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Abstract

Natural Language Inference (NLI) datasets con-
tain examples with highly ambiguous labels
due to its subjectivity. Several recent efforts
have been made to acknowledge and embrace
the existence of ambiguity, and explore how
to capture the human disagreement distribu-
tion. In contrast with directly learning from
gold ambiguity labels, relying on special re-
source, we argue that the model has naturally
captured the human ambiguity distribution as
long as it’s calibrated, i.e. the predictive prob-
ability can reflect the true correctness likeli-
hood. Our experiments show that when model
is well-calibrated, either by label smoothing or
temperature scaling, it can obtain competitive
performance as prior work, on both divergence
scores between predictive probability and the
true human opinion distribution, and the accu-
racy. This reveals the overhead of collecting
gold ambiguity labels can be cut, by broadly
solving how to calibrate the NLI network.

1 Introduction

Ambiguity is intrinsic to natural language. Previ-
ously, it’s common to disregard it as noise or as
a sign of poor-quality data, because we implicitly
make the assumption that there is only one correct
label given an example, indicating the unique class
it belongs to. However, it is against the subjectiv-
ity of many natural language understanding (NLU)
tasks, such as natural language inference (NLI) and
semantic textual similarity (STS), as their anno-
tations are heavily based on personal experience
and opinions. More recent research has gravitated
towards the necessity to acknowledge and embrace
the existence of ambiguity in NLI.

Pavlick and Kwiatkowski (2019) shows that hu-
man disagreements, very often, are not dismissible
as annotation noise, but rather persist as collecting
more ratings and varying the amount of context

∗* Work carried out as an intern at Huawei 2012 Lab.

Premise Look, there’s a legend here.
Hypothesis See, there is a well known hero here.
Label C: 1, E: 57, N: 42
Source Chaos-MultiNLI

Premise
A group of onlookers glance at a person doing
a strange trick on her head.

Hypothesis A boy does a card trick.
Label C: 56, E: 1, N: 43
Source Chaos-SNLI

Table 1: Ambiguous examples from ChaosNLI. Label:
the first element is the class, the second is the number of
annotators among 100 choosing this class. C E N refers
to classes of Contradiction, Entailment and Neutral.

provided to raters. Humans judgments cannot be
adequately summarized by a single aggregate label
or value, 1 but a distribution. ChaosNLI (Nie et al.,
2020) provides an empirical distribution by collect-
ing 100 annotations for each instance, to simulate
true soft label distribution, which is always used as
the ambiguity NLI benchmark.

For the first example in Table 1 extracted from
ChaosNLI, it’s totally reasonable to assign either
Neutral or Entailment, depending on the annota-
tors’ understanding of relationship between “leg-
end” and “hero”. The second shows the disagree-
ment between Contradiction and Neutral when dif-
fering from the context and the annotators’ back-
ground knowledge.

The challenge is how to capture this linguistic
ambiguity? In other words, how to model the
human disagreement distribution? Pavlick and
Kwiatkowski (2019) demonstrated NLI systems
trained to predict an aggregate label do not learn
the uncertainty that exists among humans’ percep-
tions. So Meissner et al. (2021) explored to train di-
rectly on the crowd-sourcing soft label distribution
of the annotators. They find training on the same
amount of data but targeting the ambiguity distri-
bution instead of one-hot labels can improve the

1It refers to previous gold-labels or one-hot (hard) labels.
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prediction accuracy, and narrow the ChaosNLI JSD
scores. However, is the success of JSD reduction
and accuracy improvement completely attributed
to the usage of special resources with ambiguity
labels? What essentially makes the contribution?

In our view, it’s the label smoothing of soft la-
bels that plays an important role, owing to its effec-
tiveness on regularisation, re-calibration and loss
correction (Patrini et al., 2016; Lukasik et al., 2020;
Müller et al., 2019). Specifically, the ambiguity
distribution employed by Meissner et al. is just a
special soft label, targeting label smoothing outputs
is believed to have comparable performance, much
cheaper than collecting crowdsourcing labels.

We further posit that the linguistic ambiguity
have been learned by a well-calibrated model,
trained either hard or soft labels. The predictive
probability of a perfectly-calibrated model can re-
flect the true correctness likelihood, i.e. empiri-
cal accuracy is equal to the prediction confidence.
Empirical accuracy is obtained from observations
across the human judges. That is, predictive confi-
dence (uncertainty) can represent the human judg-
ment distribution when model is calibrated. To
this end, not only label-smoothing, but other re-
calibration approaches such as temperature scaling
can reach the same goal. Our experiments con-
firmed our hypothesis, when model is calibrated,
it can obtain competitive ChaosNLI divergence
scores and bring accuracy boost.

Our contributions are two folds: (1) We propose
the hypothesis: a well-calibrated network can nat-
urally capture linguistic ambiguity, regardless of
using special resource. It reasonably explains the
success of training with ambiguity labels, and con-
verts question of “how to capture human disagree-
ment distribution?” to a more general one “how to
train a calibrated model?” Our experiments confirm
that commonly-used re-calibration methods are as
effective as targeting at ambiguous annotations. (2)
Knowledge of linguistic ambiguity learned from
the general domain benefits biomedical domain as
well, which suggests ambiguity signals can be trans-
ferred across domains. But calibration is not an
intrinsic property of a model, it’s data-dependent.

