: Considering the importance
of the two attentions not always the same for dif-
ferent relation sense classification, we use a fusion
gate to integrate their representations. First, we
concatenate the representation of Arg1 and Arg2
to model their discourse relation as vs = [r1s, r

2
s]

and vi = [r1i , r
2
i ], where vs,vi ∈ R4dh . The tran-

sition functions of fusion gate layer are computed
as follows:

gd = sigmoid(Wdvs +Udvi + bd), (8)

vd = gd � vs + (1− gd)� vi, (9)

where Wd ∈ R4dh×4dh , Ud ∈ R4dh×4dh and bd ∈
R4dh are learnable parameters and � donates the
element-wise product of vectors.

With the fusion gate, our DAN adaptively as-
signs different importance to self-attention and in-
teractive attention, and outputs vd ∈ R4dh as the
semantic connection vector for an argument pair.

2.2 Offset Matrix Network

We propose an OMN to encode the linguistic ev-
idence representation based on the offsets of pre-
trained word embeddings, as shown in the right
part of Fig. 1. First, we compute the offset between
word embeddings of a word-pair that contains one
word from the first argument and another word
from the second argument. Then all the word-pair
offsets of an argument pair compose an offset ma-
trix M ∈ RL1×L2×dh , where eij ∈ Rdh is the
offset vector between the i-th word in the 1st argu-
ment and the j-th word in the 2nd argument.

Considering that each word-pair in the offset
matrix may have different contribution to the re-
lation classification, we assign a weight score αij

to every offset vectors, and the weight scores are
compute as follows:

A = softmax(wT
o M), (10)

where A ∈ RL1×L2 is the weight matrix, wo is a
learnable parameter vector. We compute a word-
pair interaction vector m ∈ Rdh as the weighted
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sum of all word-pair offset vectors:

m =

L1∑
i=1

L2∑
j=1

eijαij (11)

Next, we input m into a multilayer perceptron
(MLP) followed by a tanh activation function to
output the linguistic evidence vector vo ∈ R4dh for
an argument pair:

vo = tanh(Wom+ bo), (12)

where Wo ∈ Rdh×4dh and bo ∈ R4dh are learn-
able parameters.

2.3 Implicit Discourse Relation Classification

After obtaining the semantic connection vector vd

and the linguistic evidence vector vo, we also ar-
gue that they may have different importance for
diverse relation sense classification. So we use
another fusion gate to integrate the two kinds of
representation vectors and obtain the final represen-
tation v ∈ R4dh of an argument pair for relation
classification. The transition functions are:

go = sigmoid(Wfvd +Ufvo + bf ), (13)

v = go � vd + (1− go)� vo, (14)

where Wf , Uf ∈ R4dh×4dh and bf ∈ R4dh are
learnable parameters.

The classifier is a fully connected layer with
softmax to transform the final argument pair rep-
resentation v to a probability distribution ŷ ∈ Rn

for predicting the discourse relation sense:

ŷ = softmax(Wcv + bc),

where Wc ∈ R4dh×n, bc ∈ Rn are learnable pa-
rameterss.

For model training, we adopt the cross entropy
loss as the cost function:

J(θ) = − 1

K

K∑
k=1

y(k) log(ŷ(k)) + λ‖θ‖2, (15)

where y(k) and ŷ(k) are the gold label and predicted
label of the k-th training instance respectively. λ
and θ are the regularization hyper-parameters. We
use the Adam optimizer and combine dropout with
L2 regularization for model training.

Relation Train Dev. Test
Expansion 8645 748 643
Comparison 1937 190 154
Contingency 5916 579 529
Temporal 1447 136 148
Total 17945 1653 1474

Table 1: Statistics of implicit discourse relation in-
stances in PDTB 3.0 with four top-level relation senses.

