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Abstract

Popular language models (LMs) struggle to
capture knowledge about rare tail facts and
entities. Since widely used systems such as
search and personal-assistants must support
the long tail of entities that users ask about,
there has been significant effort towards en-
hancing these base LMs with factual knowl-
edge. We observe proposed methods typically
start with a base LM and data that has been
annotated with entity metadata, then change
the model, by modifying the architecture or
introducing auxiliary loss terms to better cap-
ture entity knowledge. In this work, we ques-
tion this typical process and ask to what ex-
tent can we match the quality of model mod-
ifications, with a simple alternative: using a
base LM and only changing the data. We
propose metadata shaping, a method which
inserts substrings corresponding to the read-
ily available entity metadata, e.g. types and
descriptions, into examples at train and infer-
ence time based on mutual information. De-
spite its simplicity, metadata shaping is quite
effective. On standard evaluation benchmarks
for knowledge-enhanced LMs, the method ex-
ceeds the base-LM baseline by an average of
4.3 F1 points and achieves state-of-the-art re-
sults. We further show the gains are on average
4.4x larger for the slice of examples containing
tail vs. popular entities.

1 Introduction

Recent language models (LMs) such as BERT (De-
vlin et al., 2019) and its successors are remark-
able at memorizing knowledge seen frequently dur-
ing training, however performance degrades over
the long tail of rare facts. Given the importance
of factual knowledge for tasks such as question-
answering, search, and personal assistants (Bern-
stein et al., 2012; Poerner et al., 2020; Orr et al.,
2020), there has been significant interest in inject-
ing these base LMs with factual knowledge about
entities (Zhang et al., 2019; Peters et al., 2019, inter

alia.). In this work, we work we propose a simple
and effective approach for enhancing LMs with
knowledge, called metadata shaping.

Existing methods to capture entity knowledge
more reliably, typically use the following steps:
first annotating natural language text with entity
metadata, and next modifying the base LM model
to learn from the tagged data. Entity metadata is
obtained by linking substrings of text to entries in a
knowledge base such as Wikidata, which stores en-
tity IDs, types, descriptions, and relations. Model
modifications include introducing continuous vec-
tor representations for entities or auxiliary objec-
tives (Zhang et al., 2019; Peters et al., 2019; Ya-
mada et al., 2020; Wang et al., 2020; Xiong et al.,
2020; Joshi et al., 2020a; Su et al., 2021). Other
methods combine multiple learned modules, which
are each specialized to handle fine-grained rea-
soning patterns or subsets of the data distribution
(Chen et al., 2019; Wang et al., 2021).

These knowledge-aware LMs have led to im-
pressive gains compared to base LMs on entity-
rich tasks. That said, the new architectures are
often designed by human experts, costly to pre-
train and optimize, and require additional training
as new entities appear. Further, these LMs may
not use the collected entity metadata effectively
— Wikidata alone holds over ∼ 100M unique en-
tities, however many of these entities fall under
similar categories, e.g., “politician” entities. In-
tuitively, if unseen entities encountered during in-
ference share metadata with entities observed dur-
ing training, the LM trained with this information
may be able to better reason about the new entities
using patterns learned from similar seen entities.
However, the knowledge-aware LMs learn from
individual entity occurrences rather than learning
these shared reasoning patterns. Implicitly learning
entity similarities for 100M entities may be chal-
lenging since 89% of the Wikidata entities do not
appear in Wikipedia, a popular source of unstruc-
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Figure 1: Metadata shaping inserts metadata (e.g., entity types and descriptions) strings into train and test examples.
The FewRel benchmark involves identifying the relation between a subject and object string. The above subject
and object are unseen in the FewRel training data and the tuned base LM reflects low attention weights on those
words. A base LM trained with shaped data reflects high attention weights on useful metadata words such as
“politician”. Weights are shown for words which are not stop-words, punctuation, or special-tokens.

tured training data for the LMs, at all. 1

We thus ask, to what extent can we match the
quality of knowledge-aware LM architectures
using the base LM itself? We find that applying
some simple modifications to the data at train and
test time, a method we call metadata shaping, is
surprisingly quite effective. Given unstructured
text, there are several readily available tools for
generating entity metadata at scale (e.g., Manning
et al. (2014); Honnibal et al. (2020)), and knowl-
edge bases contain entity metadata including type
tags (e.g., Barack Obama is a “politician”) and de-
scriptions (e.g., Barack Obama “enjoys playing bas-
ketball”). Our method entails explicitly inserting
retrieved entity metadata in examples as in Figure
1 and inputting the resulting shaped examples to
the LM. Our contributions are:

Simple and Effective Method We propose
metadata shaping and demonstrate its effectiveness
on standard benchmarks that are used to evaluate
knowledge-aware LMs. Metadata shaping, with
simply an off-the-shelf base LM, exceeds the base
LM trained on unshaped data by by an average
of 4.3 F1 points and is competitive to state-of-the-
art methods, which do modify the LM. Metadata
shaping thus enables re-using well-studied and op-
timized base LMs (e.g., Sanh et al. (2020)).

