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Abstract

The filtering and/or selection of training data
is one of the core aspects to be considered
when building a strong machine translation sys-
tem. In their influential work, Khayrallah and
Koehn (2018) investigated the impact of dif-
ferent types of noise on the performance of
machine translation systems. In the same year
the WMT introduced a shared task on parallel
corpus filtering, which went on to be repeated
in the following years, and resulted in many dif-
ferent filtering approaches being proposed. In
this work we aim to combine the recent achieve-
ments in data filtering with the original analysis
of Khayrallah and Koehn (2018) and investi-
gate whether state-of-the-art filtering systems
are capable of removing all the suggested noise
types. We observe that most of these types
of noise can be detected with an accuracy of
over 90% by modern filtering systems when
operating in a well studied high resource set-
ting. However, we also find that when con-
fronted with more refined noise categories or
when working with a less common language
pair, the performance of the filtering systems
is far from optimal, showing that there is still
room for improvement in this area of research.

1 Introduction

The phenomenon of noisy data in the training of
machine translation (MT) systems has been studied
from various angles over recent years. To outline
the impact of noise, Khayrallah and Koehn (2018)
specified ten common noise categories and syn-
thetically generated noisy data samples for each of
them. By adding the noisy samples to an otherwise
clean training corpus they measured the effect on
the resulting translation system. Their conclusion
was that neural machine translation (NMT) is less
robust towards noisy data than statistical machine
translation and that some noise types can prove
very detrimental to NMT performance. As NMT
had surpassed the statistical approaches just a few

years prior, this work paved the way for a spiked
interest in data filtering research for machine trans-
lation.

In the same year, the Conference on Machine
Translation (WMT) started to host an annual shared
task on parallel corpus filtering (Koehn et al., 2018,
2019, 2020) featuring a broad mix of academic and
industrial submissions. This shared task highlights
the general need for well working data filtering sys-
tems and resulted in the publication of a variety of
new filtering approaches (Junczys-Dowmunt, 2018;
Chaudhary et al., 2019; Lu et al., 2020). The WMT
evaluations simulate a real-world data filtering task
on web crawled data. Each participating system is
required to extract a fixed amount of parallel data
and is ranked according to the performance of the
translation system that was trained on the selected
data. While this form of evaluation is very relevant
from a practical point of view, it does not show how
well a certain approach is performing on detecting
specific types of noise - information that is very im-
portant when working on improving data filtering
approaches.

In this work we aim to unite both viewpoints in
regards to data filtering. From the work of Khayral-
lah and Koehn (2018) we already know how detri-
mental certain categories of noise are to an NMT
system, so we ask the question: How well can state-
of-the-art filtering systems distinguish the synthetic
noise classes proposed by Khayrallah and Koehn
(2018) from clean data?

While downstream performance might be the
ultimate objective for data filtering systems, this
setup allows us to investigate the strengths and
weaknesses of current data filtering systems. To
further investigate the challenges for a filtering sys-
tem we introduce several, more refined, synthetic
noise categories and use them to benchmark the
performance of the aforementioned filtering sys-
tems.
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2 Related Work

The task of data filtering for machine translation
has attracted increasing attention in recent years,
mainly for two reasons:

1. NMT models replaced the phrase based sys-
tems and it was shown that NMT models are
less robust to many types of noise (Khayrallah
and Koehn, 2018).

2. More and more parallel data is generated by
web crawling techniques (Esplà-Gomis et al.,
2019; Schwenk et al., 2019; El-Kishky et al.,
2020; Schwenk et al., 2021) and this data is
often quite ‘noisy’, making data filtering a
crucial part of training competitive NMT sys-
tems.

