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Abstract

Vision-Language Pre-training (VLP) has
achieved impressive performance on various
cross-modal downstream tasks. However,
most existing methods can only learn from
aligned image-caption data and rely heavily
on expensive regional features, which greatly
limits their scalability and performance. In
this paper, we propose an end-to-end unified-
modal pre-training framework, namely
UNIMO-2, for joint learning on both aligned
image-caption data and unaligned image-only
and text-only corpus. We build a unified
Transformer model to jointly learn visual
representations, textual representations and
semantic alignment between images and
texts. In particular, we propose to conduct
grounded learning on both images and texts
via a sharing grounded space, which helps
bridge unaligned images and texts, and align
the visual and textual semantic spaces on
different types of corpora. The experiments
show that our grounded learning method can
improve textual and visual semantic align-
ment for improving performance on various
cross-modal tasks. Moreover, benefiting
from effective joint modeling of different
types of corpora, our model also achieves
impressive performance on single-modal
visual and textual tasks. Our code and
models are public at the UNIMO project page
https://unimo-ptm.github.io/.

1 Introduction

Large-scale pre-training has drawn much attention
in the community of Computer Vision (CV), Natu-
ral Language Processing (NLP) and Multi-Modal
(MM) due to its strong capability of generalization
and efficient usage of large-scale data. However,
in the existing literature, the work on vision, lan-
guage and vision-language representation learning
are mostly studied separately with different train-
ing data sources. In the vision domain, pre-training
on large-scale image corpus such as ImageNet

(Deng et al., 2009), OpenImages (Kuznetsova et al.,
2020) and JFT-300M (Dosovitskiy et al., 2020) has
proven to be critical for learning transferring vi-
sual representation for various downstream tasks.
In NLP, pre-training on easily-accessible unanno-
tated text corpora greatly improves the capabilities
of language understanding and generation (Devlin
et al., 2019; Liu et al., 2019; Yang et al., 2019).
Pre-training has also become the de-facto approach
in vision-language modeling (Lu et al., 2019; Chen
et al., 2020c; Li et al., 2020, 2019a; Yu et al., 2020).
However, existing VLP methods require a mas-
sive amount of aligned image-text pairs which are
costly to collect and hard to scale up. The large
volumes of image corpus in CV and text corpus
in NLP cannot be effectively utilized. Thus, the
scalability and performance upper limit of exist-
ing VLP methods are largely restricted. As they
only learn joint vision-language representations on
image-text pairs, they are also difficult to be effec-
tively adapted to visual and textual tasks (Li et al.,
2021b; Lin et al., 2020).

To address the limitations, we propose a new
end-to-end unified-modal pre-training framework,
namely UNIMO-2, for joint learning on various
types of corpora, including images, texts, and
image-caption pairs. Specifically, we build a uni-
fied Transformer model to jointly learn visual repre-
sentations, textual representations, and cross-modal
alignment from the three types of corpora. Both
the visual and textual representations are learned
end-to-end from raw images and textual sentences.
Combining a large number of unaligned images
and texts is not only expected to improve the per-
formance of joint vision-language tasks, but also
improve the scalability of adapting to single-modal
visual and textual tasks. However, it is challenging
to bridge unaligned images and texts and effec-
tively align the visual and textual semantic spaces
on different types of corpora.

Only a few works have attempted to bridge
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unaligned images and texts by leveraging object
tags from an pre-trained object detector as “an-
chor points” (Li et al., 2021a,b). However, they
all rely heavily on expensive object-centric visual
feature extraction, thus facing the problems of lim-
ited visual expressive power and computation in-
efficiency. In this paper, in order to bridge the
unpaired image and text corpora and align the vi-
sual and textual semantic spaces end-to-end, we
propose to conduct grounded learning on images,
texts, and image-text pairs via a sharing grounded
space. Specifically, we introduce a grounded dictio-
nary shared by images and texts, which represents
vision-language grounded semantics. To learn the
grounded dictionary, we apply vector quantization
on both visual and textual representations to group
image patches and text tokens with similar seman-
tics into grounded tokens. Furthermore, we de-
sign a Grounded Transformer architecture to let
the visual and textual information exchanged by
the grounded tokens, which not only facilitates
grounded dictionary learning, but also improves
cross-modal alignment. Our grounded learning
method can help bridge the textual and visual se-
mantic spaces on unpaired image and text corpora
to improve cross-modal fusion on different types
of corpora.

We evaluate UNIMO-2 on a variety of repre-
sentative vision-language understanding and gen-
eration tasks, including image/text retrieval, visual
question answering, visual reasoning and image
caption. On all these tasks, UNIMO-2 obtains ob-
vious improvements compared to the baselines that
only learn on aligned image-caption data or with-
out our grounded learning component. Moreover,
we also evaluate our model on single-modal textual
tasks such as natural language inference and vi-
sual tasks such as image classification (Deng et al.,
2009). The results show that our model has also
achieved very impressive performance on these
tasks, which proves the strong scalability and adapt-
ability of our model.

UNIMO-2 has the following advantages com-
pared with previous methods:

• UNIMO-2 can jointly learn from both aligned
and unaligned image and text corpora end-to-
end, effectively alleviating the limitations of
corpus, and learning more generalized visual
and textual representations on large volumes
of different types of corpus.

• Benefiting from utilizing different types of

corpora, UNIMO-2 has better scalability for
different types of tasks, including both cross-
modal tasks and single-modal tasks.

• Our grounded learning method can help align
textual and visual semantic spaces more effec-
tively, thereby greatly improving the perfor-
mance of various cross-modal tasks. In partic-
ular, the performance of zero-shot image/text
retrieval even outperforms CLIP pre-trained
on an order of magnitude larger pair corpus.

2 Related Work

Vision-Language Pre-training Recent years
have witnessed rapid progress in vision-and-
language pretraining (VLP) (Li et al., 2019b; Lu
et al., 2019; Chen et al., 2020c; Li et al., 2019a,
2020; Yu et al., 2020). Most existing mainstream
VLP models adopt a two-stage training method,
which firstly extracts region-based visual features
using a pre-trained object detection model, and
then combines the derived object-centric region fea-
tures of images and text embeddings as the input
of Transformer (Vaswani et al., 2017) for cross-
modal pre-training. These methods rely heavily on
an off-the-shelf object detector like Faster R-CNN
(Ren et al., 2016) typically pretrained on the Visual
Genome dataset (Anderson et al., 2018). As the vi-
sual representation is not optimized towards a more
generic cross-modal understanding and extracting
region features with an object detection model is so
time-consuming, they face the problems of limited
visual expressive power and computation ineffi-
ciency, which makes them less scalable.