Tail Generalization We show that metadata
shaping improves tail performance — the observed
gain from shaping is on average 4.4x larger for the

1Orr et al. (2020) finds that a BERT based model needs to
see an entity in on the order of 100 samples to achieve 60 F1
points when disambiguating the entity in Wikipedia text.

slice of examples containing tail entities than for
the slice containing popular entities. Metadata es-
tablish “subpopulations”, groups of entities sharing
similar properties, in the entity distribution (Zhu
et al., 2014; Cui et al., 2019; Feldman, 2020). For
example on the FewRel benchmark (Han et al.,
2018), “Daniel Dugléry” (a French politician) ap-
pears 0 times, but “politician” entities in general
appear > 700 times in the task training data. In-
tuitively, performance on a rare entity should im-
prove if the LM has the explicit information that it
is similar to other entities observed during training.

Explainability Existing knowledge-aware LMs
use metadata (Peters et al., 2019; Alt et al., 2020),
but do not explain when and why different meta-
data help. Inspired by classic feature selection
techniques (Guyon and Elisseeff, 2003), we con-
ceptually explain the effect of different metadata
on generalization error.

We hope this work motivates further research on
addressing the tail challenge through the data. 2

2 Method

This section introduces metadata shaping, includ-
ing the set up and conceptual framework.

2.1 Objective

The goal of metadata shaping is to improve tail
performance using properties shared by popular
and rare examples (e.g., the unseen entity “Daniel
Dugléry” and popular entity “Barack Obama” are

2We release our code: https://github.com/
simran-arora/metadatashaping
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both “politicians”). This work explores how to ef-
fectively provide these properties to popular trans-
former models. Tail entities are those seen < 10
times during training and head entities are seen
≥ 10 times, consistent with Orr et al. (2020); Goel
et al. (2021).

Metadata are easily and scalably sourceable us-
ing off-the-shelf models such as those for named
entity (NER, NEL) or part-of-speech (POS) tag-
ging (Manning et al., 2014; Honnibal et al., 2020),
heuristic rules, and knowledge bases (KBs) (e.g.,
Wikidata, Wordnet (Miller, 1995), domain-specific
KBs (Bodenreider, 2004), and product KBs (Krish-
nan, 2018)). KBs often provide high tail coverage
— e.g., a product KB will contain metadata for both
popular and unpopular products.

Many prior works annotate text with metadata
and in our setting, instead of using predefined fea-
ture schemas (Marcus et al., 1993; Mintz et al.,
2009, inter alia.), we consider using an unrestricted
set of metadata, including entity unstructured de-
scriptions. Importantly, knowledge-aware LMs
have attracted significant recent interest and data-
oriented approaches have not been demonstrated
as a compelling alternative, the aim of this work.

2.2 Set Up

Let input x ∈ X and label y ∈ Y , and consider the
classification datasetDDD = {(xi, yi)}ni=1 of size n.
Let m ∈ M denote a metadata tag and letM(xi)M(xi)M(xi)
be the set of metadata collected for example xi. A
shaping function fs : X → Xs accepts an original
example xi ∈ X and produces a shaped example
si ∈ Xs by inserting a subset ofM(xi)M(xi)M(xi) into xi (see
Figure 1). The downstream classification model p̂φ
is learned from shaped train examples and infers yi
from the shaped test examples.

This work uses the following representative
metadata shaping functions for all tasks to insert
a range of coarse-grained signals associated with
groups of examples to fine-grained specific signals
associated with individual examples:

Categorical tokens establish subpopulations of
entities (e.g., Dugléry falls in the coarse grained
category of “person” entities, or finer grained cate-
gory of “politician” entities). NER and POS tags
are coarse grained categories, and knowledge bases
contain finer-grained categories (i.e., entity types
and relations). Categories are consistent and fre-
quent compared to words in the original examples.

Description tokens give cues for rare entities

and alternate expressions of popular entities (e.g.,
Dugléry is a “UMP party member”). Descriptions
are likely unique across entities, and can be viewed
as the finest-grained category for an entity.

2.3 Conceptual Framework
Next we want to understand if inserting m ∈
M(xi)M(xi)M(xi) for xi ∈ DDD can improve tail performance.
We measure the generalization error of the classifi-
cation model p̂φ using the cross-entropy loss:

Lcls = E(x,y)

[
− log(p̂φ(y|x))

]
. (1)

Let Pr(y|xi) be the true probability of class y ∈
Y given xi. Example xi is composed of a set of
patternsKiKiKi (i.e., subsets of tokens in xi). We make
the assumption that a pattern k ∈ KiKiKi is a useful
signal if it informs Pr(y|xi). We thus parametrize
the true distribution Pr(y|xi) using the principle of
maximum entropy (Berger et al., 1996):

Pr(y|xi) =
1

Z(xi)
exp(

∑
k∈KiKiKi

λk Pr(y|k)). (2)

where λk represents learned parameters weighing
the contributions of patterns (or events) k andZ(xi)
is a partition function that ensures Pr(y|xi) repre-
sents a probability distribution. Therefore when
evaluating p̂φ, achieving zero cross-entropy loss
between the true probability Pr(y|k) and the esti-
mated probability p̂φ(y|k), for all k, implies zero
generalization error overall.