2 Background

Label smoothing (LS) is a mixture of one-hot
label vector yhot and the uniform distribution:

yls = (1− α)yhot + α/K

where K is the number of label classes, α is a hyper-
parameter that determines the amount of smooth-
ing. α = 0, yls = yhot, α = 1, yls is the uniform
distribution.

In the setting, where the loss function L is cross
entropy, and the model applies the softmax (σSM )
to the penultimate layer’s logit vector z to compute
probability p, the gradient of the cross entropy loss
function with respect to the logits is:

∇L = σSM (z)− y; ∂L/∂zi = pi − yi

We can see that gradient descent will try to make
p as close to y as possible. When y is the one-hot
label, models will classify every training example
correctly with the confidence of almost 1. This
not only conflicts with the inherent disagreement
of NLI, but tends to result in over-confident and
less-generalised models as well.

Concretely, suppose K = 3, z = [z1, z2, z3],
the consequence of using one-hot encoded label
y = [1, 0, 0] is that z1 will be extremely large and
the other logits will be extremely small: z1 ≫ z2
and z1 ≫ z3. In other words, one-hot labels en-
courage the largest possible logit gaps to be fed
into the softmax function. Moreover, the gradient is
bounded between -1 and 1, as pi and yi is probabil-
ity value ∈ [0, 1]. Large logit gaps combined with
the bounded gradient lead models to be less adap-
tive and too confident. In contrast, smoothed labels
encourages small logit gaps. Label smoothing re-
strains the largest logit from becoming much bigger
than the rest, improving model generalisation abil-
ity, and prevents overconfident predictions, making
model more calibrated instead of over-confidence.

Pereyra et al. (2017) explains label smoothing
by connecting it to a maximum entropy based con-
fidence penalty through the direction of the KL
divergence. Specifically, to penalize confident (low
entropy) output distributions, adding the negative
entropy to the negative log-likelihood LNLL dur-
ing training as Eq (1). Applying label smooth-
ing is interpreted as adding a confidence penalty
DKL(u||p) to original loss as a regularizer, where
u is uniform distribution.

L = LNLL − βH(p) (1)

L = LNLL −DKL(u||p) (2)

Müller et al. shows label smoothing implicitly
calibrates learned models so that the confidences of
their predictions are more aligned with the accuracy
of predictions. Beside, it‘s functional in backward
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loss correction and denoising (Patrini et al., 2016;
Lukasik et al., 2020).

Classification Re-calibration Apart from label
smoothing, post-hoc scaling, such as matrix and
vector scaling and temperature scaling, is demon-
strated to be effective to re-calibrate DNNs (Guo
et al., 2017). They apply a linear transformation
Wzi + b to the logits zi: q̂i = σSM (Wzi + b).
The parameters W and b are optimized with re-
spect to NLL on the validation set. As the number
of parameters for matrix scaling grows quadrati-
cally with the number of classes K, vector scaling
is defined as a variant where W is restricted to be
a diagonal matrix.

Temperature scaling uses a single scalar parame-
ter T>0 for all classes. T is optimized with respect
to NLL on the validation set as well.

q̂i = σSM (zi/T )

Because the parameter T does not change the max-
imum of the softmax function, the class prediction
remains unchanged, temperature scaling does not
affect the model’s accuracy.

Related Work Several recent studies, in parallel
with ours, explore to capture NLI label distribu-
tion. The most similar work is Zhang et al. (2021).
They also train with multi-annotated examples, la-
bel smoothing and temperature scaling, but differ
from the motivation, implementation and results.
Specifically, we pay much attention to analyzing
why re-calibration approaches are useful, and in-
vestigating the connection between model calibra-
tion error, sharpness with NLI distribution distance,
while they merely conduct an empirical case study
without any deep analysis. In the experiment, they
train with the majority of ChaosNLI and test on
only 500 examples sampled from ChaosNLI, but
we train using SNLI/MNLI corpus and evaluate
on the whole ChaosNLI. Statistically, our results
are more convincing; In addition to the result, their
distribution divergence declines at the cost of de-
clining accuracy of 4 points, from 0.72 to 0.68,
whereas our accuracy remains the same level.

Zhou et al. (2021) paid more attention to
Bayesian estimation and model distillation to
learn label distribution, without focusing on label
smoothing on which we concentrate and analyzed
deeply, including uncertainty metrics and soften
factor selection. Overall, our work complements
concurrent studies with lots of comprehensive and

useful analysis in terms of label smoothing and
temperature scaling.

3 Hypothesis

While softmax of NLI models trained with hard
labels allows the model to represent predictive con-
fidence, this probability does not necessarily mimic
the uncertainty that exists among humans’ percep-
tions (Pavlick and Kwiatkowski, 2019). We specu-
late targeting one-hot labels leads model to be over-
confident. The miscalibration of over-confidence
results in the disability to represent human disagree-
ment distributions correctly.

Meissner et al. (2021) explores to train on the
empirically-gold soft labels collected by crowd-
sourcing annotations. They find training on the
same amount of data but targeting the ambigu-
ity distribution instead of hard labels can reduce
ChaosNLI divergence scores (JSD) and achieve
higher performance. So they advocate to use crowd-
sourcing techniques to obtain a label distribution by
collecting multiple annotations given an instance,
instead of only one as before.