To get an overview of existing approaches to
data filtering for machine translation, a good place
to start is the WMT shared task for parallel cor-
pus filtering, which was held in 2018 (Koehn et al.,
2018), 2019 (Koehn et al., 2019) and 2020 (Koehn
et al., 2020). In these tasks, the participants are
asked to select a fixed amount of data from a noisy
parallel corpus using automatic methods. The
examined language pairs were German-English
(2018), Nepali-English (2019), Sinhala-English
(2019), Khmer-English (2020) and Pashto-English
(2020). The winning systems used a combina-
tion of language identification and language model
and translation model scoring (Junczys-Dowmunt,
2018; Rossenbach et al., 2018), similarities in the
cross-lingual sentence embedding space (Chaud-
hary et al., 2019) and even GPT-2 models (Lu
et al., 2020). The only way in which data filter-
ing systems are typically evaluated is by training
a machine translation system on the selected data
(Koehn et al., 2018, 2019, 2020). While this may
be an intuitive evaluation criterion, it does not give
many insights into the system performance regard-
ing the detection of specific types of noise.

While much effort has been put into the build-
ing of powerful filtering systems, the same can not
be said for analyzing their performance on spe-
cific types of noise. Belinkov and Bisk (2018) and
Khayrallah and Koehn (2018) both examine the
impact of various noise types on the performance
of NMT systems but do not ask the question which
types of noise can be handled reliably by data filter-
ing systems. Xu and Koehn (2017) create synthetic
noisy data to train a data filtering system with a

classifier while Michel and Neubig (2018) create a
‘noise translation benchmark’ for NMT systems.

In this work we aim to fill this gap and systemati-
cally compare the performance of data filtering sys-
tems on specific categories of noise. We start from
the categories defined in Khayrallah and Koehn
(2018) and expand them further.

3 Types of Noise

We aim to investigate which noise categories can
be reliably detected by state-of-the-art data filtering
systems. Manual annotation of noisy corpora is ex-
pensive and tends to be very corpus and language
specific, depending on the original data sources and
the extraction techniques. Therefore we decide to
investigate filtering systems on an array of noisy
datasets mostly created synthetically from clean
parallel data like it was done by Khayrallah and
Koehn (2018). Most of the categories were intro-
duced in the work of Khayrallah and Koehn (2018)
(in the following marked with an asterisk (*)) but
we propose two additional categories which we
found to commonly occur in practice. Here we list
all types of noise that we are investigating as well
as our automatic and language agnostic methods of
creating such noisy data. If a certain type of noise
is specific to the source or target side of the data,
we note the noisy side in brackets.

Misaligned Sentences∗ are created by shuffling
the target side of a clean corpus. Hence, every
source sentence get assigned a random target sen-
tence from the same domain but (most probably)
without any overlap in meaning.

Misordered Words (src|trg)∗ are obtained by
arranging the words of either source or target sen-
tence in a random order.

Wrong Language (src|trg)∗ samples are se-
lected from a parallel corpus from a different lan-
guage pair. We specify which side of the data is
not fitting the intended task.

Untranslated (src|trg)∗ sentence pairs are cre-
ated by converting a src-trg corpus into a src-src
respectively trg-trg corpus via copying.

Short Segments (max. length)∗ are from a cor-
pus with very short average sentence length. A
segment being short does not imply that it is noisy
or hurtful to the training. However we keep these
categories for completeness sake in our analysis
but do not emphasize on them in the experimental
results.
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Raw Crawled Data∗ is a mix of different types
of noise and probably the most realistic noise cate-
gory. We use data from an unfiltered web crawling
corpus. Note that some sentence pairs from this
category might be valid in practice and we address
this in Section 5.1.

Over-/Undertranslation often times happen as
a result of poor sentence splitting and alignment.
To create sentence pairs in this category we remove
the second half of the source sentence respectively
target sentence.

Synthetic Translations can be found on an in-
creasing number of websites and the simpler struc-
ture of synthetic translations (Edunov et al., 2018;
Kim et al., 2017) can make them easier to be ex-
tracted and aligned by crawling scripts. To analyze
if the the quality of the synthetic translations has
an effect on detection accuracy, we extract human
annotated data from the WMT shared task on news
translation and group sentence pairs according to
the human evaluation score.

It should be noted that most categories either dis-
tort the source or the target sentence of a pair. We
keep this separation for our analysis even though
many data filtering systems do not distinguish the
languages direction, i.e. an X→Y filtering system
can be used to clean a Y→X corpus. Hence, differ-
ences between the src- and trg-version of a noise
category should best be seen as an indication of
experimental variance or a dependency on the re-
sources available for the two sides of a language
pair.

