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Abstract

Recent research has made impressive progress
in large-scale multimodal pre-training. In the
context of the rapid growth of model size, it is
necessary to seek efficient and flexible methods
other than finetuning. In this paper, we propose
to use prompt vectors to align the modalities.
Our method achieves comparable performance
to several other multimodal fusion methods in
low-resource settings. We further show that our
method is modular and parameter-efficient for
processing tasks involving two or more data
modalities.

1 Introduction

The success of large-scale pretrained language
models (PLMs; Devlin et al. (2019); Yang et al.
(2019); Brown et al. (2020); Raffel et al. (2020))
and image encoders (Dosovitskiy et al., 2021; Liu
et al., 2021b) has stimulated a surge of pretrained
multimodal models (Lu et al., 2019; Tan and Bansal,
2019; Radford et al., 2021; Lin et al., 2021) that
align text with data in other modalities.

The fast-growing number of parameters in the
pretrained models encourages researchers to create
more data- and parameter-efficient methods than
finetuning (Houlsby et al., 2019; Zhao et al., 2020;
Zaken et al., 2021; Li and Liang, 2021; He et al.,
2022). Recently, prompting – concatenating manu-
ally designed prompt phrases (Schick and Schütze,
2021; Tam et al., 2021; Le Scao and Rush, 2021;
Zhao and Schütze, 2021) or trained embedding vec-
tors (Li and Liang, 2021; Lester et al., 2021) to
the text input of PLMs – has become an important
research direction.

Following this trend, Tsimpoukelli et al. (2021)
introduce Frozen, successfully extending PLMs
into few-shot learners (i.e., models that perform
well with only a handful of data) for multimodal
tasks, by pretraining a vision encoder whose out-
puts are prompts fed to the PLM. Frozen performs
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Figure 1: Model architecture. We disentangle VE’s
functionality by introducing prompt vectors. The only
work of VE is to extract image representations. PLM
and VE are fixed (grey) during training; two prompt
vectors are the only trainable parameters (red).

strongly on low-resource visual question answer-
ing through GPT3-style (Brown et al., 2020) prim-
ing (in-context learning). Frozen consists of two
components: A vision encoder (VE) (in their case,
NF-ResNet-50 (Brock et al., 2021)) and an off-the-
shelf PLM like GPT3. When pretraining Frozen,
the PLM takes the image representations extracted
by VE as prompts, to generate captions describing
the input image. PLM parameters are fixed and VE
is pretrained from scratch. The success of Frozen
shows the potential of prompting-based systems for
solving multimodal tasks (Zhou et al., 2021; Yang
et al., 2021; Salaberria et al., 2021).

One inherent discrepancy between Frozen and
prompting for NLP tasks (Li and Liang, 2021;
Lester et al., 2021) is that the prompt vectors in
Frozen represent part of the input, the image: They
are image features extracted by VE. In contrast,
prompt vectors in NLP are agnostic to the input
texts: They are trainable parameters of the PLM
embedding layer to be optimized during training.
Recall that the PLM in Frozen is fixed when pre-
training VE. This implies that VE’s trainable pa-
rameters serve two quite distinct purposes: (i) ex-
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tract high quality image representations; (ii) align
the image and text representation spaces.

We investigate the efficacy of disentangling the
functionality of VE. Concretely, we fix the param-
eters of PLM and VE, and allocate extra free pa-
rameters for learning the alignment between spaces
of different modalities when conducting a multi-
modal task; this is achieved by introducing addi-
tional prompt vectors. As a result, VE can dedicate
itself to extract high quality image representations.
We hypothesize that disentanglement has two bene-
fits. First, higher modularity is achieved compared
to Frozen because VE is freed from the objective
of aligning modalities. Higher modularity brings
higher flexibility, which is not applicable in sys-
tems like Frozen: We can easily change the type
of VE, e.g., replacing a CNN with a Transformer;
adding extra modalities like speech data is made
possible as well. Our architecture meets the desider-
atum stated by Srivastava et al. (2014): It should be
possible to modularly add modalities to an existing
multimodal system. Second, higher parameter effi-
ciency is achieved by fixing the encoders of differ-
ent modalities during training; the prompt vectors
are the only module to be trained for aligning the
representation spaces.