However, is the success completely attributed
to the usage of empirically-gold label distribution
as training target? What essentially makes differ-
ence? In our view, it’s the soft label — output of
label-smoothing, as an effective technique on re-
calibration, regularisation and loss correction that
plays an important role in this success. The ambi-
guity distribution they employed is just a special
soft label, targeting other label smoothing outputs
is believed to have comparable performance, but
much cheaper than crowdsourcing distribution.

Moreover, we argue that even training with gold
soft labels as AmbiNLI (Meissner et al., 2021),
cannot always obtain improvements. It may bring
degradation when model has been under-confident
or calibrated, as continuous training with soft labels
will exacerbate under-confidence, which deviates
prediction away from the correct one. Besides,
AmbiNLI only showed performance on one special
benchmark — ChaosNLI which concentrates on
ambiguous cases. How about performance on other
corpus that consist of both ambiguous and extreme
non-ambiguous instances?

Therefore, we posit that the linguistic ambiguity
have been learned by models that is well-calibrated,
even if just trained on previous one-hot labels. And
not only label-smoothing, but other re-calibration
approaches can reach the same goal.
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Dataset Train Dev Test Prem

SNLI 550,152 10,000 10,000 14.10
MultiNLI-matched 392,702 10,000 10,000 22.25
MultiNLI-mismatched 0 10,000 10,000 22.54
MedNLI 11,232 1,395 1,422 20.00

UNLI 55,517 3,040 3,040
Chaos-SNLI – – 1,514
Chaos-MNLI – – 1,599
AmbiNLI-S 18,152 – –
AmbiNLI-M 18,048 – –
AmbiNLI-U 55,517 – –

Table 2: Statistics information of NLI datasets. Prem is
the mean token count among premise sentences.

So we conduct a case study to explore: 1) Can
other soft labels generated from the label smooth-
ing achieve competitive results as crowdsourcing
ambiguity distribution? 2) Is training using soft
labels always better than using one-hot labels? and
vice versa? 3) Without soft labels, can other re-
calibration methods narrow the distance to true
correctness probability either?

4 Dataset and Metric

This section gives descriptions of datasets through-
out this work, and metrics to assess predictions.

4.1 Datasets

SNLI (Bowman et al., 2015) is a large-scale (570k
pairs) NLI resource based on image captioning,
in which 56,951 (10%) pairs are validated after
the first-stage construction of three hypothesis sen-
tences given a premise towards “definitely true”,
“may be true” and “definitely false”. In validation,
additional four annotators are asked to assign la-
bels for a pair of (premise, hypothesis), yielding
five annotations. If any one of the three labels was
chosen by at least three of the five annotators, it
was chosen as the gold label. All examples in the
test and development sets have been validated.

MultiNLI (MNLI) (Williams et al., 2018) im-
proves upon SNLI in both its coverage and diffi-
culty by offering data from ten distinct genres of
written and spoken English, making it possible to
capture more of the complexity of modern English,
and supplying explicit setting for evaluating cross-
genre domain adaptation.

The disagreement and subjectivity among hu-
mans in NLI annotation results in the reflection of
ambiguous labels. Many efforts have been made
to embrace linguistic ambiguity, regarding them as
an intrinsic property of the populations, instead of

noise of the data collection and the uncertainty of
individual annotators.

ChaosNLI (Nie et al., 2020) is created, by col-
lecting 100 annotations per example for 3,113 ex-
amples in SNLI (1,514) and MNLI (1,599), denot-
ing as Chaos-SNLI and Chaos-MNLI respectively.
Two sets are a subset of the SNLI development set
and a subset of MultiNLI-matched development set,
in which the examples satisfy the requirement that
their majority label agrees with only three out of
five individual labels collected by the original work.
It’s extensively used as a standard benchmark in
ambiguity evaluation.

UNLI (Chen et al., 2020) shifts NLI task away
from categorical labels, targeting subjective prob-
ability assessment (a numerical value ∈ [0, 1]).
UNLI re-annotated a subset of SNLI, resulting in
55,517, 3,040 and 3,040 for train, validation and
test set, where annotators are asked to estimate
how likely the situation described in the hypothesis
sentence would be true given the premise.

AmbiNLI (Meissner et al., 2021) is constructed
based on existing datasets, converting one-hot or
regression numerical labels to a probability distri-
bution. On SNLI development, test set, and MNLI
(matched and mismatched) development set with 5
annotations, it converts an ambiguity distribution
by simply counting the number of annotations for
each label and then scaling it down into probabili-
ties, denoting to AmbiSNLI and AmbiMNLI. Their
combination is named as AmbiSM. To avoid over-
lap with ChaosNLI, they remove the samples used
in ChaosNLI. Samples of UNLI training set are
converted by a simple linear approach. 2

MedNLI (Romanov and Shivade, 2018) is a
dataset annotated by doctors, grounded in the med-
ical history of patient. Statistical information is
exhibited in Table 2.

Overall, gold labels of SNLI, MNLI and
MedNLI are one-hot, or refer to hard labels. The
label of UNLI is continuous value, which are not
directly applied in our experiment, but the corre-
sponding discrete converted version in AmbiNLI.
The gold label of AmbiNLI and ChaosNLI is a
distribution, we denote as gold ambiguous label,
ambiguity label or distributional labels. Note that
these two ambiguity datasets have hard label as
well, i.e. the largest-probability class. And Am-
biNLI is split and employed in both training and
test, while ChaosNLI is only utilized as test set.

2See details in original paper or appendix.
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4.2 Metrics
Accuracy and F1 only focus on the class type of
maximum probability, which is inadequate to eval-
uate ambiguity distributions.