Some recent work has also explored VLP with-
out object detection modules (Xu et al., 2021; Kim
et al., 2021; Huang et al., 2021; Wang et al., 2021).
They either utilize grid features from pretrained
CNNs or patch features following ViT (Dosovitskiy
et al., 2020), however they only use limited image-
caption pairs for cross-modal pretraining and thus
their scalability and performance are limited. Only
a few works have explored utilizing unaligned im-
ages and texts for vision-language pre-training,
including our previous work UNIMO (Li et al.,
2021b) and U-VisualBERT (Li et al., 2021a). How-
ever, they all rely on pre-extraction of region-based
visual features or object tags by time-consuming
object detection. How to bridge unpaired visual
and textual corpora end-to-end without using object
detection remains challenging.
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Figure 1: Illustration of our UNIMO-2 framework. The left part shows the architecture of learning on image-
text pairs, which produces grounded tokens based on the sharing semantics in images and texts. The right part
shows the architecture of learning on unpaired images and texts, which produces grounded tokens from image
representations or text representations, respectively. As they share the same grounded dictionary, the grounded
tokens act as “anchor points” to bridge the gap between images and texts.

Grounded Learning Language grounding is an
active field aiming at enriching textual represen-
tations with visual information, which has been
shown to improve performance on a variety of core
NLP tasks (Bruni et al., 2014; Baroni, 2016; Kiela,
2017). Kiela et al. (2018) investigate grounded
sentence representations by training a sentence en-
coder to predict the image features of a given cap-
tion. Tan and Bansal (2020) propose a vokenization
method that maps language tokens to their related
images. These works all enrich the language rep-
resentation with visual information by learning a
projection of text representations to corresponding
images (Chrupała et al., 2015). Recently, Huang
et al. (2021) propose an end-to-end VLP method
that aggregates visual features from a CNN en-
coder into visual tokens with a visual dictionary.
Liu et al. (2021) propose to improve cross-modal
retrieval tasks by incorporating a shared discretized
embedding space, which is utilized to compute
matching scores between different modalities to
complement the representations from individual
encoders. These works all rely on image-text pairs
to learn cross-modal representations and only fo-
cus on joint vision-language tasks. By contrast, our
work for the first time proposes to jointly model
both aligned and unaligned images and texts by
end-to-end learning a shared grounded semantic
space, which can improve modality alignment be-
tween both aligned and unaligned images and texts.

3 Approach

The overall architecture of our model is shown in
Figure 1. UNIMO-2 is an end-to-end framework,
which consists of a trainable Transformer-based
visual encoder, a Transformer-based text encoder, a
grounded dictionary (GD) embedding module, and
a multi-layer Grounded Transformer for modal-
ity fusion. The visual encoder takes an image as
input by splitting it into small sizes of patches,
and produces the high-level visual representations
for all patches, similar to ViT (Dosovitskiy et al.,
2020). The text encoder encodes textual tokens to
produce high-level token representations. Based
on the high-level representations of patches and
tokens, we design a GD embedding module to
group similar vision-language representations into
grounded tokens with a shared grounded dictionary.
The Grounded Transformer is further adopted to
fuse features from vision and language modalities
through interacting with the common grounded
tokens. UNIMO-2 can be end-to-end pre-trained
by joint Masked Language Modeling (MLM) on
text, Image-Text Matching (ITM) on image-text
pairs and Visual Contrastive Learning (VCL) on
images. UNIMO-2 can also be easily adapted to
various tasks including visual, textual and cross-
modal tasks.

3.1 End-to-End Grounded Learning
Human acquire much of their knowledge through
grounded learning – visual concepts can be ac-
quired through language, and language acquisi-

3189



tion emerges through visual interaction (Jones
et al., 1991; Perfetti, 1998; Fincher-Kiefer, 2001;
Andrews et al., 2009; Riordan and Jones, 2011).
Inspired by this type of grounded learning, we
propose to learn a sharing semantic space (i.e.
grounded space) between images and texts to bet-
ter align fine-grained visual and textual semantics.
Specifically, based on the high-level visual repre-
sentations of patches V = {v1, . . . , vM} and tex-
tual representations of tokens T = {t1, . . . , tN},
we introduce a grounded dictionary to group sim-
ilar visual and textual representations into the
same grounded token. The grounded features not
only help align the visual and textual semantics in
aligned image-caption data, but also act as “anchor
points” to help bridge the unaligned images and
texts, as shown in Figure 1.

Grounded Dictionary Learning We define a
grounded dictionary (GD) as a matrix G ∈ RC×D

which contains C embedding vectors with D-dim.
The embedding vector for the jth grounded token is
denoted as gj ∈ RD, j ∈ 1, 2, . . . , C. Vector Quan-
tization (VQ) is widely used to group continuous
embeddings into groups of discrete latent variables
(Oord et al., 2017; Liu et al., 2021; Huang et al.,
2021). For example, each patch or token can be
mapped to a grounded token by finding its nearest
neighbor in the GD, as in Oord et al. (2017).

Most existing VLP methods implicitly assume
that there is a one-to-one correspondence hypoth-
esis between the visual and textual modalities of
image-text pairs. However, this hypothesis does
not hold in reality as most image-text pairs on the
Web are noisy or only have weak correlation. To
tackle this issue, instead of mapping each patch
or token representation to a grounded token, we
only detect the most significant sharing semantics
between image and text. We propose to find the
top-K most significant grounded tokens for both
the textual and visual input. Specifically, let xij
denotes the similarity between embedding vectors
of visual token vi and grounded token gj , which is
computed by:

xij = σ(η ∗ vTi gj) (1)

where σ denotes the sigmoid function, and η de-
notes a learnable temperature parameter. Similarly,
ykj denotes the similarity between embedding vec-
tors of textual token tk and grounded token gj .