We present PromptFuse, a prompting-based ap-
proach extending PLMs to multimodal tasks in a
modular and efficient manner. Our contributions:
(i) We show that the prompting paradigm of utiliz-
ing PLMs (Liu et al., 2021a) effectively strength-
ens PLMs with the ability of processing data in
modalities besides text. With only ≈15K trainable
parameters, PromptFuse performs comparably to
several multimodal fusion methods in low-resource
regimes. (ii) We further propose BlindPrompt,
which enforces that the prompt vectors solely focus
on task-specific information and is therefore less
prone to overfitting.

2 Related Work

Prompting is a more data- and parameter-efficient
method of using pretrained language models
(PLMs; Devlin et al. (2019); Yang et al. (2019);
Brown et al. (2020); Raffel et al. (2020)) than fine-
tuning (Devlin et al., 2019). Concretely, Brown
et al. (2020), Schick and Schütze (2021), Tam
et al. (2021), Le Scao and Rush (2021), and Gao
et al. (2021) show that prompting outperforms fine-
tuning in many NLP tasks when annotations are
limited, i.e., in few-shot learning. Li and Liang

(2021) introduce prefix-tuning, only updating the
prompt vectors, keeping the PLM fixed. Lester et al.
(2021) introduce prompt-tuning – a simple form
of prefix-tuning – achieving performance compa-
rable to finetuning when scaling up the number of
parameters in PLMs. As large PLMs remain un-
changed during prefix- and prompt-tuning, high
parameter-efficiency is achieved.

Multimodal pretraining. The success of PLMs
and pretrained image encoders (Dosovitskiy et al.,
2021; Liu et al., 2021b) encourage fast develop-
ments of multimodal pretraining, e.g., large-scale
neural networks that align texts with data in other
modalities like image (Tan and Bansal, 2019; Su
et al., 2019; Cho et al., 2021; Wang et al., 2021;
Kim et al., 2021), video (Sun et al., 2019) and
speech (Bapna et al., 2021).

Prompting methods for multimodal models were
recently devised. Zhou et al. (2021) learn contin-
uous prompt vectors rather than natural language
descriptions to model visual concepts. Yao et al.
(2021) mark image regions as prompts, adapting
pretrained vision-language models to downstream
tasks. In Frozen, for a fixed PLM, Tsimpoukelli
et al. (2021) pretrain a VE with image caption-
ing where image representations from the VE are
used as prompt vectors. The VE in Frozen needs
to achieve two objectives: Extracting high qual-
ity image representations and properly aligning
image/text spaces. In this work, we show that dis-
entangling the two functionalities – instead of pre-
training a VE like Frozen, we utilize pretrained
VE as feature extractor and train prompt vectors to
fuse the modalities – results in a more modular and
efficient multimodal system.

3 Prompting as Multimodal Fusing

We propose to decompose the functionality of VE
in Frozen into: (i) providing high quality image
representations to the PLM; (ii) aligning the image
and text spaces for a multimodal task. Achieving (i)
is straightforward – we leverage off-the-shelf pre-
trained image encoders, e.g., Vision Transformer
(ViT; Dosovitskiy et al. (2021)). We align the two
representation spaces by prompt-tuning (Li and
Liang, 2021; Lester et al., 2021), i.e., by introduc-
ing prompt vectors. Concretely, we randomly ini-
tialize N trainable vectors in the embedding layer
of PLM. When processing downstream multimodal
tasks, we finetune the prompt vectors but fix PLM
and VE. Figure 1 illustrates our model. We call
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Figure 2: BlindPrompt attention mask in PLM encoder.
Prompt vectors cannot attend to the input content, so
their parameters solely serve to align the modalities.

our method PromptFuse. Having very few train-
able parameters, PromptFuse is well suited for low-
resource regimes.

We design a special attention mask for the PLM
encoder, shown in Figure 2. While the attention
of input data remains fully visible, we enforce
prompt vectors to only access each other but be
blind to the input data. We refer to this variant of
PromptFuse as BlindPrompt. BlindPrompt fuses
data in all modalities using the prompt vectors in
self-attention layers. This further emphasizes that
prompt vectors should be focusing on the align-
ment between modalities rather than on specifics of
the content of a modality. As a result, BlindPrompt
is more robust to spurious statistical cues (Niven
and Kao, 2019). For example, given a picture that
dogs run after a man, overfitting systems tend to an-
swer “poodles” in response to the question “What
do dogs chase?”.