Jensen-Shannon Distance (JSD) (Endres and
Schindelin, 2003) is used to measure the distance
between the softmax multinomial distribution of
the models and the distributions over human labels.

Calibration Metrics: Calibration is a frequen-
tist notion of uncertainty which measures the dis-
crepancy between subjective forecasts and empiri-
cal frequencies. In perfect calibration, neural net-
works produce confidences that do represent true
probabilities. It can be measured by expected cali-
bration error (ECE), and proper scoring rules such
as negative log likelihood (NLL) (Guo et al., 2017).
ECE is defined as:

ECE =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)|

To estimate the expected accuracy from finite N
samples, we group predictions into M interval bins
(each of size 1/M) and calculate the accuracy of
each bin. Let Bm be the set of indices of samples
whose prediction confidence falls into the interval
Im = (m−1

M , m
M ]. The accuracy and the average

confidence within bin Bm is

acc(Bm) =
1

|Bm|
∑
i∈Bm

I(ŷi = yi)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i

where ŷi and yi are the predicted and true class
labels for sample i, p̂i is corresponding confidence.

Reliability Diagram is a visual representation
of model calibration in classification, plotting ex-
pected sample accuracy as a function of confidence.
If the model is perfectly calibrated, the diagram
should plot the identity function. Any deviation
from a perfect diagonal represents miscalibration.

Sharpness measures the average confidence on
the dataset as a whole, rather than on a bin. Align-
ing with empirical accuracy, it tells the model over-
all is under- or over-confident.

sharpenss =
1

N

N∑
i=1

max([p1, p2.p3])

5 Case Study

This section empirically verifies our hypotheses.

Experimental Setup For fair comparison, we fol-
low the setup of AmbiNLI (Meissner et al., 2021),
and reproduce the experiments completely. We use
BERT-base (Devlin et al., 2019) with pre-trained
weights and a softmax classification head. We use
a batch size of 64 and learning rate of 1e-5. 3

We first obtain a base-NLI model by pre-training
3 epochs on the gold-labels of the combination
of SNLI and MNLI training sets. Meissner et al.
observed that this pre-training step is necessary to
provide the model with a general understanding
of the NLI task. We then finetune the model on
other NLI dataset, setting the training objective to
be the minimization of the cross-entropy between
the output probability distribution and the target
ambiguity distribution. For evaluation, we compute
the ChaosNLI divergence scores, calibration error
and sharpness. The reproduced results are closely
similar to the original paper shown in Table 4. 4

5.1 Label Smoothing VS Ambiguity Labels

We decompose the comparison between label
smoothing and gold ambiguity soft labels into three
sub-problems: (1) Label smoothing empirically
has been shown to improve both predictive perfor-
mance and model calibration in image classifica-
tion and machine translation (Müller et al., 2019;
Lukasik et al., 2020), is it effective on NLI task
either, decreasing ECE?
(2) How to search for an optimal soften factor α?
(3) Can label smoothing reduce JSD and improve
accuracy when it obtains small ECE?

We apply the unigram label smoothing (Xie
et al., 2016). The hyperparameter α ∈ (0, 1) con-
trols the soften strength, meanwhile reflecting the
correctness probability of the target label.

yi =

{
α i = target
1−α
K−1 i ̸= target

For example, α=0.8, y=[0.8, 0.1, 0.1] when target
is the first class, contrasting with ambiguous labels.

How to search an optimal α used in ChaosNLI
evaluation? What relates to a proper α given a
dataset? In prior work, α is generally tuned by a
validation set. It tends to be set as 0.9 over many
corpus (Pereyra et al., 2017; Müller et al., 2019),
regarded as introduced label noise to help the model

3Limited by our GPU memory, 64 is used instead of 128.
4The results are not exactly same perhaps due to different

training batch size.
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to be more robust, by moving the decision boundary
closer to a class (Lukasik et al., 2020).

Li et al. shows that the inductive bias of the label
smoothing is dependent on the statistical structure
of the data. They concretely cluster data by Bayes
error rate (BER) bias R(x), and then learn cluster-
dependent smoothing strength α(x), where P (y =
k|x) is the conditional posterior probability.

R(x) = 1− max
k∈[K]

P (y = k|x)

In our experiment, we simplify the learnable
α(x) to conventional tuning manner, but maintain
the cluster-dependent. We first predict label proba-
bility P̂ for AmbiSNLI and AmbiMNLI using the
base-NLI model, and then extract validation sets
for AmbiSNLI and AmbiMNLI respectively, by
the condition of p̂i ∈ (a, b), p̂i = max(P̂ ) is the
predictive confidence (“conf” in short), remaining
partition of both datasets are combined as the train-
ing set. Then we search the best α depending on
the validation set.

From the perspective of calibration, label
smoothing aims to align accuracy with the predic-
tive probability, when α is the target probability
in our setting, we expect that α → Accuracy, ob-
tains the smallest ECE. During investigation, con-
ditioned conf interval (a,b) ∈ {(0.3,0.4), (0.4,0.6),
(0.6,0.8), (0.8,0.9), (0.9,1.0)}. 5 We evaluate a set
of α=[1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3] for each
validation set filtered by (a,b), α=1.0 is the setting
using one-hot labels.