4 Effect of Noise on NMT Performance

In this work we solely focus on the question how
well certain types of noise can be detected by mod-
ern data filtering systems. However, an equally im-
portant question is, how detrimental a certain noise
type is to the performance of an NMT system. In
this section we briefly recapitulate the findings of
Khayrallah and Koehn (2018), ranging the differ-
ent types of noise according to their effect on NMT
performance.

According to Khayrallah and Koehn (2018), the
most severe noise type is the Untranslated (trg)
category. Mixing just 20% of this type of noisy
data into our clean training data results in an NMT
performance drop to less than 10% BLEU, com-
pletely destroying translation performance. The
authors explain this with the system learning to
copy sentences rather than translating them into

the correct language. The second worst type of
noise is Raw Crawled Data, followed by Mis-
aligned Sentences, Misordered Words (src|trg)
and Wrong Language (trg) all leading to a signifi-
cant performance degradation of the NMT system.
On the other hand, Khayrallah and Koehn (2018)
find that adding Wrong Language (src), Untrans-
lated (src) and Short Segments (max. length)
leads to only minor performance degradation.

We additionally examine two types of noise
which were not present in the work of Khayrallah
and Koehn (2018), namely Synthetic Translations
and Over-/Undertranslation. The latter mostly
occurs as a result of bad segmentation and/or sen-
tence splitting. We argue that in the most extreme
case, this type of noise would coincide with the
Misaligned Sentences so the impact of this cat-
egory can be seen as an upper bound. In princi-
ple Synthetic Translations can be beneficial for
NMT performance (Sennrich et al., 2016; Edunov
et al., 2018; Kim et al., 2019). However, this de-
pends heavily on the quality of the system used to
generate this synthetic data and we argue that the
purpose of web crawling is not to extract synthetic
translation from possibly older machine translation
models. Hence, we typically want to remove such
samples. Therefore in this work we examine both
the ability of the filtering systems to differentiate
between good and bad synthetic data as well as
to differentiate between synthetic and real parallel
data.

We also point out that removing noise from the
training data will have other benefits, aside from
improved performance, such as faster convergence
and less storage needs.

5 Experiments

5.1 Experimental Setup

In the following we briefly describe the filtering
systems used in this study and the data conditions.

Filtering Systems
For our analysis we consider two of the strongest
data filtering approaches to this date, based on ei-
ther

• cross-entropy (CE) scores using translation
and language models (Rossenbach et al.,
2018).

• Language-Agnostic SEntence Representa-
tions (LASER) scores based on cross lin-
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gual sentence embeddings (Chaudhary et al.,
2019).

Both systems were among the winners of the
WMT task on parallel corpus filtering in 2018 and
2019 respectively.

For the cross entropy system, we follow (Rossen-
bach et al., 2018) and train a source-to-target trans-
lation model ps→t(e
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The language models and translation models are
implemented using the RETURNN toolkit (Zeyer
et al., 2018). We use a 12 layer transformer model
for the language models and the base transformer
model (Vaswani et al., 2017) with 6 encoder and 6
decoder layers for the translation models.

For calculating the LASER scores, we generate
cross-lingual sentence embeddings using the pre-
trained model provided by Artetxe and Schwenk
(2019). The underlying system is trained as a mul-
tilingual translation system with a multi-layer bi-
directional LSTM encoder and an LSTM decoder.
No additional information about the input language
is given to the encoder. The output vectors of the
encoder are compressed into a single embedding of
fixed length using max-pooling. This is the cross-
lingual sentence embedding that the LASER model
is generating. This vector is the only information
about the input sentence which is transferred to the
decoder. The intuition is, that two sentences with
the same meaning but from different languages will
be mapped onto the same embedding vector, as the
translations that the decoder must produce should
be identical. Once the cross-lingual sentence em-
beddings for every source and target sentence are
extracted, we calculate the LASER scores for each
sentence-pair according to Chaudhary et al. (2019):

2k cos(f, e)∑
ê∈NNk(f)

cos(f, ê) +
∑

f̂∈NNk(e)
cos(f̂ , e)

where f , e are the sentence embeddings for source
and target sentence respectively, cos(•) is the co-
sine distance and NNk(•) is the set of the k nearest
embeddings from the other language. The higher

Task Data Type #tokens (trg) #lines

De→En parallel 79M 3.1M

Km→En parallel 4.9M 270k
Km mono 546M 11M
En mono 419M 11M

Table 1: Data resources used for the De→En and
Km→En tasks.

the LASER score of a sentence pair, the more simi-
lar the source and target sentence are semantically,
corresponding to a better quality data point for
training an NMT system.