Unseen Patterns Our insight is that for a pattern
k that is unseen during training, which is common
in entity-rich tasks,3 the class and pattern are in-
dependent (y ⊥ k) under the model’s predicted
distribution p̂φ, so p̂φ(y|k) = p̂φ(y). With the as-
sumption of a well-calibrated model and not consid-
ering priors from the base LM pretraining stage,4

this probability is p̂φ(y) = 1
|Y| for y ∈ Y .

Plugging in p̂φ(y) = 1
|Y| , the cross-entropy

loss between Pr(y|k) and p̂φ(y|k) is Pr(k) log |Y |.
Our idea is to effectively replace k with another
(or multiple) shaped pattern k′, which has non-
uniform p̂φ(y|k′) and a lower cross-entropy loss
with respect to Pr(y|k′), as discussed next.

3For example, on the FewRel benchmark used in this work,
90.7%/59.7% of test examples have a subject/object span
which are unseen as the subject/object span during training.

4We ignore occurrences in the pretraining corpus and
learned similarities between unseen k and seen k′. Future
work can use these priors to refine the slice of unseen entities.
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Algorithm 1 Metadata Token Selection
1: Precompute Train Statistics
2: Input: training dataDDDtrain, metadata M
3: for each category m ∈M overDDDtrain do
4: Compute pmi(y,m) for y ∈ Y .
5: end for
6: for each class y ∈ Y over Dtrain do
7: Compute frequency fy.
8: end for
9:

10: Select Metadata for Sentence
11: Input: xi fromDDDtrain andDDDtest, integer n.
12: Collect metadataM(xi)M(xi)M(xi) for xi.
13: for m ∈M(xi)M(xi)M(xi) do
14: Compute ry = 2pmi(m,y)fy for y ∈ Y .
15: Normalize ry values to sum to 1.
16: Compute entropy Hm over ry for y ∈ Y .
17: end for
18: Rank m ∈M(xi)M(xi)M(xi) by Hm.
19: Return min(n, |M(xi)M(xi)M(xi)|) tokens with lowest

Hm.

Inserting Metadata Consider the shaped exam-
ple, si = fs(xi), which contains new tokens from
M(xi)M(xi)M(xi), and thus contains a new set of patterns
Ks
iK
s
iK
s
i . Let km ∈ Ks

iK
s
iK
s
i be a pattern containing some

m ∈ M(xi)M(xi)M(xi). For a rare pattern (e.g., a mention
of a rare entity in xi) k, if an associated pattern
km (e.g., a metadata token for the rare entity) oc-
curs non-uniformly across classes during training,
then the cross-entropy loss between p̂φ(y|km) and
Pr(y|km) is lower than the cross-entropy loss be-
tween p̂φ(y|k) and Pr(y|k). If km shifts p̂φ(y|xi)
usefully, performance of p̂φ should improve.

We can measure the non-uniformity of km across
classes using the conditional entropy Ĥ(Y|k).
When k is unseen and p̂φ(y|k) = p̂φ(y, k) =

p̂φ(y) =
1
|Y| (uniform), Ĥ(Y|k) is maximized:

Ĥ(Y|k) = −
∑
y∈Y

p̂φ(y, k) log p̂φ(y|k) = log(|Y|). (3)

For non-uniform p̂φ(y|km), the conditional en-
tropy decreases. Broadly, we connect the benefit of
using different metadata, which are inputs both to
existing knowledge aware LMs and our approach,
to classical methods (Guyon and Elisseeff, 2003)
— we seek the metadata providing the largest infor-
mation gain. Next we discuss the practical consid-
erations for selecting metadata.

Metadata Selection Entities are associated with
large amounts of metadata M(xi)M(xi)M(xi) — categories
can range from coarse-grained (e.g., “person”) to
fine-grained (e.g., “politician” or “US president”)
and there are intuitively many ways to describe
entities. Since certain metadata may not be helpful
for a task, and popular base LMs do not scale very
well to long sequences (Tay et al., 2020; Pascanu
et al., 2013), it is important to understand which
metadata to use for shaping.

We want to select km with non-uniform
p̂φ(y|km) across y ∈ Y , i.e. with lower Ĥ(Y|km).
Conditional probability Pr(y|km) is defined as:

Pr(y|km) = 2pmi(y,km) Pr(y), (4)

where we recall that the pointwise mutual infor-
mation pmi(y, km) is defined as log

( Pr(y,km)
Pr(y) Pr(km)

)
.

The pmi compares the probability of observing y
and km together (the joint probability) with the
probabilities of observing y and km independently.
Class-discriminative metadata reduce Ĥ(Y|k).

Directly computing the resulting conditional
probabilities after incorporating metadata inDDD is
challenging since the computation requires consid-
ering all patterns contained in all examples, gen-
erated by including m. Instead we use simplistic
proxies to estimate the information gain. In Algo-
rithm 1, we focus on the subset ofKs

iK
s
iK
s
i containing

individual metadata tags m, and compute the en-
tropy over p̂φ(y|m) for y ∈ Y . Simple extensions
to Algorithm 1, at the cost of additional compu-
tation, would consider a broader set of km (e.g.,
n-grams containing m for n > 1), or iteratively
select tokens by considering the correlations in the
information gain between different metadata tags.

3 Experiments

In this section, we demonstrate that metadata shap-
ing is general and effective.