For image-text pairs, the accumulated score of

the grounded token gj is computed as:

sj =

M∑
i=1

xij +

N∑
k=1

ykj (2)

We obtain the top-K most significant grounded
tokens with the largest accumulated scores:
g1, . . . , gK = TopK{s1, . . . , sC}, where K is a
hyper-parameter. Note that, if we set K =M +N ,
then it is similar that each patch or token is mapped
to a grounded token, which will increase the com-
putation cost and introduce noisy information into
the grounded learning process. So, we set K much
smaller than M + N to obtain the most signifi-
cant and sharing grounded tokens, which can help
align fine-grained visual and textual representations
while eliminating the noisy or unrelated informa-
tion in image-text pairs. For unpaired images or
text, the accumulated score of each grounded token
gj is sj =

∑M
i=1 xij or sj =

∑N
k=1 ykj , and the

top-K grounded tokens can be obtained similarly.
The grounded dictionary is randomly initialized,

and further updated end-to-end while pre-training.
As the TopK function is non-differentiable, we im-
port a grounding loss to help learn the grounded
dictionary. Specifically, we propose a revised form
of the Vector Quantisation (VQ) algorithm (Oord
et al., 2017), which uses the l2 error to move the
embedding vectors gi towards the mapped patch
or token representations, as shown in the first term
of Equation 3. For simplicity, here we take im-
age input as an example. Since the volume of the
embedding space is dimensionless, it can grow ar-
bitrarily if the embeddings gi do not train as fast
as the visual and textual encoder parameters. To
make sure the encoder commits to an embedding
and its output does not grow, we add a commitment
loss, the second term in Equation 3. Thus, the total
grounding loss becomes:

LGD =

M∑
i=1

‖sg(vi)−
∑
j

xij∑
k xik

gj‖22

+ β
K∑
j=1

‖sg(gj)−
∑
i

xij
sj
vi‖22

(3)

where sg(.) denotes the stop-gradient operator that
is defined as identity at forward computation time
and has zero partial derivatives, and β denotes a
weight parameter.

The grounded dictionary faces a cold-start prob-
lem for unpaired images and texts. So we apply
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Figure 2: The self-attention architecture of Grounded
Transformer. Cross-modal information is exchanged
through the grounded tokens.

curriculum learning on different types of corpora.
Specifically, we first only train on image-text pairs
for 20 epoches to obtain a usable grounded embed-
ding space, then further train on all three types of
corpus to help bridge unpaired images and texts. To
show what the GD has learned, we have visualized
some grounded tokens in Appendix A.

Grounded Transformer After obtaining the
grounded tokens, we append them with the visual
tokens and textual tokens as input to our Grounded
Transformer for cross-modal fusion. Specifically,
we propose to bridge visual and textual representa-
tions by grounded tokens. As shown in Figure
2, the cross-modal information can only be ex-
changed by grounded tokens, which also push the
grounded tokens to capture the most significant
sharing semantics between images and texts. In
this way, our model is more robust on weak corre-
lation image-text pairs by modeling cross-modal
interaction through common grounded tokens. Fur-
thermore, the novel self-attention architecture can
improve the computation efficiency compared to
the standard pairwise self-attention mechanism.

For unpaired images and texts, the Grounded
Transformer also models the fusion of visual tokens
or textual tokens with the grounded tokens. As the
grounded dictionary captures common visual and
textual semantics, it also helps learn cross-modal
representations on unpaired images and texts.

3.2 Pre-training On Different Corpus

Based on the outputs of the Grounded Transformer,
we adopt Masked Language Modeling (MLM) and
Image-Text Matching (ITM) pre-training tasks on
image-text pairs. Furthermore, we also apply MLM
on text corpus and Visual Constrastive Learning
(VCL) on images.

Masked Language Modeling We iteratively
sample spans of text until totally 15% tokens have
been selected. We sample the span length from a
geometric distribution l ∼ Geo(p), where p is set
as 0.2, similar to SpanBERT (Joshi et al., 2020).
All tokens in the selected spans are replaced with
either a special [MASK] token, a random token
or the original token with probability 80%, 10%
and 10%, respectively. The goal is to predict these
masked tokens based on their surrounding context
and all visual features. The MLM task is also ap-
plied on text-only corpus, which predicts masked
tokens only based on the surrounding tokens.

Image-Text Matching To enhance the cross-
modal matching, we adopt ITM task for pre-
training as in previous works (Chen et al., 2020c).
We apply a binary classifier on the concatenated em-
bedding features of the “[CLS]” token in text and
the “[CLS]” token in image by Grounded Trans-
former to predict whether the input image and text
are matched or not.

Visual Contrastive Learning UNIMO-2 learns
representations on unpaired images by maximizing
agreement between differently augmented views
of the same image while minimizing similarities
between different images via a contrastive loss in
the latent space, similar to SimCLR (Chen et al.,
2020a). We apply stochastic data argumentation
module that transforms an image randomly resulted
in two corelated views as a positive pair, and ran-
dom images in the same minibatch as negative pairs.
We combine augmentations of random cropping,
random rotating and random color distortion fol-
lowed by resizing back to the original size.

3.3 Transferring To Different Tasks
Our model can be effectively finetuned on different
types of tasks, including cross-modal tasks, visual
tasks and textual tasks. For cross-modal tasks, the
model architecture is the same as the pre-training
architecture on image-text pairs, as shown in the
left part of Figure 1. Grounded tokens are produced
based on both the visual and textual representations
to facilitate cross-modal understanding and genera-
tion. For visual tasks, the model architecture is the
same as the pre-training architecture on images, as
shown in the middle part of Figure 1. Grounded
tokens are obtained based on the visual representa-
tions from the Visual Transformer. As the grounded
tokens contain sharing semantics between images
and texts, UNIMO-2 can learn language-grounded
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image representations for visual tasks. Similarly,
for textual tasks the model architecture is the same
as the pre-training architecture on text, as shown
in the right part of Figure 1. Grounded tokens are
obtained based on the textual representations from
the Text Transformer. Also, the sharing grounded
space helps learn grounded text representations to
facilitate textual tasks.

4 Experimental Settings

Pretraining Dataset Our pre-training datasets
consist of three types: text corpus, image corpus
and image-text pairs. The text corpus includes two
large-scale corpora: BookWiki and OpenWebText,
which are part of the training dataset of RoBERTa
(Liu et al., 2019). The image corpus are images
without textual descriptions, including a subset of
OpenImages (Krasin et al., 2017) and ImageNet-
21k (Deng et al., 2009). Each image in these
datasets contains a textual label. The image-text
pairs are composed of four existing multi-modal
datasets: COCO (Lin et al., 2014), Visual Genome
(VG) (Krishna et al., 2017), Conceptual Captions
(CC) (Sharma et al., 2018) and SBU Captions (Or-
donez et al., 2011), which have also been widely
used in previous VLP models. The detail statis-
tics are shown in the appendix. We also transform
the label of each image to a sentence by prompts
(e.g. “a photo of [label]”) to create pseudo image-
text pairs from the OpenImages and ImageNet-21k
datasets for pretraining.