Label smoothing can effectively calibrate NLI
model, and decrease ECE. In Figure 1, training on
soft labels either of gold ambiguity labels collected
by crowdsourcing or label smoothing are useful to
calibrate the base-NLI model (red line), i.e. yel-
low and green lines are both closer to the black
diagonal line that represents the perfect calibration.
And continuous fine-tuning on one-hot hard labels
gets the blue line more deviate from the diagonal
line than the base-NLI model, leading to a more
over-confident one. This can also be observed in
Figure 2 — ECE bar chart of 0.8-0.9 conf inter-
val. Fine-tuning using ambiguous soft labels and
label smoothed labels can obtain lower ECE than
base-NLI, while hard labels leads to higher ECE.
However, the interval of 0.9-1.0 demonstrates the
opposite results. This indicates using ambiguous
labels is not always better than hard labels.

5NLI is a three-class classification task, p̂i > 0.33, so start
from (0.3,0.4) rather than (0,0.1)
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Figure 1: Reliability diagram of AmbiSNLI validation
set under different models. smnli=base-NLI model,
hard=fine-tune smnli on one-hot labels of remained Am-
biSNLI+AmbiMNLI training data, soft=gold ambigu-
ous labels, LS=soft labels from label smoothing with the
optimal α. Gold=diagonal line representing the perfect
calibration, under this line means over-confidence, over
the line is under-confidence.
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Figure 2: ECE of AmbiSNLI validation set over conf
intervals (0.8,0.9) and (0.9,1.0).

The optimal α is not only dependent on the
statistical structure of the data, but also the state
of the model. In the conf interval of 0.9-1.0, the
base-NLI model has almost reached the perfect
calibration, ambiguity labels cuts the legitimate
confidence. So we can see the yellow line is mostly
above the diagonal line (Figure 1), it’s the indica-
tion of being under-confident. Table 3 shows the
best choice of α for each interval. It relates to the
varying predictive confidence and the empirical ac-
curacy, but not being equal to either of them, while
empirically higher than the accuracy.

Label smoothing can improve accuracy and
reduce JSD, being comparable to using gold am-
biguity labels. We draw the accuracy (left) and
JSD (right) of three edge intervals in Figure 3. On
low-confidence interval 0.3-0.4, label smoothing
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Figure 3: Accuracy and JSD of AmbiSNLI validation sets over three edge intervals. +hard=continuous fine-tuning
on one-hot labels of AmbiSNLI+AmbiMNLI training set, +soft=gold ambiguous labels, +LS=label smoothing.

(a,b) (0.3,0.4) (0.4,0.6) (0.6,0.8) (0.8,0.9) (0.9,1.0)

num_val 11 538 1080 1152 15371
Accsmnli 0.45 0.48 0.65 0.80 0.97
αoptimal 0.60 0.80 0.90 0.90 1.00

Table 3: The size and empirical accuracy of AmbiSNLI
validation sets under varying conf interval condition,
and the corresponding optimal soften strength α.

(LS) reduces JSD by a larger margin than using
gold ambiguous labels. But one may argue that
applying LS is harmful, since it declines the accu-
racy. It’s not a rigorous conclusion in the context of
ambiguity. As accuracy is less meaningful in low-
confidence cluster. Accuracy is strictly applicable
in deterministic setups, counting the percentage of
exact matching pairs, based on the assumption that
there is only one correct score. So JSD is favored
over accuracy in low-confident cluster.

On middle-confidence interval 0.8-0.9, both im-
prove accuracy, but increase divergence distance.
On high-confidence interval of 0.9-1.0, accuracy
remains steady in a high level, but ambiguity labels
results in large JSD. AmbiMNLI validation sets ex-
hibit similar consequences as these three findings
of AmbiSNLI, see Appendix for details.

5.2 Soft Labels VS Hard Labels

Is training using soft labels always better than using
one-hot labels? and vice versa? From Figure 3, we
know the answer is NOT. In high accuracy cluster
with high confidence, hard labels is needed to force
model to be certain for the predictions. That’s why
when conf=0.8-1.0, hard labels can reduce JSD
while soft labels are unable to do so. Therefore,
targeting soft labels are not always superior to one-
hot labels. It tends to show positive effect in the
highly-uncertain cluster, such as conf=0.3-0.4, in
which both gold ambiguity labels and LS decrease
JSD, while hard labels make it rise significantly.

5.3 Evaluation on ChaosNLI

To confirm findings induced above and make di-
rect comparison with AmbiNLI original results, we
evaluate on ChaosNLI. Based on the finding that
soften strength α should be set higher than the ac-
curacy, we set α=0.8 and 0.6 for Chaos-SNLI and
Chaos-MNLI respectively in label smoothing.

As shown in Table 4, compared with the baseline
model, continuous fine-tuning on AmbiSM hard
improves the accuracy, but predictive probability
deviates more from the true distribution, resulting
in larger JSD. While fine-tuning over cheap soft
labels generated by label smoothing is as effective
as ambiguity distribution collected by expensive
crowdsourcing to narrow JSD, improve accuracy
simultaneously. Moreover, they demonstrate suf-
ficient strength to calibrate the model, forcing the
predictive probability closer to the true correctness
likelihood. reflecting in small ECE and matched
sharpness value with the empirical accuracy.

We also experiment with other α settings, results
verify that α=0.8 is the best on Chaos-SNLI and
0.6 on Chaos-MNLI.

5.4 Re-calibrate by Temperature Scaling

We posit once the model is calibrated, it naturally
has captured the human agreement distribution.
In this section, we investigate whether other re-
calibration method like temperature scaling (TS)
can reduce JSD, capturing linguistic ambiguity.