3.1 Datasets

We evaluate on standard entity-typing and relation
extraction benchmarks used by baseline methods.
Entity typing involves predicting the the applica-
ble types for a given substring in the input example
from a set of output types. We use OpenEntity
(9 output types) (Choi et al., 2018) for evaluation.
Relation extraction involves predicting the rela-
tion between the two substrings in the input exam-
ple, one representing a subject and the other an
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Model
FewRel TACRED OpenEntity

P R F1 P R F1 P R F1
BERT-base 85.1 85.1 84.9 66.3 78.7 72.0 76.4 71.0 73.2
K-BERT 83.1 85.9 84.3 - - - 76.7 71.5 74.0
ERNIE 88.5 88.4 88.3 74.8 77.1 75.9 78.4 72.9 75.6
E-BERTconcat 88.5 88.5 88.5 - - - - - -
KnowBERTWiki 89.2 89.2 89.2 78.9 76.9 77.9 78.6 71.6 75.0
CokeBERT 89.4 89.4 89.4 - - - 78.8 73.3 75.6
Ours (BERT-base) 90.4 90.4 90.4 77.0 76.3 76.7 79.3 73.3 76.2

Table 1: Test scores on standard relation extraction and entity-typing tasks. “Ours (Base LM)” is metadata shaping.
All methods use the same base LM (BERT-base) and external information (Wikipedia) for consistent comparison.
A dash (“-”) indicates the baseline method did not report scores for the task.

object. We use FewRel (80 output relations) and
TACRED Revisited (42 output relations) for eval-
uation (Han et al., 2018; Zhang et al., 2017; Alt
et al., 2020). While metadata shaping is generally
applicable to classification tasks, our objective in
this work is to compare architectural versus data-
oriented methods of injecting knowledge, so we
focus on benchmarks that are popular in the litera-
ture on knowledge-aware LMs.

3.2 Experimental Settings

Model We fine-tune a BERT-base model on meta-
data shaped data for each task, taking the pooled
[CLS] representation and using a linear prediction
layer for classification (Devlin et al., 2019). We
use cross-entropy loss for FewRel and TACRED
and binary-cross-entropy loss for OpenEntity. All
test scores are reported at the epoch with the best
validation score and we use the scoring implemen-
tations released by (Zhang et al., 2019). Additional
training details are provided in appendix A.

Metadata Source We collect entity metadata
from Wikidata for our evaluations, a compelling
choice as several works successfully improve tail
performance in industrial workloads using the
knowledge base (e.g., Orr et al. (2020)) We use
the state-of-the-art pretrained entity-linking model
from Orr et al. (2020) to link the text in each task to
an October 2020 dump of Wikidata. We use Wiki-
data and the first sentence of an entity’s Wikipedia
page to obtain descriptions. Additional details are
in Appendix A. For certain examples in the tasks,
there are no linked entities in the text (e.g., several
subject or object entities are simply pronouns or
dates). Table 3 gives statistics for the number of
examples with available of metadata for each task.
Metadata tags are selected by Algorithm 1.

While the metadata annotation methods have
their own failure rates, our baselines also use entity
linking as the first step (Zhang et al., 2019, inter
alia.) with the same exposure to failures. All the
same, we seek methods that are flexible to errors
that arise in natural data.

3.3 Baselines

Prior work proposes various knowledge-aware
LMs, which are currently the state-of-the-art for
the evaluated tasks. ERNIE, (Zhang et al., 2019)
LUKE (Yamada et al., 2020), KEPLER (Wang
et al., 2020), CokeBERT (Su et al., 2021), and
WKLM (Xiong et al., 2020) introduce auxil-
liary loss terms and require additional pretrain-
ing. Prior approaches also modify the architecture
for example using alternate attention mechanisms
(KnowBERT (Peters et al., 2019), K-BERT (Liu
et al., 2020), LUKE) or training additional trans-
former stacks to specialize in knowledge-based rea-
soning (K-Adapter (Wang et al., 2021)). E-BERT
(Poerner et al., 2020) does not require additional
pretraining and uses entity embeddings which are
aligned to the word embedding space. In Table 1,
we compare to methods which use the same base
LM, BERT-base, and external information resource,
Wikipedia, for consistency.

3.4 End-to-End Benchmark Results

We simply use an off-the-shelf BERT-base LM
(Wolf et al., 2020), with no additional pretrain-
ing and fine-tuned on shaped data to exceed the
BERT-base LM trained on unshaped data by 5.3
(FewRel), 4.7 (TACRED), and 3.0 (OpenEntity)
F1 points. Metadata shaping is also competitive
with SoTA baselines which do modify the BERT-
base LM. Results are shown in Table 1. Table 3
reports the availability of metadata for each task.
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We observe that metadata shaping is effective both
when most task examples have available metadata
(e.g., FewRel) and when metadata tags are sparse
(e.g., on OpenEntity only 30% of examples have
available metadata), analyzed further in Section 4.
We further note that the performance of our method
is not sensitive to grammatical choices around how
the metadata tags are inserted through ablations
provided in Appendix B.

For the baselines, we give reported numbers
when available, Su et al. (2021) reports two of the
KnowBERT-Wiki and all K-BERT results, and we
obtain remaining numbers using the code released
by baseline work as detailed in Appendix A.