Implementation Detail UNIMO-2 consists of
12 layers of Visual Transformer, 12 layers of Text
Transformer, and 12 layers of Grounded Trans-
former. The Visual Transformer is initialized by
ViT-B/16. The Text Transformer and Grounded
Transformer are both initialized by RoBERTa-Base.
The maximum sequence length of text tokens are
set as 512. An Adam optimizer with initial learning
rate 5e-5 and a learning rate linear decay schedule
is utilized.

For the visual encoder, our model receives the
raw image x ∈ RH×W×C and maps it into flat-
tened 1D sequence of patches xp ∈ R

HW
P2 ×D as

input for the transformer, where D is the fixed hid-
den size of the transformer layers and P is the patch
size. During pretraining, we utilize the 224× 224
resolution with a fixed patch size of 16 × 16, re-
sulting in a patch sequence of length 14 × 14 as
visual tokens. During fine-tuning, we increase the
image resolution to 384× 384 and interpolate the

positional encoding of image patches following
(Dosovitskiy et al., 2020). For the grounded em-
bedding module, the grounded dictionary size C
is set as 2048, and the number of grounded tokens
K during pre-training and finetuning are both set
as 100 that is much smaller than the max number
of patches and tokens for pre-training (i.e. 709)
and finetuning (i.e. 1089). We set β = 0.25 in all
our experiments and the results did not vary obvi-
ously for values ranging from 0.1 to 1.0. We have
compared different grounding settings in detail in
Appendix A.

Finetuning Tasks To show the scalability of our
model, we fine-tune it on three types of down-
stream tasks: (1) joint vision-language cross-modal
tasks, (2) visual tasks, and (3) textual tasks. The
cross-modal tasks include: visual question answer-
ing (VQA) on the VQA v2.0 dataset (Goyal et al.,
2017), image caption on the Microsoft COCO Cap-
tions dataset (Chen et al., 2015), visual entailment
on the SNLI-VE dataset (Xie et al., 2019) and
image-text retrieval on Flickr30k datasets (Young
et al., 2014). The visual tasks include image clas-
sification on the ImageNet-1k dataset (Krizhevsky
et al., 2012). The textual tasks include sentiment
classification on the SST-2 dataset (Socher et al.,
2013), natural language inference on the MNLI
dataset (Williams et al., 2018), linguistic acceptabil-
ity analysis on the CoLA dataset (Warstadt et al.,
2019) and semantic similarity analysis on the STS-
B dataset (Cer et al., 2017). The detail statistics of
the datasets and hyper-parameter settings for the
above tasks are described in Appendix B.

5 Results and Analysis

We compare UNIMO-2 to a variety of state-of-the-
art models on cross-modal, visual and textual tasks.

5.1 Cross-Modal Tasks
The evaluation results on the joint vision-language
cross-modal tasks are shown in Table 1. We com-
pare with most of the existed VLP models, includ-
ing regional feature-based models ViLBERT (Lu
et al., 2019), UNITER (Chen et al., 2020c), Os-
car (Li et al., 2020), Villa (Gan et al., 2020) and
UNIMO (Li et al., 2021b), and end-to-end mod-
els ViLT (Kim et al., 2021), E2E-VLP (Xu et al.,
2021), SOHO (Huang et al., 2021) and CLIP (Rad-
ford et al., 2021).The results show that UNIMO-2
achieves the best results against most benchmarks,
outperforming both the base and large sizes of other
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Model ZS-IR ZS-TR IR TR SNLI-VE VQA Caption
R@1/R@5 R@1/R@5 R@1/R@5 R@1/R@5 Val / Test test-dev / std B@4 / C

Region-based Models Pretrained on Image-Text Pairs of CC, SBU, COCO and VG.
ViLBERT 31.86/61.12 - 58.20/84.90 - - 70.55/70.92 -
UNITER-Base 66.16/88.40 80.70/95.70 72.52/92.36 85.90/97.10 78.59/78.28 72.70/72.91 -
Villa-Base - - 74.74/92.86 86.60/97.90 79.47/79.03 73.59/73.67 -
Oscar-Base - - - - - 73.16/73.44 36.5/123.7
UNIMO-Base 62.44/86.16 77.40/95.10 74.66/93.40 89.70/98.40 80.00/79.10 73.79/74.02 38.8/124.4
UNITER-Large 68.74/89.20 83.60/95.70 75.56/94.08 87.30/98.00 79.39/79.38 73.82/74.02 -
Villa-Large - - 76.26/94.24 87.90/97.50 80.18/80.02 74.69/74.87 -
Oscar-Large - - - - - 73.61/73.82 37.4/127.8
UNIMO-Large 72.14/91.14 85.80/96.80 78.04/94.24 89.40/98.90 81.11/80.63 75.06/75.27 39.6/127.7
End-to-End Models Pretrained on Image-Text Pairs of CC, SBU, COCO and VG. † denotes 400 Million pairs.
ViLT 51.3/79.9 69.7/91.0 62.2/87.6 83.7/97.2 - 70.94/- -
E2E-VLP - - 73.58/92.42 86.24/97.50 - 73.25/73.67 36.2/117.3
SOHO - - 72.5/92.7 86.5/98.1 85.00/84.95 73.25/73.47 -
CLIP† 68.7/90.6 88.0/98.7 - - - - -
Our Baseline 65.11/87.44 78.80/94.38 78.52/94.02 91.62/98.72 80.37/80.43 75.69/75.87 38.5/128.4
UNIMO-2 72.70/91.18 88.46/96.84 80.14/95.58 92.01/99.31 81.97/81.48 76.31/76.42 39.7/131.2

Table 1: Evaluation results on cross-modal tasks. ZS denotes zero-shot performance. IR and TR represents image-
retrieval and text-retrieval, respectively. B@4 and C denotes metrics of BLUE4 and CIDEr, respectively. “Our
Baseline” is similar to UNIMO-2, except that the grounded embedding module in UNIMO-2 is removed. It is
trained on the same corpus and experimental settings with UNIMO-2.