4 Experiments: Two Modalities

4.1 Setup

Our model is designed to be modular, maximiz-
ing the utility of widely used pretrained vision and
language models: ViT (Dosovitskiy et al., 2021)
as our VE and BART (Lewis et al., 2020) as our
PLM. For both models we use the pretrained base
checkpoints from HuggingFace (Wolf et al., 2020).
We use the embedding v of [CLS] as the image rep-
resentation unless otherwise noted; we use cross-
entropy loss during training and use greedy search
when decoding.

We experiment with visual question answer-
ing (VQAv2; Goyal et al. (2017)), for which un-

derstanding both image and language is neces-
sary when answering a question about an image.
VQAv2 consists of 443,757 samples, categorized
into three types: Number, Yes/No, and Other.

We simulate low-resource regimes by sampling
128 and 512 shots of training data. We show that
PromptFuse and BlindPrompt are less prone to
overfitting in low-resource scenarios than baseline
methods, in which the model tends to place extra
emphasis on samples of the majority answer type
Yes/No but pays less attention to Other. This is
because the two answering words of Yes/No have
much higher frequency in the text corpus than the
answers of the open-ended questions, i.e., Other.

We train the models for two epochs on the
full dataset and 100 epochs on the sampled low-
resource datasets. For prompting, we set the
prompt length N to 20, and Appendix §A shows an
ablation study. Similar to Lester et al. (2021), we
empirically found that a large learning rate leads to
better prompting performance. So we use learning
rate 5e-1 for prompting; learning rate 5e-4 is used
in all other experiments. Batch size is 32 and the
Adam optimizer (Kingma and Ba, 2015) is used.

4.2 Baseline

We consider four baselines of fusing the modalities:
Finetune. As the baseline Frozenfinetuned in

Tsimpoukelli et al. (2021), we finetune all param-
eters of VE, such that the visual embedding space
is expected to be aligned with PLM’s language
embedding space.

Linear. We fix VE, but train a linear layer to
project its output, i.e., the visual embedding, while
retaining its dimensionality.

JointProj. We concatenate the visual em-
bedding v to the embedding vector wi of each
(sub)word in the sentence. Next, we train a lin-
ear layer to project the concatenated vectors to the
PLM hidden dimension. The resulting vectors are
input to the PLM encoder layers.

BlackImage. To verify that the prompt vectors
use visual information from VE (as opposed to
simply conditioning on spurious features of the
text, as in the above “poodle” example), we train
the prompt vectors with black images.

Table 1 shows the number of trained parame-
ters of the methods. Finetune requires the largest
number of trainable parameters, followed by Joint-
Proj and Linear; PromptFuse and BlindPrompt are
much more parameter-efficient.
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Finetune Linear JointProj PromptFuse BlindPrompt
86M 0.5M 1M 15K 15K

Table 1: Number of trainable parameters of different
fusion methods in million (M) and thousand (K).

Full dataset Other Yes/No Number Overall
Finetune 20.3±0.5 69.3±0.3 29.5±0.2 40.1±0.3

Linear 8.5±0.6 63.9±0.2 23.3±0.3 30.1±0.3
JointProj 19.2±0.4 67.7±0.2 28.9±0.4 38.9±0.1

BlackImage 8.3±0.7 60.4±0.5 15.3±0.4 23.7±0.5
PromptFuse 12.2±0.6 64.9±0.4 27.1±0.2 34.1±0.4

BlindPrompt 13.3±0.9 64.5±0.4 27.4±0.1 34.8±0.8

128 shots Other Yes/No Number Overall
Finetune 6.6±0.3 57.9±0.9 14.7±0.3 26.8±0.5

Linear 2.3±0.1 46.4±0.7 16.2±0.4 18.2±0.4
JointProj 3.9±0.5 63.3±0.1 19.4±0.6 28.4±0.3

BlackImage 0.9±0.1 38.9±0.8 6.2±0.4 14.4±0.5
PromptFuse 4.9±0.6 63.7±0.3 16.9±0.2 28.3±0.6

BlindPrompt 8.0±1.1 62.1±0.2 19.8±0.3 28.0±0.9

512 shots Other Yes/No Number Overall
Finetune 7.3±0.3 61.1±0.2 20.2±0.4 29.2±0.3

Linear 4.3±0.4 62.2±0.5 19.2±0.4 26.6±0.4
JointProj 3.8±0.1 63.8±0.3 23.8±0.4 28.7±0.3

BlackImage 3.5±0.6 48.2±0.6 10.3±0.5 18.8±0.5
PromptFuse 6.3±0.5 63.9±0.1 21.5±0.3 29.4±0.5

BlindPrompt 8.4±0.9 63.1±0.2 22.6±0.3 29.7±0.6

Table 2: Results (accuracy) on VQAv2 validation set.
We report Overall and separate performance of the three
types of questions: Other, Yes/No, Number.