4 Analysis

Here we study the following key questions for effec-
tively using metadata shaping: Section 4.1 What
are the roles of different varieties of metadata? Sec-
tion 4.2 What are the effects of metadata shaping
on slices concerning tail versus popular entities?

4.1 Framework: Role of Metadata Types
Metadata Effects Class-discriminative meta-
data correlates with reduced model uncertainty.
High quality metadata, as found in Wikidata, re-
sults in improved classification performance.

To investigate the effects of metadata on model
uncertainty, we compute the entropy of p̂φ softmax
scores over the output classes as a measure of un-
certainty, and compute the average across test set
examples. Lower uncertainty is correlated with
improved classification F1 (See Figure 2 (Left)).

We compute pmi scores for inserted metadata
tokens as a measure of class-discriminativeness.
We rank individual tokens k by pmi(y, k) (for task
classes y), computed over the training dataset. On
FewRel, for test examples containing a top-20 pmi
word for the gold class, the accuracy is 27.6%
higher when compared to the slice with no top-
20 pmi words for the class. Notably, 74.1% more
examples contain a top-20 pmi word for their class
when pmi is computed on shaped data vs. unshaped
training data.

Metadata Selection Simple information theo-
retic heuristics are effective for selecting metadata,
despite the complexity of the underlying contextual
embeddings.

We apply Algorithm 1, which ranks metadata
tags by their provided information gain, to select
metadata tags for the tasks. Given xi with a set

Benchmark Strategy Test F1

FewRel

BERT-base 84.9
Random 87.2 ±0.8
Popular 87.9 ±0.1
Low Rank 87.8 ±0.4
High Rank 88.9 ±0.6

OpenEntity

BERT-base 73.2
Random 74.3 ±0.7
Popular 74.5 ±0.4
Low Rank 74.1 ±0.4
High Rank 74.8 ±0.1

TACRED

BERT-base 72.0
Random 73.8 ±1.6
Popular 73.6 ±0.9
Low Rank 73.3 ±1.0
High Rank 74.7 ±0.5

Table 2: Average and standard deviation over 3 random
seeds. Each method selects up to nmetadata tokens per
entity. For FewRel, TACRED, n = 3 per subject, ob-
ject. For OpenEntity n = 2 per main entity as 33% of
OpenEntity train examples have ≥ 2 categories avail-
able (80.7% have ≥ 3 categories on FewRel). Note we
use larger n for the main results in Table 1.

M(xi)M(xi)M(xi) of metadata tags, our goal is to select n
to use for shaping. We compare four selection
approaches: using the highest (“High Rank”) and
lowest (“Low Rank”) ranked tokens by Algorithm
1, random metadata fromM(xi)M(xi)M(xi) (“Random”), and
the most popular metadata tokens across the union
ofM(xi)M(xi)M(xi), ∀xi ∈DtrainDtrainDtrain (“Popular”), selecting the
same number of metadata tags per example for each
baseline. We observe that High Rank consistently
gives the best performance, evaluated over three
seeds, and note that even Random yields decent
performance vs. the BERT-baseline, indicating the
simplicity of the method (Table 2).

Considering the distribution of selected category
tokens under each scheme, the KL-divergence be-
tween the categories selected by Low Rank vs. Pop-
ular is 0.2 (FewRel), 4.6 (OpenEntity), while the
KL-divergence between High Rank vs. Popular is
2.8 (FewRel), 2.4 (OpenEntity). Popular tokens are
not simply the best candidates; instead, Algorithm
1 selects discriminative metadata.

For OpenEntity, metadata are relatively sparse,
so categories appear less frequently in general and
it is reasonable that coarse-grained types have more
overlap with High Rank. For e.g., “business” is in
the top-10 most frequent types under High Rank,

1738



Figure 2: Test F1 for p̂φ (no additional pretraining) vs.
average entropy of p̂φ softmax scores (Top) and vs. per-
plexity of a model p̂θ (w/ pretraining) (Bottom). p̂φ and
p̂θ use the same shaped training data. Each point is a
different metadata shaping scheme (median over 3 Ran-
dom Seeds): for R0 all inserted tokens are true tokens
associated with the entity in the KB. For RX, X true
metadata tokens are replaced by random (noise) tokens
from the full vocabulary. For each point, the total num-
ber of metadata tokens is constant per example.

while “non-profit” (occurs in 2 train examples) is
in the top-10 most frequent types for Low Rank.
Metadata tokens overall occur more frequently in
FewRel (See Table 3), so fine-grained types are also
quite discriminative. The most frequent category
under Low Rank is “occupation” (occurs in 2.4k
train examples), but the top-10 categories under
High Rank are finer-grained, e.g. “director” and
“politician” (each occurs in > 300 train examples).

Task Agnostic Metadata Effects Using meta-
data correlates with reduced task-specific LM un-
certainty. We observe shaping also correlates with
reduced LM uncertainty in a task-agnostic way.

We perform additional masked language model-
ing (MLM) over the shaped task training data using
an off-the-shelf BERT-MLM model to learn model
p̂θ. We minimize the following loss function and
evaluate the model perplexity on the task test data:

Lmlm = Es∼D,m∼M,i∼I
[
− log(p̂θ(smi |sm/i))

]
. (5)

where I is the masked token distribution and
smi is the masked token at position i in the shaped
sequence sm.5 Through minimizing the MLM loss,
p̂θ learns direct dependencies between tokens in
the data (Zhang and Hashimoto, 2021). In Figure 2
(Right), we observe a correlation between reduced
perplexity for p̂θ, and higher downstream perfor-
mance for p̂φ across multiple tasks, both using the
same training data. Overall, shaping increases the
likelihood of the data, and we observe a correlation

5We use the Hugging Face implementation for masking
and fine-tuning the BERT-base MLM (Wolf et al., 2020).