Model Acc@1
Zero-Shot Finetuned

SimCLRv2 (Chen et al., 2020b) - 80.5
CLIP-ViT(B/16) 68.6 80.2
Our Baseline 58.2 80.7
UNIMO-2 66.3 80.8

Table 2: Evaluation results on visual tasks, compared
to state-of-the-art representation learning methods. We
report both the zero-shot and finetuned top-1 accuracy
on ImageNet-1k. The finetuned result of CLIP-ViT is
linear probe performance.

VLP models. Particularly, UNIMO-2 achieves very
good performance on the task of zero-shot im-
age/text retrieval, even outperforming CLIP (Rad-
ford et al., 2021) that pre-trained on an order of
magnitude larger corpus. The results demonstrate
that UNIMO-2 can obtain better cross-modal rep-
resentations based on joint end-to-end grounded
learning on different types of corpus.

Furthermore, the performance of “Our Baseline”
that just removes the grounded embedding module
in UNIMO-2 drop obviously on all tasks, which
demonstrates the effectiveness of our grounded
learning method for cross-modal alignment. Es-
pecially, on the zero-shot image retrieval and text
retrieval tasks, UNIMO-2 obtains 7.59 R@1 and
9.66 R@1 absolute gains compared to “Our Base-
line”. The results demonstrate that our grounded
learning method can help align the visual and tex-
tual semantic space on different types of corpora to
obtain more effective cross-modal representations.

Model SST-2 MNLI CoLA STS-B
Acc Acc-(m/mm) Mat Per

BERT 92.7 84.4 / - - -
RoBERTa 94.8 - 63.6 -
UniLM 94.5 87.0/85.9 61.1 87.7
UNITER 89.7 80.8/- 37.4 -
VilBERT 90.4 79.9/- 36.1 -
UNIMO 95.1 86.8/86.7 65.4 91.0
Our Baseline 94.1 87.1/86.9 60.6 91.0
UNIMO-2 94.7 87.5/87.5 62.1 91.2

Table 3: Evaluation results on textual tasks. Mat and
Per denote Matthews correlation coefficient and Pear-
son correlation coefficient, respectively. All the results
are evaluated on the dev set.

5.2 Visual Tasks

UNIMO-2 can also be effectively adapted to visual
tasks such as image classification. As UNIMO-
2 learns effective cross-modal representations, it
can classify images without finetuning. Specifi-
cally, the target labels of images can be transformed
into pseudo image descriptions, such as “a photo
of [label]”. Then the zero-shot image-to-text re-
trieval method can be used to obtain the label for
each image, similar to CLIP (Radford et al., 2021).
Both the zero-shot and finetuned performance is
compared to several state-of-the-art representation
learning methods. The results in Table 2 show that
UNIMO-2 can achieve comparable performance
with CLIP that pretrained on billions of image-text
pairs, on both the zero-shot and supervised set-
tings. Moreover, UNIMO-2 obviously outperforms
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Model ZS-IR ZS-TR IR TR COCO Caption ZS-ImageNet MNLI
R@1 R@1 R@1 R@1 B@4 / C Acc@1 m/mm

UNIMO-2 72.70 88.46 80.14 92.01 39.7 / 131.2 66.3 87.5/87.5

GD

w/o GD (P) 65.11 78.80 78.52 91.62 38.5 / 128.4 58.2 87.1/86.9
w/o GD (I) 40.22 31.76 74.08 88.26 39.0 / 127.4 21.3 87.5/87.3
w/o G.T. 70.10 85.01 78.84 91.12 39.6 / 130.1 66.4 87.1/86.8
1-to-1 Map 66.06 80.97 77.61 90.43 38.7 / 127.4 66.3 87.0/86.9

Corpus
w/o Text 70.00 85.50 78.90 90.24 39.0 / 128.7 65.0 84.9/85.0
w/o Images 69.17 84.81 77.65 90.34 39.4 / 129.5 42.2 87.1/87.0
w/o Both 70.06 84.12 78.17 91.32 39.3 / 129.3 43.0 85.9/85.7

Table 4: Ablation study on the effectiveness of our unified end-to-end grounded learning architecture.

“Our Baseline” on the zero-shot setting, achieving
8.1 Acc@1 absolute gains. The results demon-
strate that UNIMO-2 also learns generalized visual
representations through unified-modal learning on
different types of corpora.

5.3 Textual Tasks
To show the effectiveness of UNIMO-2 on textual
tasks, we further compare with both VLP models
including UNITER, VilBERT and UNIMO, and
pre-trained language models including BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
UniLM (Dong et al., 2019). The comparison results
in Table 3 demonstrate that UNIMO-2 achieves
much better performance than existing VLP mod-
els including UNITER and VilBERT, and achieves
comparable performance than existed PLMs such
as RoBERTa. UNIMO-2 also outperforms “Our
Baseline” on all textual tasks.

The above results demonstrate the adaptability
and scalability of our unified end-to-end VLP ar-
chitecture for joint learning on both aligned and
unaligned images and texts. In all, UNIMO-2
not only achieves excellent performance on cross-
modal tasks, but also performs very well on visual
and textual tasks, which validates the superiority
of our unified-modal learning architecture.

5.4 Analysis
Effectiveness of Grounded Learning We fur-
ther validate the effectiveness of our grounded
learning component by ablation study. “w/o GD
(P)” denotes removing the grounded learning com-
ponent during both pre-training and inference in
order to validate its effectiveness for unified learn-
ing on different types of corpus. “w/o GD (I)” de-
notes keeping the grounded learning component
during pre-training, but removing it during infer-
ence, in order to validate the effectiveness of the
grounded representations to downstream tasks. “1-
to-1 Map” denotes mapping each patch or token to

a grounded token by finding its nearest neighbor in
the grounded dictionary, similar to the vector quan-
tization method in (Oord et al., 2017). We compare
their performance on three types of tasks, as shown
in the top part of Table 4. The results demonstrate
that our grounded learning (GD) method is essen-
tial to the end-to-end joint learning from different
types of corpus, which can help bridge unaligned
images and texts and improve vision-language se-
mantic alignment. The learned grounded represen-
tations is also critical to both the cross-modal and
single-modal downstream tasks. We further vali-
date the effectiveness of our Grounded Transformer
by replacing it with a traditional Transformer, de-
noted as “w/o G.T.”. The results show that the
performance of cross-modal tasks drop obviously
compared to UNIMO-2, which demonstrate the
effectiveness of our Grounded Transformer archi-
tecture.