Many filtering systems rely on some language
identification (langID) toolkit as part of the selec-
tion method. With langID, each data point gets
either a score of 1.0 or 0.0, depending on whether
the predicted source and target languages match
the given task or not. Since langID can be seen as a
‘baseline’ filtering technique on its own, we address
it as a separate step in the filtering pipeline and de-
note for each experiment whether langID scores
are included or not. When combining langID with
the other methods, the scores are simply multi-
plied. For the task of language identification we
use the popular langid.py toolkit (Lui and Bald-
win, 2012).

Data
We benchmark the performance of the filtering sys-
tems on two language pairs: German→English
and Khmer→English. For an overview over the
amounts of data used we refer to Table 1. For both
settings we remove a section of the parallel corpus
from the training data to create the synthetic noise
for the following categories: Misaligned Sentences,
Misordered Words, Untranslated, and Over/Under-
Translation.

Following Khayrallah and Koehn (2018), the
De→En data consists of Europarl, News Commen-
tary, and the Rapid EU Press Release corpus from
the WMT2017 news translation task 1. From this
clean data we select randomly 7 × 50k sentence
pairs to create the aforementioned synthetic noise
categories. Every sentence pair contained in a noise
category is excluded from the training corpus for
all components of the data filtering systems. To
create the remaining noise categories we used the
same corpora as Khayrallah and Koehn (2018).

1http://www.statmt.org/wmt17/
translation-task.html
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Noise Category Corrupted Filtering Accuracy
Side Cross LASER Language ID Filtering

Entropy + none + CE + LASER

Misaligned Sentences none 65% / 65% 72% / 76% 50% 64% / 65% 71% / 75%

Misordered Words src 89% / 89% 62% / 70% 50% 88% / 88% 61% / 70%
tgt 95% / 96% 62% / 70% 50% 93% / 94% 61% / 70%

Wrong Language src 89% / 89% 51% / 54% 97% 97% / 97% 97% / 97%
trg 87% / 87% 54% / 60% 96% 96% / 96% 96% / 96%

Untranslated src 62% / 62% 15% / 50% 97% 97% / 97% 97% / 97%
trg 93% / 93% 14% / 50% 97% 97% / 97% 97% / 97%

Short Segments (≤ 2) none 61% / 66% 62% / 69% 81% 83% / 85% 76% / 81%
Short Segments (≤ 5) none 65% / 67% 59% / 64% 67% 73% / 75% 65% / 68%

Raw Crawl Data 94% / 95% 60% / 63% 84% 93% / 94% 79% / 84%

Overtranslation src 67% / 67% 62% / 68% 52% 66% / 66% 62% / 68%
Undertranslation trg 69% / 70% 64% / 70% 50% 68% / 68% 63% / 70%

Table 2: De→En Task: Accuracy of filtering methods when distinguishing different synthetic noise categories from
clean, parallel data. Accuracies are reported a) in black: with knowledge of correct ratio between noisy and clean
data b) in gray (oracle): with optimal noise-clean separation given the ranking of the filtering system.

For Km→En we use data from the WMT2020
parallel corpus filtering task2. We extract 20k sen-
tence pairs from the clean corpus to create the syn-
thetic noisy datasets. Since the Km→En task does
not provide a lot of data to begin with, we use the
same 20k sentence pairs to create the all synthetic
noise categories and train the translation models for
the cross-entropy filtering system on the remaining
data. Since we were not able to find suitable data
for the short segments and wrong language cate-
gories, we drop these for this language pair. Given
that the parallel corpus is relatively small and of
questionable quality, we additionally include all of
the available monolingual Khmer data and subsam-
ple 11M English sentences to train the language
models. To obtain raw crawled data we sample 20k
sentence pairs from a web crawled corpus from
the ParaCrawl project 3. Note that this corpus also
contains valid sentence pairs, however by manu-
ally annotating 150 sentence pairs, we observed
that less than 10% of the sentence pairs were of
acceptable quality.