3 Experiment Setting

3.1 The PDTB 3.0 Dataset

We conduct experiments on the latest version 3.0 of
Penn Discourse TreeBank (PDTB) corpus, which
was released on March 2019 and updated on Febru-
ary 2020. Following the conventional data splitting
in PDTB 2.0, we use sections 2-20 as the training
set, sections 21-22 as the testing set and 0-1 as
the development set (Ji and Eisenstein, 2015). Our
experiments are conducted on the four top-level
classes of relation sense as the existing studies, in-
cluding Comparison, Contingency, Expansion
and Temporal. The statistics of implicit discourse
relation instances in the PDTB 3.0 corpus are sum-
marized in Table 1. More details about PDTB 3.0
are provided in the supplementary material.

3.2 Competitors

• NNMA (Liu and Li, 2016) combines two argu-
ments’ representation for stacked interactive atten-
tions.
• ANN (Lan et al., 2017) applies interactive at-

tention into a multi-task learning framework.
• IPAL (Ruan et al., 2020) propagates self-

attention into interactive attention by a cross-
coupled network.
• DAGRN (Chen et al., 2016b) encodes word-

pair interactions by a neural tensor network.

3.3 Parameter Setting

We obtain the pre-trained word embeddings from
the 300-dimensional English word2vec model
(dw = 300) provided by Google 1 and the 768-
dimensional English BERT model (dw = 768)
provided by HuggingFace 2. From our statistics,
99.46% of arguments do not exceed 50 words
in PDTB3.0. So we set the maximum length of
argument to 50 (L = 50). For the word2vec
model, we set the mini-batch size to 32 and the

1code.google.com/archive/p/word2vec
2huggingface.co/bert-base-uncased
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initial learning rate to 5e-4; while for the BERT
model, the mini-batch size and initial learning
rate is 16 and 1e-5. The trainable parameters
are randomly initialized from normal distributions,
and the dropout rate is set to 0.2 in the fusion
gates and 0.5 in the MLP. We release the code
at: https://github.com/HustMinsLab/MANF.

4 Result and Analysis

4.1 Overall Result

We implement four-way classification and binary
classification (i.e. one-versus-others) on the PDTB
3.0, in which macro F1 score and accuracy (Acc)
are used for four-way classification and F1 score is
used for binary classification.

Table 2 compares the overall performance be-
tween our MANF and the competitors. In four-
way classification, our MANF achieves significant
improvements over competitors in terms of both
macro F1 and Acc. In binary-classification, ours
also achieves the best performance in three relation
sense classification, while the second with a small
F1 gap to that of NNMA in the Temporal sense
classification.

We note that the first three competitors are neural
models mainly for learning argument representa-
tion from contextual semantic connections; While
the DAGRN is a neural model for learning repre-
sentation from word linguistic evidences. The first
observation is that the DARGN cannot outperform
the first three competitors, though the performance
gaps are not obvious. This might suggest that la-
tent semantic connections learned from sequential
contexts play the main role in relation recognition.
This, however, is not unexpected. A relation is
usually used for linking the meanings of two argu-
ments, i.e., semantic connections, no matter with
or without an explicit connective.

The second observation is that in the first three
competitors, the ANN cannot outperform either
NNMA or IPAL, not even once in all the perfor-
mance metrics. We note that although they all
employ attention mechanisms in learning seman-
tic connection, the ANN applies a straightforward
interactive attention to learn argument represen-
tation; While the NNMA designs a sophisticated
mechanism for stacking multiple levels of atten-
tions, and the IPAL employs a kind of sequential
attention mechanism, i.e., interactive attention after
self-attention.

Finally, we attribute the outstanding perfor-

mance of our MANF model to its fusion of two
attentions for learning semantic connection, as well
as its exploitation of word linguistic evidence. This
will be further analyzed in our ablation studies.

4.2 Ablation Study

Linguistic Evidence: We have argued that the in-
herent meaning of a word, other than its contextual
semantics, can be exploited as a kind of linguis-
tic evidence between two arguments for relation
classification. To this end, we have designed the
OMN module with the pre-trained word embed-
dings as its input. This input choice is from such
considerations: A pre-trained word embedding is
normally learned from a huge corpus containing
materials from diverse backgrounds 3, which not
only could capture some polysemous property for
one word, but also could encode some linguistic
regularity and pattern in between words from dif-
ferent contexts. While such properties might be
compromised, if we input the OMN with the con-
textual semantic encodings.