Figure 3: The gain from training the BERT-base LM
with metadata shaped data over training with unshaped
data, split by the popularity of the entity span in the test
example.

between the intrinsic perplexity metric and the ex-
trinsic downstream metrics as a result of the same
shaping scheme. Table 4 (Appendix B) reports the
same correlations for all benchmarks.

Metadata Noise We hypothesize that noisier
metadata can provide implicit regularization.
Noise arises from varied word choice, word order,
and blank noising.

Feature noising (Wang et al., 2013) is effective
to prevent overfitting and while regularization is
typically applied directly to model parameters, Xie
et al. (2017); Dao et al. (2019) regularize through
the data. We hypothesize that using metadata with
diverse word choice and order (e.g., entity descrip-
tions) and blank noising (e.g., by masking metadata
tokens), can help reduce overfitting, and we provide
initial empirical results in Appendix B.

4.2 Evaluation: Tail and Head Slices

Section 3 shows the overall gain from shaping. We
now consider fine-grained slices of examples con-
taining head vs. tail entities and observe gains are
4.4x larger on the tail slice on average (Figure 3). 6

Subpopulations Metadata are helpful on the tail
as they establish subpopulations.

We hypothesize that if a pattern is learned for an
entity-subpopulation occurring in the training data,
the model may perform better on rare entities that
also participate in the subpopulation, but were not
individually observed during training. On FewRel,
we take the top-20 TF-IDF words associated with
each category signal during training as linguistic

6A consideration for TACRED is that 42% of these head
spans are stopwords (e.g., pronouns) or numbers; just 7% are
for FewRel. This is based on unseen object spans for FewRel
and TACRED, as > 90% of subject spans are unseen.
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cues captured by the model for the category sub-
population, consistent with Goel et al. (2021). For
example, “government” is in the top-20 TF-IDF
words for the “politician” entity category. At test
time, we select the slice of examples containing any
of these words for any of the categories inserted in
the example. The performance is 9.0/3.5 F1 points
higher on examples with unseen subject/object en-
tities with vs. without a top-20 TF-IDF word for a
subject/object category.

Metadata Effects on Popular Entities For pop-
ular entities the LM can learn entity-specific pat-
terns well, and be mislead by subpopulation-level
patterns corresponding to metadata.

Although we observe overall improvements,
here we examine the effect of metadata on the pop-
ular entity slice within our conceptual framework.

Let p be a popular pattern (i.e., entity mention)
in the training data, and let m be a metadata token
associated with p. Intuitively, the LM can learn
entity-specific patterns from occurrences of p, but
coarse-grained subpopulation-level patterns corre-
sponding to m. If m and p are class-discriminative
for different sets of classes, then m can mislead
the LM. To evaluate this, consider subject and ob-
ject entity spans p ∈ P seen ≥ 1 time during
training. For test examples let Yp be the set of
classes y for which there is a p ∈ P in the ex-
ample with pmi(y, p) > 0, and define Ym as the
classes y for which there is a metadata token m
with pmi(y,m) > 0 in the example. The examples
where Yp 6= ∅, Ym 6= ∅, and Yp contains the true
class, but Ym does not, represents the slice where
metadata can mislead the model. On this slice of
FewRel, the gain from the shaped model is 2.3 F1
points less than the gain on the slice of all examples
with Yp 6= ∅ and Ym 6= ∅, supporting our intuition.

An example entity-specific vs. subpopulation-
level tension in FewRel is: p = “Thames River”
is class-discriminative for y =“located in or next
to body of water”, but its m =“river” is class-
discriminative for y =“mouth of the watercourse”.

5 Related Work

Incorporating Knowledge in LMs Discussed
in Section 3.2, significant prior work incorporates
knowledge by changing the base LM architecture
or loss function. Peters et al. (2019); Alt et al.
(2020) also use NER, POS Wikpedia, or Wordnet
metadata, but do not conceptually explain the ben-
efit or selection process. Orr et al. (2020) demon-

strates that category metadata improves tail perfor-
mance for NED. We do not modify the base LM.

Prior work inserts metadata for entities in the
data itself. Joshi et al. (2020b); Logeswaran et al.
(2019); Raiman and Raiman (2018) each uses a sin-
gle form of metadata (either descriptions or types)
for a single task-type (either QA or NED) demon-
strating empirical benefits. Metadata shaping com-
bines different varieties of metadata and applies
generally to classification tasks, and we provide
conceptual grounding.

Feature Selection This work is inspired by tech-
niques in feature selection based on information
gain (Guyon and Elisseeff, 2003). In contrast to
traditional feature schemas (Levin, 1993; Marcus
et al., 1993), metadata shaping annotations are ex-
pressed in natural language to flexibly include arbi-
trary metadata. The classic methods (Berger et al.,
1996) are not used to explain design decisions in the
line of work on knowledge-enhanced LMs, which
we connect in this work. In our setting of entity-
rich tasks, we explain how metadata can reduce
generalization error.