5.2 Experimental Results

For each noise category described in Section 3,
we generate a corresponding noisy testset. Each

2http://www.statmt.org/wmt20/
parallel-corpus-filtering.html

3https://paracrawl.eu/v7-1

noisy testset is separately mixed together with an
equal number of sentence-pairs sampled from a
holdout set of the clean training data to create a
mixed dataset where each sentence pair is labelled
as either clean or noisy. To analyze the noise de-
tection capability of the filtering systems we use
either the cross-entropy or LASER approach to
score each sentence-pair and sort the lines by score.
For each system, a threshold-score is determined
and all pairs with a score worse than the threshold
are classified as noisy and all pairs with a score bet-
ter than the threshold are classified as clean. This
allows us to calculate the classification accuracy of
the corresponding filtering system.

Two different thresholds are calculated sepa-
rately for each mixed dataset:

• Correct Ratio: the threshold is chosen ac-
cording to the true ratio between clean and
noisy sentence pairs. If not denoted differ-
ently we use a 1:1 ratio.

• Optimal (oracle): the threshold is chosen
such that we get the highest accuracy possi-
ble given the current filtering scores for the
dataset. This requires knowledge of the true
class and yields an upper bound of the filtering
capabilities of the scoring system.

This means that if we were to rank the sentence
pairs randomly, we would end up with around 50%
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Noise Category Corrupted Filtering Accuracy
Side Cross LASER Language ID Filtering

Entropy +none + CE + LASER

Misaligned Sentences none 71% / 71% 72% / 72% 50% 62% / 65% 61% / 66%

Misordered Words src 63% / 64% 53% / 54% 50% 57% / 62% 51% / 53%
tgt 84% / 84% 50% / 51% 50% 69% / 76% 51% / 51%

Untranslated src 69% / 70% 4% / 50% 86% 86% / 86% 86% / 86%
trg 93% / 93% 2% / 50% 86% 86% / 86% 86% / 86%

Raw Crawl Data 77% / 77% 40% / 50% 71% 71% / 77% 70% / 71%

Overtranslation src 56% / 56% 54% / 55% 51% 53% / 55% 52% / 54%
Undertranslation trg 63% / 63% 61% / 61% 50% 58% / 60% 56% / 59%

Table 3: Km→En Task: Accuracy of filtering methods when distinguishing different synthetic noise categories from
clean, parallel data. Accuracies are reported a) in black: with knowledge of correct ratio between noisy and clean
data b) in gray (oracle): with optimal noise-clean separation given the ranking of the filtering system.

classification accuracy for both thresholds. There-
fore 50% accuracy can be seen as a lower bound
and if a filtering system drops significantly below
that, its score is negatively correlated with data
quality. When just using langID, each data point
is scored with either 1.0 or 0.0, so no additional
threshold calculation is needed. We note that we
only focus on the quality of the data filtering scores
and not and the question of how to select data, i.e.
how to select a threshold. It is possible that this
yields a more optimistic estimation of the filtering
capabilities than is achievable in practice where
even the clean to noise ratio is typically unknown.

German→English
The resulting accuracy scores for the De→En setup
are listed in Table 2 where the correct ratio score
is written on the left in each cell and the optimal
score is written on the right and grayed out.