4.3 Results
Table 2 compares the performance of baselines
and our prompting methods. We report mean and
standard deviation over three runs with different
random seeds.

PromptFuse outperforms the BlackImage and
Linear baselines on all experiments, showing that
prompting successfully utilizes visual information
and fuses the two modalities.

For 128 and 512 shots, PromptFuse achieves
accuracy comparable with baselines Finetune and
JointProj. However, PromptFuse and BlindPrompt
are more parameter-efficient as shown in Table 1.
Prompting methods perform worse than Finetune
and JointProj on full data.1 We conjecture that this
is due to having much fewer parameters, i.e., 15K,
which is even smaller than the training set size
443,757. Thus we argue that PromptFuse better
suits low-resource scenarios.

In low-resource experiments, PromptFuse and
BlindPrompt achieve higher accuracy on Other and
Number; the performance drops on Yes/No com-
pared with Finetune and JointProj. This also hap-
pens between PromptFuse and BlindPrompt. For
example, on 128 shots, we find that BlindPrompt

1Finetune (40.1) performs worse than FrozenVQA (48.4).
We hypothesize this is because Frozen uses a much larger
PLM (7 billion) than ours (139 million).

outperforms PromptFuse with 3% on Number and
3% on Other. The results indicate that our prompt-
ing methods, especially BlindPrompt, can better
utilize the generalization capability of PLM to han-
dle open-ended questions and are less prone to
falling into Yes/No samples.

4.4 Qualitative Example

To understand how prompting helps in fusing dif-
ferent modalities, we compare PromptFuse and
BlindPrompt to a NoPrompt baseline. NoPrompt
directly concatenates the visual outputs from VE
to the text input of the PLM without any training.

Concretely, we apply the Integrated Gradients
method (Sundararajan et al., 2017), which mea-
sures the attribution of features to the neural net-
work outputs. Traditional approaches define fea-
ture importance by the gradient of model outputs
to input features. Integrated gradients extend this
measure as the path integral of the gradient from
a baseline – reflecting the absence of signal – to
the actual input. In practice, we use the Captum
package (Kokhlikyan et al., 2020) in our implemen-
tation.

Table 3 illustrates a qualitative example when
applying NoPrompt, PromptFuse, and BlindPrompt
on VQAv2. For NoPrompt, because no training
is involved, visual embeddings from VE confuse
the PLM, leading to a wrong prediction (“</s>”).
The system is not able to correctly understand the
image and question. In contrast, PromptFuse and
BlindPrompt guide the PLM to pay attention to the
image and identify the regions of “giraffe” and then
correctly respond “Yes”.

Interestingly, the attribution scores of the ques-
tion from BlindPrompt are small, compared to
PromptFuse. We conjecture the reason is that, un-
derstanding the question – which has a straightfor-
ward syntactic/semantic structures – is relatively
simple for the PLM because it has been pretrained
on a large volume of text. BlindPrompt thus en-
forces that the multimodal system focus more on
the visual embeddings (i.e., the encoded image),
which is a new source of information for answering
the question.

5 Experiments: Three Modalities

Disentangling functionality of the modality data
encoder, e.g., VE, makes PromptFuse and Blind-
Prompt more modular than Frozen. Applying our
methods to tasks involving more than two modali-
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NoPrompt PromptFuse BlindPrompt

Question Do you see a giraffe in the picture? Do you see a giraffe in the picture? Do you see a giraffe in the picture?