We search the optimal temperature T based on
AmbiSM as validation set, and evaluate on Chaos-
SNLI and Chaos-MNLI. As models tend to be over-
confident, we search T>1.0. Table 5 shows, on val-
idation set, T=1.2 and 1.5 can obtain the smallest
ECE for AmbiSNLI and AmbiMNLI resp. We find
that temperature scaling can reduce ECE and make
the sharpness be more matched with empirical ac-
curacy, but seemingly cannot decrease JSD. We
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Dataset Chaos-SNLI Chaos-MNLI
Metrics JSD ↓ Accuracy ↑ F1-macro ↑ NLL ↓ ECE ↓ sharpness JSD ↓ Accuracy ↑ F1-macro ↑ NLL ↓ ECE ↓ sharpness

smnli baseline 0.2443 0.7477 0.7365 0.7650 0.1338 0.8808 0.3432 0.5585 0.5566 1.4739 0.2971 0.8568
+ AmbiSM hard 0.2606 0.7596 0.7462 0.7947 0.1512 0.9084 0.3476 0.5829 0.5756 1.4405 0.2921 0.8748
+ AmbiSM (0.9) 0.2506 0.7517 0.7375 0.7370 0.1178 0.8661 0.3191 0.5829 0.5738 1.1826 0.2674 0.8534
+ AmbiSM (0.8) 0.2334 0.7576 0.7442 0.6498 0.0286 0.7500 0.2642 0.5822 0.5734 0.9814 0.1538 0.7353
+ AmbiSM (0.7) 0.2619 0.7517 0.7386 0.7116 0.0752 0.6746 0.2580 0.5816 0.5726 0.9570 0.0817 0.6640
+ AmbiSM (0.6) 0.2860 0.7517 0.7387 0.7682 0.1686 0.5811 0.2553 0.5804 0.5721 0.9467 0.0179 0.5715
+ AmbiSM (0.5) 0.3171 0.7490 0.7358 0.8579 0.2570 0.4900 0.2648 0.5847 0.5751 0.9742 0.1038 0.4841
+ AmbiSM soft 0.1918 0.7543 0.7420 0.5905 0.0513 0.8036 0.2758 0.5816 0.5755 1.0306 0.2037 0.7863

Table 4: Results on Chaos-SNLI/MNLI, fine-tuning on AmbiSM with different labels. AmbiSM (α) applies LS.

Model JSD ↓ Accuracy ↑ F1-macro ↑ NLL ↓ ECE ↓ sharpness

AmbiSNLI
smnli 0.1645 0.9261 0.9254 0.2216 0.0189 0.9449
+ T=1.2 0.1738 0.9261 0.9254 0.2157 0.0043 0.9273

AmbiMNLI
smnli 0.1899 0.8683 0.8670 0.3780 0.0545 0.9228
+ T=1.2 0.2011 0.8683 0.8670 0.3553 0.0337 0.9020
+ T=1.4 0.2132 0.8683 0.8670 0.3481 0.0155 0.8796
+ T=1.5 0.2195 0.8683 0.8670 0.3486 0.0142 0.8680

Table 5: Results using TS on AmbiSNLI (upper) and
AmbiMNLI (bottom). The bold is the smallest ECE, and
sharpness matches empirical accuracy the most closely.

speculate it’s due to the inaccurate “gold” ambigu-
ity distribution of AmbiSM (5 annotations) used in
calculation of JSD between predictive probability.

As shown in Table 6, applying temperature scal-
ing on both Chaos-SNLI (T=1.2) and Chaos-MNLI
(T=1.5) are effective to decrease ECE, forcing the
predictive probability closer to the empirical ac-
curacy, and we observed JSD and NLL decline
at the same time, compared with baseline model
trained using smnli without temperature scaling.
This indicates that in addition to label smoothing,
temperature scaling is also useful to capture human
linguistic ambiguity as long as they are calibrated
with small calibration error.

We find after temperature scaling using T=1.2
and 1.5, models are still over-confident with large
ECE, we wonder: can proper T calibrate them fur-
thermore? Will JSD decrease with the decline of
ECE? Note that it’s not correct to choose the op-
timal T according to the held-out test set, we do
so here just for case study. 6 Therefore, we in-
crease T=1.2 to 2.0 for Chaos-SNLI, it reaches
the smallest ECE, JSD is observed to decline as
the same time, as demonstrated in Table 6. On
Chaos-MNLI, T increases from 1.5 to 4.0, JSD
consecutively drops from 0.29 to 0.23.

6Note that this does not invalidate other empirical observa-
tions.

Model JSD ↓ Accuracy ↑ F1-macro ↑ NLL ↓ ECE ↓ sharpness

Chaos-SNLI
smnli 0.2443 0.7477 0.7365 0.7650 0.1338 0.8808
+T=1.2 0.2274 0.7477 0.7365 0.6926 0.1092 0.8554
+T=1.4 0.2147 0.7477 0.7365 0.6504 0.0830 0.8298
+T=2.0 0.2004 0.7477 0.7365 0.6114 0.0242 0.7565

Chaos-MultiNLI
smnli 0.3432 0.5585 0.5566 1.4739 0.2971 0.8568
+T=1.5 0.2899 0.5585 0.5566 1.1360 0.2261 0.7850
+T=2.0 0.2567 0.5585 0.5566 1.0042 0.1614 0.7211
+T=4.0 0.2328 0.5585 0.5566 0.9215 0.0301 0.5607

Table 6: Results with varying temperature T on Chaos-
SNLI (upper) and Chaos-MNLI (bottom).