Effectiveness of Unaligned Images and Texts
To further validate the effectiveness of unaligned
images and texts to cross-modal learning, we com-
pare the performance of UNIMO-2 on different
pre-training datasets. Specifically, we compare the
performance of UNIMO-2 by either removing the
text cropus (i.e. “w/o Text”), the image corpus
(i.e. “w/o Images”) or removing them both (i.e.
“w/o Both”). The comparison results are shown in
the bottom part of Table 4, which show that either
removing text corpus or image corpus will consis-
tently reduce the performance of all three types
of tasks, including cross-modal, visual and textual
tasks. It is worth noting that the performance of
the image/text retrieval tasks drop obviously when
either removing the text-only cropus or image-only
corpus, which demonstrate that unaligned corpus
is also useful to cross-modal tasks. UNIMO-2 can
effectively leverage unaligned images and texts to
improve cross-modal learning.
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6 Conclusion

In this work, we propose UNIMO-2, an end-to-
end unified-modal pre-training framework that can
learn from both aligned and unaligned image and
text corpora. Our proposed grounded learning
method can help bridge unpaired images and texts
and align the textual and visual semantic spaces
more effectively. Benefiting from effectively uti-
lizing different types of corpora, UNIMO-2 has
better scalability for different types of tasks. Exper-
iments show that UNIMO-2 greatly improves the
performance of various cross-modal tasks and also
achieves very impressive performance on visual
and textual tasks. The results also show that it is
promising to further uniformly improve the perfor-
mance of cross-modal, visual and textual tasks by
utilizing larger scales of unpaired images and texts.

Acknowledgments

This work was supported in part by the Na-
tional Key R&D Program of China under Grant
2020YFB1406701. Xinyan Xiao is the correspond-
ing author.

References
Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 6077–6086.

Mark Andrews, Gabriella Vigliocco, and David Vinson.
2009. Integrating experiential and distributional
data to learn semantic representations. Psychologi-
cal review, 116(3):463.

Marco Baroni. 2016. Grounding distributional seman-
tics in the visual world. Language and Linguistics
Compass, 10(1):3–13.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of ar-
tificial intelligence research, 49:1–47.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020a. A simple framework
for contrastive learning of visual representations.

In International conference on machine learning,
pages 1597–1607. PMLR.

Ting Chen, Simon Kornblith, Kevin Swersky, Moham-
mad Norouzi, and Geoffrey Hinton. 2020b. Big self-
supervised models are strong semi-supervised learn-
ers. arXiv preprint arXiv:2006.10029.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020c. Uniter: Universal image-text
representation learning. In European Conference on
Computer Vision, pages 104–120. Springer.

Grzegorz Chrupała, Ákos Kádár, and Afra Alishahi.
2015. Learning language through pictures. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 112–
118, Beijing, China. Association for Computational
Linguistics.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In Advances in Neural Informa-
tion Processing Systems, pages 13063–13075.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Rebecca Fincher-Kiefer. 2001. Perceptual compo-
nents of situation models. Memory & Cognition,
29(2):336–343.

3195

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.3115/v1/P15-2019
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu,
Yu Cheng, and Jingjing Liu. 2020. Large-scale ad-
versarial training for vision-and-language represen-
tation learning. arXiv preprint arXiv:2006.06195.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6904–6913.

Zhicheng Huang, Zhaoyang Zeng, Yupan Huang, Bei
Liu, Dongmei Fu, and Jianlong Fu. 2021. Seeing
out of the box: End-to-end pre-training for vision-
language representation learning. arXiv preprint
arXiv:2104.03135.

Susan S Jones, Linda B Smith, and Barbara Landau.
1991. Object properties and knowledge in early lex-
ical learning. Child development, 62(3):499–516.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
3128–3137.

Douwe Kiela. 2017. Deep embodiment: grounding se-
mantics in perceptual modalities. Technical report,
University of Cambridge, Computer Laboratory.

Douwe Kiela, Alexis Conneau, Allan Jabri, and Max-
imilian Nickel. 2018. Learning visually grounded
sentence representations. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 408–418, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021.
Vilt: Vision-and-language transformer without con-
volution or region supervision. arXiv preprint
arXiv:2102.03334.

Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Fer-
rari, Sami Abu-El-Haija, Alina Kuznetsova, Has-
san Rom, Jasper Uijlings, Stefan Popov, Andreas
Veit, et al. 2017. Openimages: A public dataset for
large-scale multi-label and multi-class image clas-
sification. Dataset available from https://github.
com/openimages, 2(3):2–3.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123(1):32–
73.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. Advances in neural infor-
mation processing systems, 25:1097–1105.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander
Kolesnikov, et al. 2020. The open images dataset
v4. International Journal of Computer Vision,
128(7):1956–1981.

Gen Li, Nan Duan, Yuejian Fang, Daxin Jiang, and
Ming Zhou. 2019a. Unicoder-vl: A universal en-
coder for vision and language by cross-modal pre-
training. arXiv preprint arXiv:1908.06066.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019b. Visualbert: A
simple and performant baseline for vision and lan-
guage. arXiv preprint arXiv:1908.03557.

Liunian Harold Li, Haoxuan You, Zhecan Wang,
Alireza Zareian, Shih-Fu Chang, and Kai-Wei
Chang. 2021a. Unsupervised vision-and-language
pre-training without parallel images and captions. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5339–5350, Online. Association for Compu-
tational Linguistics.

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao
Liu, Jiachen Liu, Hua Wu, and Haifeng Wang.
2021b. UNIMO: Towards unified-modal under-
standing and generation via cross-modal contrastive
learning. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 2592–2607, Online. Association for Computa-
tional Linguistics.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision,
pages 121–137. Springer.

Junyang Lin, An Yang, Yichang Zhang, Jie Liu, Jingren
Zhou, and Hongxia Yang. 2020. Interbert: Vision-
and-language interaction for multi-modal pretrain-
ing. arXiv preprint arXiv:2003.13198.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Alexander H Liu, SouYoung Jin, Cheng-I Jeff Lai, An-
drew Rouditchenko, Aude Oliva, and James Glass.
2021. Cross-modal discrete representation learning.
arXiv preprint arXiv:2106.05438.