Prediction </s> Yes Yes

Table 3: Attribution score magnitude heat map for image and text inputs. Black/white image pixels indicate
positive/negative influence on predicting “Yes”, and the same goes for red/blue tokens. Integrated gradients are
calculated only on the first prediction after decoder input “</s><s>” in an auto-regressive manner.

ties is straightforward. In contrast, Frozen incurs
the high cost of pretraining encoders for new modal-
ities. We experiment on the sarcasm detection
dataset MUStARD (Castro et al., 2019) with video,
audio, and text data.2

Setup. To process video, we first use Open-
Face (Baltrusaitis et al., 2018) to sample important
frames containing human faces. Next, ViT is lever-
aged to extract visual representations from each
frame. We then average visual representations of
all frames to represent the video. To process audio,
we use librosa (McFee et al., 2015) to remove back-
ground noise and convert audio to waveform with
a sampling rate of 16,000 Hz. We then use pre-
trained wav2vec2 (Baevski et al., 2020) to encode
the waveform and apply the same averaging strat-
egy as for video. BART is used as our PLM. We
use a verbalizer of True/False in this experiment.

We adopt the speaker-dependent setup in MUS-
tARD: 334 training and 356 testing samples. We
compare PromptFuse, BlindPrompt, and Finetune
for 8, 32, and 64 shots. Note that Finetune uses
180M trainable parameters in the vision and audio
encoders. We also conduct an experiment training
on the full dataset for 5 epochs. The remaining
setup is the same as §4.1.

Results. Table 4 reports performance over ten
runs. PromptFuse and BlindPrompt outperform
Finetune in 8- and 64-shot experiments. Prompt-
ing methods perform comparably to Finetune in
other experiments, while they are clearly more
parameter-efficient. Overall, the three-modality

2To highlight modularity, we utilize pretrained encoders
rather than the data preprocessing pipelines in Castro et al.
(2019). For example, we use pretrained wav2vec2 (Baevski
et al., 2020) rather than Mel-Frequency Cepstral Coefficients
(Davis and Mermelstein, 1980) when processing audio data.

Full dataset Precision Recall F-Score
Finetune 65.6±0.2 73.9±2.7 68.4±0.5

PromptFuse 64.2±0.4 72.1±3.6 66.2±0.7
BlindPrompt 63.8±0.5 71.9±3.1 66.5±0.8

8 shots Precision Recall F-Score
Finetune 42.8±4.3 69.5±9.9 52.7±5.5

PromptFuse 41.1±4.8 71.0±13.1 53.1±5.8
BlindPrompt 44.2±4.5 71.8±12.8 54.0±6.1

32 shots Precision Recall F-Score
Finetune 53.9±4.1 70.6±9.1 59.1±5.2

PromptFuse 53.8±4.7 71.1±10.8 58.5±5.4
BlindPrompt 54.6±4.1 69.7±10.3 58.7±5.5

64 shots Precision Recall F-Score
Finetune 59.5±2.3 70.4±7.7 61.4±2.8

PromptFuse 59.2±2.7 70.2±7.4 62.0±3.3
BlindPrompt 60.1±2.4 70.9±7.8 61.7±3.1

Table 4: Results on MUStARD test set.

experiment provides observations in line with
§4.3. More importantly, it highlights two strengths
of prompting: High modularity and parameter-
efficiency.

6 Conclusion

We propose PromptFuse and BlindPrompt as meth-
ods for aligning different modalities in a modu-
lar and parameter-efficient manner. We show that
prompting, which requires only a few trainable
parameters, performs comparably to several mul-
timodal fusion methods in low-resource scenarios.
The high modularity property of prompting sup-
ports – by avoiding the need to finetune large pre-
trained models – flexible addition of modalities at
low cost.
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A Ablation Analysis

As an ablation analysis, we test variants of Prompt-
Fuse and BlindPrompt with full data on VQAv2
dataset. All experiment setup follows §4.1.

Prompt length. PromptFuse and BlindPrompt
have an extremely limited number of trainable pa-
rameters, making it challenging to achieve per-
formance as finetuning in high-resource scenarios.
Intuitively, we would like to inject more prompt
vectors to increase the number of trainable pa-
rameters. Table 5 shows that both PromptFuse
and BlindPrompt obtain best accuracy when the
prompt length is set to 60. Using a particularly
large length (e.g., 100) harms performance. This
is in line with Lester et al. (2021): They find that
too much prompt information may bring negative
effects. Since more prompt vectors also consume
more training time, we use 20 in our experiments.