6 Domain Transfer

It’s well-known that accuracy will drop in domain
transfer. But how about JSD and ECE? Is calibra-
tion an intrinsic property of the model which is
independent of evaluation benchmark? Can knowl-
edge of linguistic ambiguity transferred across do-
mains? Can the property of calibration learned
from general domain transfer to the biomedical?

To observe how accuracy, JSD and ECE varies
in domain transfer, we first evaluate AmbiSNLI,
AmbiMNLI and MedNLI test set, under three NLI
models: snli, mnli and smnli trained using SNLI,
MNLI training set and their combinations resp.
Evaluation of snli model on AmbiMNLI is across
textual genres, same as mnli model on AmbiSNLI.
All models on MedNLI is across-domain, contrast-
ing with in-domain evaluation — snli and smnli on
AmbiSNLI, mnli and smnli on AmbiMNLI.

Metrics of JSD and ECE are data-dependent
as accuracy. Table 7, 8 show that they become
larger in textual genre and domain transfer. In
other words, the model is perfectly-calibrated on
benchmark A, but it may poorly-calibrated in other
benchmarks that are distantly-distributed from its
training data. Calibration is not an intrinsic prop-
erty of the model, but varies according to data.

The knowledge of linguistic ambiguity
learned from general-purpose domain can be
transferred to the medical. In middle of Table 8,
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Dataset AmbiSNLI AmbiMNLI
Model Accuracy ↑ JSD ↓ ECE ↓ Accuracy ↑ JSD ↓ ECE ↓

snli 0.9227 0.1639 0.0276 0.7567 0.2693 0.1207
mnli 0.8158 0.2373 0.1069 0.8669 0.1903 0.0639
smnli 0.9261 0.1645 0.0189 0.8683 0.1899 0.0545

Table 7: Accuracy, JSD and ECE on AmbiSNLI/MNLI
under three NLI models: snli, mnli and smnli trained
using SNLI, MultiNLI train and their combinations.

Dataset MedNLI validation MedNLI test
Model Accuracy ↑ NLL ↓ ECE ↓ Accuracy ↑ NLL ↓ ECE ↓

snli 0.6179 1.2681 0.2241 0.5985 1.3442 0.2445
mnli 0.6201 1.1780 0.2325 0.6013 1.2939 0.2506
smnli 0.6301 1.0212 0.1904 0.6125 1.1232 0.2104

AmbiSMhard 0.6358 1.1126 0.2183 0.6139 1.2289 0.2409
+ AmbiSMsoft 0.6373 0.8783 0.1279 0.6048 0.9569 0.1542
+TST=1.6 0.6373 0.8168 0.0468 0.6048 0.8663 0.0697
+LSα=0.8 0.6444 0.8216 0.0385 0.6188 0.8730 0.0687

MedNLI 0.8057 0.4827 0.0486 0.7771 0.5656 0.0655
+TST=1.2 0.8057 0.4722 0.0219 0.7771 0.5444 0.0333
+LSα=0.9 0.8022 0.4940 0.0320 0.7771 0.5514 0.0210

Table 8: Results on the MedNLI validation and test sets.

training on general NLI dataset: AmbiSM gold
ambiguous labels, label smoothing and tempera-
ture scaling can improve accuracy and reduce NLL
of MedNLI, compared with hard labels. 7 This
suggest linguistic ambiguity information can be
transferred, though not remarkable. Continuous
fine-tuning over MedNLI training set improves per-
formance by a large margin over all metrics. Two
commonly-used re-calibration methods are effec-
tive in biomedical domain as well.

7 Conclusion

In this paper, we explore how to capture the human
linguistic ambiguity from the perspective of model
calibration. We empirically verify our hypothesis
that NLI models have naturally captured the lin-
guistic ambiguity as long as it’s well-calibrated. In
such case, model predictions can truly reflect the
correct human subjective distribution. Moreover,
we find it’s not always better to train with soft labels
than hard ones, particularly in highly-certain data
cluster. And the knowledge of linguistic ambiguity
can be transferred across domains, benefiting low-
resource setups. These takeaways are significant
for future work in ambiguous NLI.
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Dataset Split Used By #Samples #Labels

SNLI

Train UNLI 55,517 1r

Dev.
UNLI 3,040 1r
ChaosNLI 1,514 100
AmbiS 9,842 5

Test UNLI 3,040 1r
AmbiS 9,824 5

MNLI Dev. M. ChaosNLI 1,599 100
AmbiM 9,815 5

Dev. Mism. AmbiM 9,832 5

Table 9: Datasets of ambiguous labels. “1r” denotes a
regression label in the [0,1], refer to AmbiNLI original
paper.
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Figure 4: Reliability diagram for AmbiMNLI validation
set.

A Appendices

A.1 Ambiguity Dataset Details
In the case of UNLI, AmbiNLI had taken only the
55,517 samples from the training set, so there is no
overlap with ChaosNLI. They apply a simple linear
approach to convert the UNLI regression value p
into a probability distribution zNLI, as described in
the following composed function:

zNLI =

{
(0, 2p, 1− 2p) p < 0.5

(2p− 1, 2− 2p, 0) p ≥ 0.5.