3196

https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/N18-1038
https://doi.org/10.18653/v1/N18-1038
https://doi.org/10.18653/v1/2021.naacl-main.420
https://doi.org/10.18653/v1/2021.naacl-main.420
https://doi.org/10.18653/v1/2021.acl-long.202
https://doi.org/10.18653/v1/2021.acl-long.202
https://doi.org/10.18653/v1/2021.acl-long.202


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems, pages 13–23.

Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. arXiv preprint arXiv:1711.00937.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
2011. Im2text: Describing images using 1 million
captioned photographs. Advances in neural infor-
mation processing systems, 24:1143–1151.

Charles A Perfetti. 1998. The limits of co-occurrence:
Tools and theories in language research.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2016. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. IEEE
transactions on pattern analysis and machine intelli-
gence, 39(6):1137–1149.

Brian Riordan and Michael N Jones. 2011. Redun-
dancy in perceptual and linguistic experience: Com-
paring feature-based and distributional models of se-
mantic representation. Topics in Cognitive Science,
3(2):303–345.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for au-
tomatic image captioning. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2556–2565, Melbourne, Australia. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Hao Tan and Mohit Bansal. 2020. Vokenization:
Improving language understanding with contextu-
alized, visual-grounded supervision. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages

2066–2080, Online. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu-
lia Tsvetkov, and Yuan Cao. 2021. Simvlm: Simple
visual language model pretraining with weak super-
vision. arXiv preprint arXiv:2108.10904.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Cola: The corpus of linguistic accept-
ability (with added annotations).

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Ning Xie, Farley Lai, Derek Doran, and Asim Ka-
dav. 2019. Visual entailment: A novel task for
fine-grained image understanding. arXiv preprint
arXiv:1901.06706.

Haiyang Xu, Ming Yan, Chenliang Li, Bin Bi, Song-
fang Huang, Wenming Xiao, and Fei Huang. 2021.
E2E-VLP: End-to-end vision-language pre-training
enhanced by visual learning. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 503–513, Online. As-
sociation for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie-
vil: Knowledge enhanced vision-language repre-
sentations through scene graph. arXiv preprint
arXiv:2006.16934.

3197

https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/2020.emnlp-main.162
https://doi.org/10.18653/v1/2020.emnlp-main.162
https://doi.org/10.18653/v1/2020.emnlp-main.162
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2021.acl-long.42
https://doi.org/10.18653/v1/2021.acl-long.42


A Grounded Learning Analysis

Visualization of Grounded Dictionary To
show the semantics of the grounded dictionary
learned by UNIMO-2, we visualize the image
patches and textual tokens that are grouped in each
grounded token. We map each patch or token into
a grounded token with which has the largest simi-
larity between their representations by Equation 1.
For each grounded token, the patches and tokens
that have the largest similarity scores are selected
and visualized. Several examples are shown in
Figure 3, which demonstrate that each grounded
token captures meaningful and consistent vision-
language grounded semantics.

Parameter Analysis In all our experiments, we
utilize the default grounding settings that the
grounded dictionary (GD) size C is set as 2048
and the number of grounded tokens K is set as 100.
We further compare different grounding settings
to explore the properties of the grounded semantic
space for cross-modal learning. Specifically, we
validate the performance of grounded learning with
different grounded dictionary (GD) size C from
{1024, 2048, 4096, 8192} and different number of
grounded tokens K from {10, 20, 50, 100}. When
comparing different GD size C, we set K as 100.
We also keep C = 2048 when comparing different
settings of K. Furthermore, we also compare our
method with the simplest Vector Quantization (VQ)
method that maps each visual or textual token to
a grounded token by finding its nearest neighbor
in the grounded dictionary, namely “1-to-1 map”.
The number of grounded tokens for “1-to-1 map” is
depended on the total number of image patches and
textual tokens, which is 709 (i.e. 197 + 512) dur-
ing pre-training and 1089 (i.e. 577 + 512) during
finetuning.

For time efficiency, we only pre-train UNIMO-2
on the corpus of image-text pairs for 10 epoches
under the above settings, and then compare their
performance on two representative cross-modal
tasks, including zero-shot image/text retrieval and
image caption, to validate their effectiveness on
cross-modal alignment. The comparison results
are shown in Table 5, which demonstrate that our
grounded learning method achieves better perfor-
mance on the two representative cross-modal tasks
when the GD size C is set as 4096 or the number
of grounded tokens K is set as 50. Too large C
will increase the difficulty of learning while too

small C may restrict the volume of grounded se-
mantic space. Similarly, too small K will lose
sharing semantics between images and texts while
too large K will introduce noisy information. Al-
though different settings have different behavior,
the performance of our grounded learning method
is relatively stable. In particular, the “1-to-1 map”
method achieves much worse results than our
grounded learning method under different settings,
which validates the effectiveness of our grounded
learning method on cross-modal alignment. Fur-
thermore, our grounded learning method is much
more efficient in computation than “1-to-1 map” as
the number of grounded tokens is much smaller,
which largely reduce the sequence length during
cross-modal fusion.

B Experimental Settings

Pretraining Datasets The pre-training datasets
consist of text corpus, image collections and image-
text pairs. The detail statistics of them are shown
in Table 6.

Finetuning Tasks The multi-modal finetuning
tasks include:

• VQA requires the model to answer natural
language questions by selecting the correct an-
swer from a multi-choice list based on an im-
age. We conduct experiments on the widely-
used VQA v2.0 dataset (Goyal et al., 2017),
which is built based on the COCO (Chen et al.,
2015) images. Similar to previous work, both
training and validation sets are used for train-
ing for the results on both the test-std and
test-dev splits.

• Image Caption requires the model to gener-
ate a natural language description of an im-
age. We report our results on the Microsoft
COCO Captions dataset (Chen et al., 2015).
Following Karpathy’s (Karpathy and Fei-Fei,
2015) split, the dataset contains 113.2k/5k/5k
images for train/val/test splits respectively.