Prompting Prompting can serve similar goals,
but often requires human-picked prompt tokens
(Keskar et al., 2019; Aghajanyan et al., 2021) or
task-specific templates (Han et al., 2021; Chen
et al., 2022), while metadata shaping provides a
flexible baseline across metadata-types and task-
types. Prompting typically aims to better elicit
implicit knowledge from the base LM (Liu et al.,
2021), while metadata shaping focuses on explic-
itly incorporating retrieved signals not found in the
original task. Shaping is applied at train and test
time and does not introduce new parameters, as
required by methods which use learned prompts.

Data Augmentation One approach to tackle the
tail is to generate additional examples for tail enti-
ties (Wei and Zou, 2019; Xie et al., 2020; Dai and
Adel, 2020). However, this can be sample ineffi-
cient since augmentations do not explicitly signal
that different entities are in the same subpopulation
(Horn and Perona, 2017), so the model would need
view each entity individually in different contexts.
Metadata shaping and prompting (Scao and Rush,
2021) may be viewed as implicit augmentation.

6 Conclusion

We propose metadata shaping to improve tail per-
formance. The method is a simple and general
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baseline that is competitive with SoTA approaches
for entity-rich tasks. We empirically show that the
method improves tail performance and explain why
metadata can reduce generalization error. While
this work focused on entity-rich tasks, metadata
shaping is not limited to this setting. Broadly, we
hope this work motivates further research on under-
standing how to effectively program LMs with use-
ful and readily available side information. While
modifying the LM architecture to encode the infor-
mation has been a popular approach, modifying the
data is a simple and effective alternative.
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A Appendix

A.1 Dataset Details

Benchmarks We download the raw datasets
from: https://github.com/thunlp/
ERNIE.

Metadata We tag original dataset examples with
a state-of-the-art pretrained entity-linking model
from (Orr et al., 2020),7 which was trained on an
October 2020 Wikipedia dump with train, valida-
tion, test splits of 51M, 4.9M, and 4.9M sentences.
FewRel includes entity annotations. The types we
use as category metadata for all tasks are those
appearing at least 100 times in Wikidata for enti-
ties this Wikipedia training data used bh Orr et al.
(2020). Descriptions are sourced from Wikidata
descriptions and the first 50 words of the entity
Wikipedia page. Table 3 reports the availability of
metadata for examples across the benchmark tasks.

A.2 Training Details

We use the pretrained BERT-base-uncased model
for each task to encode the input text. We take the
hidden layer representation corresponding to the
[CLS] token and use a linear classification layer for
prediction. All models are trained on 1 Tesla P100
GPU (1.5 min/epoch for OpenEntity, 7.5 min/epoch
for FewRel, 28 min/epoch for TACRED). For all
tasks, we select the best learning rate from {1e-6,
2e-6, 1e-5, 2e-5, 1e-4} and use the scoring imple-
mentations released by Zhang et al. (2019).

Entity Typing Hyperparameters include 2e-5
learning rate, no regularization parameter and 256
max. sequence length, batch size of 16 and no gra-
dient accumulation or warmup. We report the test
score for the epoch with the best validation score
within 20 epochs.

Relation Extraction Hyperparameters include
2e-5 learning rate and no regularization parameter.
For FewRel, we use batch size of 16, 512 maximum
sequence length, and no gradient accumulation or
warmup. For TACRED, we use a batch size 48,
256 maximum sequence length, and no gradient
accumulation or warmup. We report the test score
for the epoch with the best validation score within
15 epochs (FewRel) and 8 epochs (TACRED).

7https://github.com/HazyResearch/
bootleg
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Benchmark Train Valid Test

TACRED 68124 22631 15509
Category 54k/46k 16k/15k 9k/10k
Description 50k/43k 15k/14k 8k/9k

FewRel 8k 16k 16k
Category 8k/8k 16k/15k 16k/15k
Description 7k/8k 15k/16k 15k/16k

OpenEntity 1998 1998 1998
Category 674 674 647
Description 655 672 649

Table 3: We show the benchmark split sizes (row 1),
and the # of examples tagged with category and de-
scription metadata (rows 2 and 3). We give numbers
for the subject and object entity-span on relation extrac-
tion and the main entity-span for entity-typing. The
tasks have represent a range of proportions of shaped
examples (e.g., essentially all FewRel examples have
metadata, while metadata is sparsely available for Ope-
nEntity).

A.3 Metadata Implementation Details

We report the test score at the epoch with the high-
est validation score. For the results in Table 1, we
evaluated the number of metadata tokens to insert,
whether place the tokens directly following or at
the end of the example, and whether to use blank
noising on the metadata tokens. Metadata tokens
are ranked by Algorithm 1.

We use up to 20 metadata categories per subject
and object on FewRel, up to 25 metadata categories
per subject on OpenEntity, and up to 5 metadata cat-
egories per subject and object on TACRED. Note
that categories (e.g., “United States federal execu-
tive department”) can include multiple tokens, se-
lecting these maximum values by grid search. For
FewRel and OpenEntity, we insert metadata tokens
directly after the corresponding entity mention, and
for TACRED, we inserted all metadata at the end
of the example. For OpenEntity we randomly mask
10% of metadata tokens at training time as implicit
regularization, and for relation extraction, we use
no blank noising. The impact of position and blank
noising are further discussed in Appendix B.3.