To verify our arguments, we design two variants
for the input of the OMN module. (1) Shared: It
replaces the input of pre-trained x1

i (x2
j ) by the hid-

den state h1
i (h2

j ) of the respective BiLSTM in the
DAN module. That is, two modules share the same
BiLSTM for encoding word contextual semantics.
(2) Parallel: We adopt additional BiLSM networks
with their hidden states to replace pre-trained word
embeddings. That is, two modules adopt parallel
BiLSTM networks.

Table 3 presents the results of the three input
choices for the OMN module. The better perfor-
mance of using pre-trained word embedding can
support our arguments. Although a BiLSTM net-
work is well capable of encoding a word contextual
semantics for its sequential processing mechanism,
our design objective is to exploit the inherent mean-
ing of a word to capture linguistic evidence for an
argument pair. This is particular evident in the bi-
nary classification of Comparison and Temporal
relation sense for its larger improvements. So using
the pre-trained word embedding is a wise choice.

Module ablation study: To examine the effec-
tiveness of different modules, we design the follow-
ing ablation study.

3The word2vec was trained from the Google News dataset
containing 100 billion words from diverse domain articles.
The BERT was trained from the BookCorpus consisting of
11,038 books and English Wikipedia containing over six mil-
lion articles.
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Model
Four-way Classification Binary Classification (F1)

F1 Acc Expa. Comp. Cont. Temp.
NNMA (EMNLP, 2016) 46.13% 57.67% 65.10% 29.15% 63.33% 41.03%
ANN (EMNLP, 2017) 47.29% 57.06% 64.03% 30.10% 60.91% 33.71%
IPAL (COLING, 2020) 49.45% 58.01% 64.28% 30.37% 61.95% 34.74%
DAGRN (ACL, 2016) 45.11% 57.33% 64.71% 27.34% 62.56% 38.91%

Our MANF 53.14% 60.45% 67.82% 34.16% 65.48% 40.22%

Table 2: Overall result of comparison models for implicit discourse relation classification.

Four-way Classification
Method Pre-trained Shared Parallel

F1 53.14 % 50.41% 51.54%
Acc 60.45% 58.82% 60.85%

Binary Classification (F1)
Method Pre-trained Shared Parallel
Expa. 67.82% 67.13% 67.47%
Comp. 34.16% 31.43 % 30.48%
Cont. 65.48% 63.06% 64.93%
Temp. 40.22% 38.83% 38.36%

Table 3: Ablation study for linguistic evidence by using
different word encodings as the OMN input.

• BiLSTM (B) is the building block of DAN,
without two attentions and word-pair offsets.
• B+SelfAtt is a subpart of DAN, with only

self-attention, but without interactive attention and
word-pair offsets.
• B+InterAtt is a subpart of DAN, with only

interactive attention, but without self-attention and
word-pair offsets.
• B+DualAtt (DAN) is only the DAN module,

with two attentions, but without word-pair offsets.
•WordPair (OMN) is only the OMN module,

without argument representation for semantic con-
nection.
• B+WordPair combines the OMN with a BiL-

STM for encoding semantic connection but without
any attention.
• B+DualAtt+WordPair is our MANF model.
Table 4 presents the results of our module abla-

tion study. Among the first four models without
using word-pair offsets, we first observe that the
bare BiLSTM cannot outperform those employ-
ing attention(s) to differentiate words in argument
representation learning. On the other hand, the
B+DualAtt achieves better performance compared
with the B+SelfAtt and B+InterAtt each using only
one kind of attention, except a slight gap of Acc in
the four-way classification. This indicates that our

fusion of both attention mechanisms is an effective
approach to augment semantic connection learning
for an argument pair.

We also observe that the WordPair(OMN) only
exploiting word-pair offsets performs the worst
among all models. This, however, is not unex-
pected, as it totally ignores an argument semantics
as well as latent semantic connection between argu-
ments. On the other hand, the B+WordPair model,
fusing linguistic evidence with semantic connec-
tion even learned by a bare BiLSTM without any
attention, can greatly improve the performance of
WordPair(OMN). The B+WordPair model can even
achieve the best or the second best in some cases.
This again validates our arguments of encoding
and fusing both semantic connection and linguistic
evidence to improve relation recognition.