• Visual Entailment (SNLI-VE) is evaluated
on the SLNI-VE dataset (Xie et al., 2019)
which was derived from Flickr30K images
and Stanford Natural Language Inference
(SNLI) dataset. The task is to determine the
logical relationship (i.e., “Entailment”, “Neu-
tral” and “Contradiction”) between a natural
language statement and an image.
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Figure 3: Visualization of the grounded dictionary learned by UNIMO-2, which groups consistent semantics
of image patches and textual tokens. Each grounded token reflects an abstraction of vision-language grounded
semantics.
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Model ZeroShot-IR ZeroShot-TR COCO Caption
R@1 / R@5 / R@10 R@1 / R@5 / R@10 B@4 / M / C / S

GD Size C

1024 58.52 / 82.19 / 88.92 71.10 / 90.14 / 95.17 37.58 / 29.18 / 123.53 / 22.23
2048 60.32 / 84.02 / 89.72 75.84 / 91.91 / 95.56 37.62 / 29.12 / 123.38 / 22.16
4096 64.10 / 86.41 / 91.79 77.91 / 94.38 / 96.75 38.07 / 29.20 / 124.18 / 22.20
8192 61.20 / 85.29 / 90.73 75.84 / 92.50 / 96.15 37.86 / 29.03 / 124.23 / 22.33

Top-K

10 57.79 / 82.66 / 89.47 69.92 / 91.42 / 95.56 37.36 / 28.92 / 122.93 / 22.15
20 61.46 / 85.07 / 90.75 74.46 / 93.10 / 97.34 37.90 / 28.81 / 123.68 / 22.03
50 63.49 / 86.13 / 91.54 77.32 / 93.10 / 96.65 38.38 / 29.17 / 125.31 / 22.39

100 60.32 / 84.02 / 89.72 75.84 / 91.91 / 95.56 37.62 / 29.12 / 123.38 / 22.16
1-to-1 Map 56.51 / 81.54 / 88.19 71.99 / 90.43 / 94.58 35.62 / 27.97 / 117.92 / 21.38

Table 5: Parameter analysis for grounded learning. The top part validates the influence of GD size C, and the
middle part compares the performance of different number of grounded tokensK used during learning. The bottom
part shows the effectiveness of our grounded learning method compared with the existing VQ method.

Type Image-Text Pairs Unaligned Images Unaligned Text
Dataset COCO VG CC SBU ImageNet21K Open Images BookWiki OpenWebText
#Images 113K 108K 3.01M 867K 14M 1.7M
#Texts 567K 5.41M 3.01M 867K 16G 38G

Table 6: Statistics of the aligned image-text pairs, and unaligned images and texts for pre-training.

Task Image Src.
#Images (#Text)

Train Val Test
test-std test-dev

VQA COCO 83K(444K) 41K(214K) 81K(107K) 81K(448K)
Image Caption COCO 113.2K 5K 5K -
Visual Entailment Flickr30K 529.5K 17.9K 17.9K -
Image-Text Retrieval Flickr30K 29K(145K) 1K(5K) 1K(5K) -

Table 7: Statistics of the datasets for the cross-modal downstream tasks.

Hyper-params Textual Tasks Visual Tasks
Learning Rate {1e-5, 2e-5, 3e-5} {1e-4, 3e-4, 5e-4}
Batch Size {16, 32} 512
Epochs 10 10
Warmup Raito 0.06 0.06
Weight Decay 0.01 0.01

Table 8: Hyper-parameters for fine-tuning on visual
and textual tasks.

• Image-Text Retrieval is evaluated on the
Flickr30k dataset (Young et al., 2014), which
contains two sub-tasks: image retrieval
(Flickr30k-IR) and text retrieval (Flickr30k-
TR), depending on which modality is used as
the retrieved target. We report the top-K re-
trieval results on the test sets, including R@1,
R@5 and R@10.

The statistics of the datasets for the above
multimodal-tasks are described in Table 7. The
hyper-parameters for finetuning all the downstream
tasks, including both the single-modal tasks and
cross-modal tasks are shown in Table 8 and 9, re-
spectively. The full evaluation results (including
R@1, R@5 and R@10) on Image/Text Retrieval
tasks and comparison with other state-of-the-art

VLP methods are shown in Table 10.
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Hyper-parameters Image-Text Retrieval SNLI-VE VQA COCO Caption
Batch Size 32 64 256 32
Epoch 40 10 12 10

Learning Rate
5e-6 for epoch=[0,24]

1e-5
4e-5 for epoch=[0,5]

1e-55e-7 for epoch=[24,32] 4e-6 for epoch=[6,8]
5e-8 for epoch=[32,40] 4e-7 for epoch=[9,12]

Warmup Ratio - 0.06 - 0.06
Weight Decay 0.01 0.0 0.0 0.01

Table 9: Hyper-parameters for fine-tuning on cross-modal tasks .

Model
ZeroShot-IR ZeroShot-TR Finetuned-IR Finetuned-TR

R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10
ViLBERT-base 31.86 / 61.12 / 72.80 - 58.20 / 84.90 / 91.52 -
UNITER-base 66.16 / 88.40 / 92.94 80.70 / 95.70 / 98.00 72.52 / 92.36 / 96.08 85.90 / 97.10 / 98.80
Villa-base - - 74.74 / 92.86 / 95.82 86.60 / 97.90 / 99.20
UNIMO-base 62.44 / 86.16 / 91.68 77.40 / 95.10 / 97.80 74.66 / 93.40 / 96.08 89.70 / 98.40 / 99.10
UNITER-large 68.74 / 89.20 / 93.86 83.60 / 95.70 / 97.70 75.56 / 94.08 / 96.76 87.30 / 98.00 / 99.20
Villa-large - - 76.26 / 94.24 / 96.84 87.90 / 97.50 / 98.80
UNIMO-large 72.14 / 91.14 / 94.98 85.80 / 96.80 / 98.80 78.04 / 94.24 / 97.12 89.40 / 98.90 / 99.80
ViLT 51.3 / 79.9 / 81.9 69.7 / 91.0 / 96.0 62.2 / 87.6 / 93.2 83.7 / 97.2 / 98.1
E2E-VLP - - 73.58 / 92.42 / 96.03 86.24 / 97.50 / 98.92
SOHO - - 72.5 / 92.7 / 96.1 86.5 / 98.1 / 99.3
CLIP 68.7 / 90.6 / 95.2 88.0 / 98.7 / 99.4 - -
Our Baseline 65.11 / 87.44 / 92.62 78.80 / 94.38 / 97.63 78.52 / 94.02 / 96.63 91.62 / 98.72 / 99.51
UNIMO-2 72.70 / 91.18 / 94.60 88.46 / 96.84 / 98.92 80.14 / 95.58 / 97.75 92.01 / 99.31 / 99.51

Table 10: Full evaluation results on the Flickr30k retrieval tasks.
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