A.4 Baseline Implementations

We produce numbers for key baselines which do
not report for the benchmarks we consider, using

provided code.8 9

• We produce numbers for KnowBERT-Wiki
on TACRED-Revisited using a learning rate
of 3e − 5, β2 = 0.98, and choosing the best
score for epochs ∈ 1, 2, 3, 4 and the remaining
provided configurations.

• We produce numbers for ERNIE on TACRED-
Revisited using the provided training script
and configurations they use for the original
TACRED task.

B Additional Experiments

B.1 Task Agnostic Metadata Effects
In Table 4 we report the same experiment con-
ducted in Section 4.1, for all benchmark tasks con-
sidered in this work. Each point represents the
median test score over 3 random seeds.

B.2 Metadata Noise
Noisier metadata appear to provide implicit regu-
larization. Noise arises from varied word choice
and order, as found in entity descriptions, or blank
noising (i.e. random token deletion).

Here we provide initial empirical results.
Blank noising (Xie et al., 2017) by randomly

masking 10% of inserted metadata tokens during
training leads to a consistent boost on OpenEn-
tity: 0.1 (“High Rank”), 0.5 (“Popular”), 0.5 (“Low
Rank”) F1 points higher than the respective scores
from Table 2 over the same 3 random seeds. We
observe no consistent benefit from masking on
FewRel. Since metadata are sparsely available for
OpenEntity examples, we hypothesize that blank
noising of the category tokens can prevent over-
reliance on the signal. Future work could inves-
tigate advanced masking strategies, for example
masking discriminative words in the training data.

Descriptions use varied word choice and order
vs. category metadata.10 To study whether shap-
ing with description versus category tokens lead
the model to rely more on metadata tokens, we
consider two shaping schemes that use 10 meta-
data tokens: 10 category tokens and 5 category,
5 description, where the categories are randomly
selected. We observe both give the ∼same score

8https://github.com/allenai/kb
9https://github.com/thunlp/ERNIE

10Over FewRel training data: on average a word in the set
of descriptions appears 8 times vs. 18 times for words in the
set of categories, and the description set contains 3.3x the
number of unique words vs. set of categories.
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Benchmark R2

FewRel 0.985
TACRED 0.782*
OpenEntity 0.956

Table 4: Correlation (R2) between test F1 of p̂φ (no ad-
ditional pretraining) vs. perplexity of the independent
model p̂θ (w/ additional pretraining) for three tasks, us-
ing the procedure described in Figure 2. *Without one
outlier corresponding to shaping with all random to-
kens (R2 = 0.02 with this point).

on FewRel, 89.8 F1 and 89.5 F1, and use models
trained with these two schemes to evaluate on test
data where 10% of metadata tokens per example
are randomly removed. Performance drops by 1.4
F1 for the former and 1.0 F1 for the latter.

B.3 Implementation Choices

We also analyze the degree of sensitivity of meta-
data shaping to how the metadata are inserted in
examples (e.g., special tokens, the number of meta-
data tokens, and position).

Boundary Tokens Designating the boundary be-
tween original tokens in the example and inserted
metadata tokens improves model performance.

Inserting boundary tokens (e.g., “#”) in the ex-
ample, at the start and end of a span of inserted
metadata, consistently provides a boost across the
tasks. Comparing performance with metadata and
boundary tokens to performance with metadata and
no boundary tokens, we observe a 0.7 F1 (FewRel),
1.4 F1 (OpenEntity) boost in our main results. We
use boundary tokens for all results in this work.

Task Structure Tokens designate relevant enti-
ties in the examples (e.g., “[START_SUBJECT]”
and “[END_SUBJECT]”). With no other shaping,
inserting these tokens provides a 26.3 (FewRel),
24.7 (OpenEntity) F1 point boost vs. training the
BERT model without task structure tokens. These
tokens are already commonly used.

Token Insertion We observe low sensitivity to
increasing the context length and to token place-
ment (i.e., inserting metadata directly-following the
entity-span vs at the end of the sentence).

We evaluate performance a the maximum num-
ber of inserted tokens per entity, n, increases. 11

11Per subject and object entity for FewRel, and per main
entity for OpenEntity. I.e., n = 10 for FewRel yields a
maximum of 20 total inserted tokens for the example.

We insert metadata tokens in a random order (to
control for the effect of different metadata hav-
ing different levels of class-discriminativeness)
and observe that for FewRel, n ∈ {1, 5, 10,
20} gives {85.4, 86.4, 87.6, 88.5} test F1. On
OpenEntity, n ∈ {1, 5, 10, 20, 40} gives
{74.9, 75.7, 74.8, 74.5, 75.8} test F1. Overall per-
formance changes gracefully with n and we ob-
serve low sensitivity to longer contexts.

The benefit of inserting metadata directly-
following the entity span vs at the end of the ex-
ample differed across tasks (e.g., for TACRED,
placement at the end performs better, for the other
tasks, placement directly-following performs bet-
ter), though the observed difference was small. In
Section 4, tokens are inserted directly-following
the relevant entity span for all tasks.
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