Table 5 presents experiments using fine-tuned
BERT to replace the word2vec based BiLSTM
for semantic connection encoding. In contrast,
the OMN module uses the BERT without fine-
tuning to exploit linguistic evidence. The first
three ablation modules correspond to the BiLSTM
(B), B+DualAtt (DAN) and B+WordPair, respec-
tively. We can observe that the BERT+DualAtt
and BERT+WordPair models achieve better per-
formance than the baseline BERT model. This
further confirms the necessity of fusing both atten-
tion mechanisms and exploiting linguistic evidence.
Finally, our MANF model yields substantial im-
provements overall ablation modules, and the out-
standing performance approves our arguments and
design objectives.

4.3 Case Study

We use case study to visualize and compare dif-
ferent attention mechanisms. Fig. 2 visualizes the
word weight obtained by self-attention and inter-
active attention for four cases of different relation
senses. We observe that the two attentions assign
different weights to different words. In particular,
the interactive attention seems to mainly focus on
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Model
Four-way Classification Binary Classification (F1)

F1 Acc Expa. Comp. Cont. Temp.
BiLSTM (B) 47.80% 57.67% 63.07% 28.05% 61.79% 36.40%
B+SelfAtt 49.39% 59.16% 66.79% 30.80% 64.72% 36.57%
B+InterAtt 50.70% 59.63% 67.30% 30.15% 62.36% 36.33%
B+DualAtt (DAN) 51.64% 59.50% 67.50% 32.18% 65.42% 38.53%
WordPair (OMN) 39.62% 51.22% 60.81% 25.95% 57.37% 26.87%
B+WordPair 50.95% 60.31% 67.01% 34.30% 63.15% 36.81%
B+DualAtt+WordPair (MANF) 53.14% 60.45% 67.82% 34.16% 65.48% 40.22%

Table 4: Experiment results of module ablation study.

Model
Four-way Classification Binary Classification (F1)

F1 Acc Expa. Comp. Cont. Temp.
BERT 54.74% 62.69% 68.01% 34.75% 64.45% 40.25%
BERT+DualAtt (DAN) 55.23% 62.21% 68.18% 35.70% 65.07% 40.37%
BERT+WordPair 55.02% 61.67% 68.49% 36.12% 65.45% 42.65%
BERT+DualAtt+WordPair (MANF) 56.63% 64.04% 70.00% 35.83% 66.77% 42.13%

Table 5: Experiment results with the fine-tuned BERT language model.

one word with a very high weight in each argument,
which is generally a kind of function word, such
as the "in", "back" in the Temporal case, "His",
"and" in Contingency case, and "I" in Compar-
ison case. Such function words may be regarded
as serving a kind of rhetorical devices for some
common linguistic regularities and patterns.

On the other hand, the self-attention tends to
assign several words in one argument with sim-
ilar yet non-ignorable weights, which are often
kinds of content words, such as "slithered", "and",
"slipped" in the Expansion case. Such a few of
content words might be more important to capture
the contextual semantics of an argument, which can
be next exploited for encoding semantic connection
between two arguments. Such functionality differ-
ences of the two attentions indeed have motivated
us to try a fusion mechaism, so as for each to excel
in relation recognition of different senses.

Fig. 3 visualizes the weight matrix of word-pair
offsets in the OMN module but with different in-
put. It can be observed that using pre-trained word
embeddings can help emphasizing the word-pair
"don’t-did" probably for their generally contain-
ing fewer contextual information. On the other
hand, the other two using word contextual encod-
ing pay attentions to word-pairs much similar to
those words in the self-attention and interactive
attention, such as "I-I", "I-think", "I-don’t". As
word contextual encoding has alreadly been ex-
ploited in the DAN module, we argue that using

pre-trained word embeddings for word-pair offsets
could complete argument representation learning
from another view of common linguistic evidence.

5 Related Work

The IDRR task is usually approached as a clas-
sification problem, and the key is the argument
representation.