We find that the four noise categories that involve
not-fitting languages, namely ‘wrong language (src,
trg)’ and ‘untranslated (src, trg)’, are almost per-
fectly removed thanks to the language identifica-
tion. Furthermore, langID also detects most of
the noise stemming from raw crawl data and very
short segments. As expected, langID fails to detect
any noise coming from misalignment and over-
/undertranslation. The cross-entropy approach has
little trouble identifying the ‘short segments (≤
2)’, ‘misordered words (src, trg)’ and ‘raw crawl
data’ noise types. The standalone LASER system
fails to detect any noise stemming from incorrect
languages which is compensated for by language
identification filtering. From the noise categories

that are defined in Khayrallah and Koehn (2018),
only ‘misaligned sentences’ and ‘short segments
(≤ 5)’ pose a serious detection problem. While for
the latter, one could argue that it is neither harmful
to the system performance (Khayrallah and Koehn,
2018) nor actually noise, the bad performance on
the ‘misaligned sentences’ is quite surprising as
this type of noise is quite severe and should be
detected quite reliably in theory by both cross en-
tropy and LASER filtering. The noise categories
‘overtranslation’ and ‘undertranslation’, which are
newly added in this work, pose a serious problem
for all filtering methods. In general, there is not
much difference in accuracy for the combined fil-
tering systems when detecting sentence corruptions
on the German side (source) compared to the En-
glish side (target).

Regarding the selection method, we find that
the cross-entropy approach is less susceptible to-
wards different types of thresholds compared to the
LASER approach. It is not clear to us why this is
the case but we speculate it has to do with the fact
that the CE approach is less reliant on the langID
scores overall. Both cross-entropy and LASER
benefit from the combination with langID.

Khmer→English
As the second language pair, we use
Khmer→English, a task where the languages have
very little in common in terms of syntax and data
resources are scarce. The accuracy scores for
the Km→En setup are listed in Table 3. As one
might expect, the language identification does
not perform as good for the Khmer language.
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In fact in some cases the inclusion of langID is
actively hurting the overall filtering performance,
for example for the ‘misaligned sentences’ and
‘undertranslation’ categories. In contrast to the
De→En setting, most noise categories can not
be detected reliably, with the exception of the
‘untranslated (src, tgt)’, ‘misordered words (tgt)’
and ‘raw crawl data’. Most of the times, noise
on the English target side can be detected more
reliably than on the Khmer source side, although
still not with a very good accuracy.

Synthetic Data Detection
Next, we investigate another type of noise that is
often overlooked, namely synthetic data where ei-
ther the source or the target side is created by MT
systems. To obtain the synthetic data as well as cor-
responding quality annotation, we use the human-
scored automatic translations of the WMT De→En
news translation task from 2016 to 2019. For each
year, we rank all hypotheses according to the score
of the human annotators. We take the the worst
30% of translations as our noisy data. As clean
data, on the one hand we take the best 30% of
translations and on the other hand we take the refer-
ence translations generated by professional human
translators.

In Table 4 the resulting filtering accuracy is
shown for differentiating between the 30 % best
scored and the 30 % worst scores translations as
well as between the 30 % worst scored translations
and the (human) reference translations. Interest-
ingly the systems have a harder time differentiating
between good translations of Mt systems and hu-
mans compared to differentiating between good
and bad automatic translations. However, we find

Adversarial Filtering Accuracy
Data Cross LASER

Entropy

synthetic &
high quality

62% / 62% 62% / 63%

references 54% / 55% 44% / 50%

Table 4: Filtering accuracy of two data filtering sys-
tems. Systems are required to distinguish synthetic
translation, with poor human-rating from adversarial
data. ‘synthetic & high quality’ comes from the same
test set (but obtained best human scores), ‘references’
are the official references (from humans) of the same
test set.

that the filtering systems can not reliably differ-
entiate between synthetic and human translations,
nor between a good and a bad synthetic translation
from the same domain.

Mixed-Noise Categories
Apart from analysing the performance of the fil-
tering systems on the individual noise categories,
we briefly look at the performance on a combined
dataset which consists of the concatenation of all
individual noisy datasets (equal ratio of clean and
noisy data).

The results for both language pairs are shown
in Table 5. We again see that the systems perform
better on De→En compared to Km→En which
is mainly due to langID performing significantly
worse on Km→En. In fact, the cross-entropy ap-
proach performs batter as a standalone system
rather than in combination with langID.