5 10 20 40 60 80 100

PromptFuse 28.5 30.4 34.1 35.3 35.8 34.2 30.3
BlindPrompt 27.1 30.7 34.8 35.5 35.6 34.4 30.9

Table 5: Overall accuracy on VQAv2 validation set with
prompt length ranging from 5 to 100. We report mean
performance over three random seeds.

Prompt position. In this work we inject prompt
vectors at the beginning of input fed to PLM (see
Figure 1), here we test two alternative positions for
injection: (i) middle, i.e., inserting between vision
and (sub)word embeddings; (ii) end of the question.
Results in Table 6 show that these positions yield
similar performance, indicating that our approach
is not largely affected by prompt positions.

Prompt encoder. Another approach to increase
trainable parameters is to use an extra module to
encode prompt vectors. We test two neural network
modules: (i) a linear layer; (ii) an LSTM (Hochre-
iter and Schmidhuber, 1997). Both modules have
the same hidden dimension as the PLM. However,
these variants only bring small improvements, as
presented in Table 6. Future work may explore
more advanced methods of scaling up the number
of parameters.

Visual embedding. In addition to utilizing the
[CLS] embedding, there are two alternative ViT
outputs can be used as the visual embeddings: (i)
the entire embedded sequence; (ii) the embedding
averaged over the sequence. Table 6 shows that
these approaches achieve comparable results. To
save computational resources, we use [CLS] for

PromptFuse BlindPrompt

Baseline 34.1±0.4 34.8±0.8

Prompt Middle 33.7±0.4 34.9±0.7
Position End 34.3±0.5 34.5±0.6

Prompt Linear 34.7±0.5 35.0±0.6
Encoder LSTM 34.9±0.4 35.1±0.4

Visual Seq 34.6±0.6 34.7±0.5
Embedding Avg 33.9±0.5 34.9±0.4

Table 6: Results on VQAv2 validation set with variants
of prompt position, encoder, and visual embedding.

BART Other Yes/No Number Overall
PromptFuse 12.2±0.6 64.9±0.4 27.1±0.2 34.1±0.4

BlindPrompt 13.3±0.9 64.5±0.4 27.4±0.1 34.8±0.8

BERT Other Yes/No Number Overall
PromptFuse - 67.5±0.3 28.4±0.2 -

BlindPrompt - 67.8±0.4 28.6±0.2 -

T5 Other Yes/No Number Overall
PromptFuse 15.8±0.7 65.4±0.2 27.3±0.3 36.5±0.4

BlindPrompt 16.2±0.8 65.2±0.3 27.4±0.2 36.6±0.6

Table 7: Results with BERT and T5 on VQAv2 valida-
tion set.

images in VQAv2. For video frames and speech
signals in MUStARD, we use average due to large
sequence lengths.

B Modularity

This section further demonstrates the modularity
and flexibility of PromptFuse and BlindPrompt.
Besides the ability of utilizing encoders of more
than two modalities as shown in §5, the modular
design allows PromptFuse and BlindPrompt to use
PLMs other than BART. Concretely, we compare
BERT/T5 to BART, by full data training on VQAv2
as §4.1. BERT is a masked language model, thus
we train and evaluate only on Number and Yes/No
samples, by filling the mask in pattern “Question:
input question Answer: [MASK]”.

As reported in Table 7, BERT performs well on
Number and Yes/No compared to BART, indicating
that PromptFuse/BlindPrompt can also be applied
to encoder-only architecture. Also, T5 outperforms
BART, especially on Other, further indicating that
PromptFuse/BlindPrompt are compatible with new
PLMs, which give increasingly better task perfor-
mance.

C Experiment Setup

Table 8 shows the setup used in all of our experi-
ments. We use 8 GEFORCE GTX 1080Ti GPUs
and gradient accumulation is applied during train-
ing.
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Dataset Modalities # Train # Test Runs Batch Size Epochs Prompt Length LR (Prompt) LR (Other)

VQAv2 Image, Text 443,757 214,354 3 32 2 20 5e-1 5e-4
low-resource Image, Text 128/512 214,354 3 32 100 20 5e-1 5e-4

MUStARD Video, Audio, Text 334 356 10 8 5 20 5e-1 5e-4
low-resource Video, Audio, Text 8/32/64 356 10 8 50 20 5e-1 5e-4

Table 8: Dataset statistics and hyperparameters used in the experiments.
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