Machine learning approaches, like using a Naive
Bayes, Support Vector Machine (SVM) classifier,
have designed various features to capture lexical,
syntactic regularity and contextual information as
argument representation (Pitler et al., 2008; Lin
et al., 2009; Pitler et al., 2009; Louis et al., 2010).
However, manually crafting features is not only
time-consuming and labor-intensive, but also suf-
fers from data sparsity problem due to the use of
one-hot feature encoding.

Deep learning models have prevailed for their
capabilities of automatic learning argument rep-
resentation (Zhang et al., 2015; Rutherford et al.,
2017). For example, the SCNN model (Zhang et al.,
2015) obtains each argument representation via a
single convolution layer, and the concatenation of
two arguments’ representations is used for relation
classification. Rutherford et al. (Rutherford et al.,
2017) employ a LSTM network to capture word
contextual semantics for argument representation.
Some hybrid models have attempted to combine
CNN, LSTM, graph convolutional networks and
etc. for more sophisticated argument representa-
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Figure 2: Visualization of attention weights for four cases of relations senses.

(a) Pre-trained word embedding (b) Shared BiLSTM (c) Parallel BiLSTM

Figure 3: Visualization of the weight matrix of word-pair offsets in the OMN module with the input of (a) pre-
trained word embeddings, (b) hidden states of shared BiLSTM, and (c) hidden states of parallel BiLSTM.

tion (Guo et al., 2019; Xu et al., 2019; Zhang et al.,
2021). These approaches, however, have ignored
the fact that different words may contribute differ-
ently in argument representation learning.

Attention mechanisms can guide a neural model
to unequally encode each word according to its
contextual importance for argument representa-
tion (Zhou et al., 2016; Bai and Zhao, 2018; Liu
and Li, 2016; Guo et al., 2018, 2020). For ex-
ample, Zhou et al. (Zhou et al., 2016) apply self-
attention to weight a word according to its simi-
larity to its belonging argument. Guo et al. (Guo
et al., 2018, 2020) adopt an interactive attention to
differentiae words in one argument, where a word
is weighted according to the similarity between its
encoding and another argument representation. Liu
and Li (Liu and Li, 2016) design a multi-level at-
tention to repeatedly compute word importance in
a hierarchical way. Ruan et al. (Ruan et al., 2020)
propose a pipeline workflow to apply interactive
attention after self-attention.

Word pair features have been exploited in ma-
chine learning and deep learning approaches for
argument representation (Blair-Goldensohn et al.,
2007; Biran and McKeown, 2013; Zhou et al.,
2013; Chen et al., 2016a,b). For example, Biran

and McKeown (Biran and McKeown, 2013) com-
pute the appearance probabilities of aggregated
word pairs to train a logistic regression classifier.
Chen et al. (Chen et al., 2016b) construct a rele-
vance score word-pair interaction matrix based on
a bilinear model (Jenatton et al., 2012) and a single
layer neural model (Collobert and Weston, 2008).

The proposed MANF model is a deep neural
model, employing a hierarchical fusion mechanism
to fuse two kinds of attentive word encodings as
well as word pair offset encodings in argument
representation learning.

6 Concluding Remarks

In this paper, we argue that implicit relation recog-
nition can benefit from both semantic connection
and linguistic evidence between arguments. Moti-
vated from such considerations, we have designed
the MANF model to encode and fuse them for
the IDRR task. The MANF model consists a
DAN module to fuse both self-attentive and inter-
attentive contextual semantics for learning repre-
sentation of semantic connection, and a OMN mod-
ule to attentively encode word-pair offsets for learn-
ing representation of linguistic evidence. Both
kinds of representations are finally fused for rela-
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tion recognition. Experiments on the latest PDTB
3.0 corpus have validated our design objectives for
the new benchmark performance established by our
MANF model.

This paper has employed the pre-trained word
embeddings trained by the word2vec and BERT;
While other pre-training models shall also be
adopted and tested in our future work. The perfor-
mance differences of recognizing different relation
senses also motivate to further investigate other
advanced fusion mechanisms.
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