Lastly we test the filtering capabilities in an
extremely noisy scenario and report the results
in Table 6. Note that this data set exhibits a
#clean:#noise ratio of 1:12 for De→En and 1:8
for Km→En. Since this ratio is used in the filtering
system (to set a filtering threshold for the ‘correct
ratio’) the filtering accuracy system will always
correctly classify at least a fraction of

#noise − #clean
#noise + #clean

.

Analyzing the performance of the filtering systems
using an ‘optimal’ threshold value (gray values in
Table 6) we noticed that they classify all sentence
pairs as noise. Since the data distribution is very
biased towards noisy data we also report F1-scores
for this experiments in Table 7. We find that both
systems are doing a poor job at noise detection if
the clean-to-noisy data ratio gets too small.

6 Conclusion

The aim of this work is to determine how well state-
of-the-art data filtering systems can detect different
types of noise common in parallel machine trans-
lation datasets. We create synthetic noisy datasets
for all noise categories defined by Khayrallah and
Koehn (2018) as well as for additional noise types
that we define in this work. We find that mod-
ern data filtering systems can detect most types
of noise with an accuracy of well over 90% on
a German→English task, that features a medium
sized, rather clean training corpus for the filtering
systems.
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Language Pair Filtering Accuracy
Cross LASER Language ID Filtering

Entropy +none + CE + LASER

De→En 75% / 76% 49% / 50% 73% 81% / 82% 68% / 73%

Km→En 70% / 70% 46% / 51% 61% 67% / 68% 61% / 62%

Table 5: Filtering accuracy on two language pairs with a clean-noise ratio of 1:1 for De→En and Km→En by
limiting the size of each noise category before ensembling all noise categories from Table 2 respectively Table 3.

Language Pair Minimal Filtering Accuracy
Accuracy Cross LASER Language ID Filtering

Entropy +none + CE + LASER

De→En 85% 89% / 92% 85% / 92% 55% 91% / 92% 87% / 92%

Km→En 78% 85% / 89% 79% / 89% 54% 86% / 89% 83% / 89%

Table 6: Filtering accuracy on two language pairs with high a clean-noise ratio of 1:12 for De→En and 1:8 for
Km→En by combining all noise categories from Table 2 respectively Table 3. Note, that if these very biased
distributions are accessible to the filtering system, a minimal accuracy can be guaranteed (Column 2) except for the
case of pure langID filtering (since it does not rely on the data ratio).

Language Pair F1-Score
Cross LASER Language ID Filtering

Entropy +none + CE + LASER

De→En 94% / 96% 92% / 96% 68% 95% / 96% 93% / 96%

Km→En 92% / 94% 88% / 94% 67% 92% / 94% 90% / 94%

Table 7: Filtering performance based on F1-score on two language pairs with high a clean-noise ratio of 1:12 for
De→En and 1:8 for Km→En by combining all noise categories from Table 2 respectively Table 3.

However, well-formed but misaligned sentence
pairs and over-/undertranslation can only be de-
tected with an accuracy of less than 70%. When
it comes to detecting more subtle errors like dis-
tinguishing between a good and a poor synthetic
translation, the systems exhibit even worse per-
formance. Furthermore, when switching to a less
common language pair, namely Khmer→English,
the performance of the filtering systems degrades
significantly compared to German→English. In
conclusion we find that the task of data filtering as
defined by Khayrallah and Koehn (2018) is not yet
solved. There is still much room for improvement,
especially when going to more subtle types of noise
or to less common language pairs.

For future research or when applying data filter-
ing for a downstream task, we want to emphasize
the following points:

• For high resource languages, langID is a good
basis to start from. Subsequent filtering steps

should specifically focus on phenomena that
langID can not detect such as misaligned sen-
tences and over-/undertranslation.

• For low resource languages, it might be ben-
eficial to drop the langID filtering step, if the
subsequent methods have their own (implicit)
ways of detecting wrong language. It might be
helpful to train some language classifier your-
self if in-domain monolingual training data is
available.

• Even when (roughly) knowing the percentage
of noise in the data, removing this percentage
is most of the times not the optimal choice in
terms of filtering accuracy. Alternative meth-
ods such as a fixed score threshold indepen-
dent of the selected percentage should also be
considered.
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