The resulting AmbiNLI dataset has 18,152 SNLI
examples, 18,048 MNLI examples, and 55,517
UNLI examples, for a total of 91,717 premise-
hypothesis pairs with an ambiguity distribution as
the target label.

Three datasets: ChaosNLI, UNLI and AmbiNLI
are all derived from existing SNLI and MNLI, their
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Figure 5: Expected calibration error (ECE), Accuracy and JSD of AmbiMNLI validation set.

Dataset Chaos-SNLI Chaos-MultiNLI
Metrics JSD ↓ Accuracy ↑ F1-macro ↑ NLL ↓ ECE ↓ sharpness JSD ↓ Accuracy ↑ F1-macro ↑ NLL ↓ ECE ↓ sharpness

S/MNLI baseline 0.2443 0.7477 0.7365 0.7650 0.1338 0.8808 0.3432 0.5585 0.5566 1.4739 0.2971 0.8568
+ AmbiSM Gold 0.2606 0.7596 0.7462 0.7947 0.1512 0.9084 0.3476 0.5829 0.5756 1.4405 0.2921 0.8748
+ AmbiSM 0.1918 0.7543 0.7420 0.5905 0.0513 0.8036 0.2758 0.5816 0.5755 1.0306 0.2037 0.7863
+ AmbiSM (0.8) 0.2334 0.7576 0.7442 0.6498 0.0286 0.7500 0.2642 0.5822 0.5734 0.9814 0.1538 0.7353
+ AmbiSM (0.6) 0.2860 0.7517 0.7387 0.7682 0.1686 0.5811 0.2553 0.5804 0.5721 0.9467 0.0179 0.5715
+ AmbiSM (>0.6) 0.2421 0.7550 0.7410 0.6735 0.0421 0.7622 0.2734 0.5760 0.5676 1.0119 0.1689 0.7468

+ AmbiU Gold 0.3071 0.5859 0.5871 1.0871 0.2154 0.8025 0.3078 0.5266 0.5110 1.2413 0.2327 0.7618
+ AmbiU 0.2851 0.6017 0.6029 0.9989 0.1946 0.7432 0.2843 0.5253 0.5105 1.1718 0.1922 0.7188
+ AmbiU Filt.(p<0.05||p>0.97) 0.2311 0.6717 0.6608 0.7371 0.0493 0.6559 0.2222 0.5822 0.5706 0.9070 0.0600 0.6516
+ AmbiU soft.(p<0.05||p>0.97) 0.2674 0.6063 0.6075 0.8279 0.0861 0.6679 0.2415 0.5485 0.5361 0.9486 0.1046 0.6465
+ AmbiU soft.(p<0.10||p>0.90) 0.2707 0.6110 0.6121 0.8347 0.0864 0.6627 0.2425 0.5472 0.5330 0.9485 0.0973 0.6418

+ AmbiSMU Gold 0.2863 0.6281 0.6295 0.9415 0.1765 0.7932 0.3389 0.5779 0.5707 1.3831 0.2817 0.8609
+ AmbiSMU 0.2588 0.6301 0.6317 0.8389 0.1360 0.7334 0.2735 0.5785 0.5715 1.0246 0.2010 0.7785
+ AmbiSMU Filt. 0.2185 0.7087 0.7023 0.6823 0.0623 0.7078 0.2738 0.5841 0.5770 1.0296 0.1949 0.7803
+ AmbiSMU RS32924 0.2390 0.6796 0.6674 0.7501 0.0947 0.7360 0.2750 0.5810 0.5751 1.0338 0.1989 0.7808
+ AmbiSMU RS18000 0.2539 0.6374 0.6379 0.8134 0.1180 0.7353 0.2753 0.5804 0.5738 1.0348 0.1973 0.7796
+ AmbiSMU RS9000 0.2244 0.7107 0.7043 0.7015 0.0668 0.7470 0.2758 0.5822 0.5766 1.0374 0.1990 0.7829

Table 10: Results of AmbiNLI. Gold means that gold one-hot labels. Filt. indicates that extreme examples in UNLI
have been filtered out. soft. means apply label smoothing (α=0.9) to examples satisfied the condition in brackets.
RS-N=random selecting N examples from UNLI to include into training data.

relation can be see in Table 9, which is completely
referred to (Meissner et al., 2021) Table 1. It can
help readers to understand their overlap relation
intuitively.

A.2 Evaluation Results of AmbiMNLI

In Figure 4, both gold ambiguity soft labels (soft-
yellow line) and label smoothing (LS-green line)
drag baseline (red line) much closer to the diag-
onal black line, while the hard label fine-tuning
goes towards the opposite. This indicates label
smoothing is as effective as gold ambiguity labels
to calibrate models, and decreases ECE as show in
left of Figure 5.

In addition, we find training on soft labels does
not always lead to accuracy improvement and JSD
decline, this particularly is exhibited in high con-
fidence intervals. In conf=0.9-1.0, accuracy over
all types of labels remains on a high level, but gold
ambiguity labels has much high JSD. This is con-
sistent with the findings in AmbiSNLI.

A.3 Results and Analysis of ChaosNLI

We reproduced results of AmbiNLI Table 2 in Ta-
ble 10 below, and further did some ablation studies
and analysis.

Random sampling of instance-specific soften
factor α: In conventional label smoothing, all
training examples are softened by a same fixed
α, resulting in same probability of the target class,
while the maximum probability of the crowdsourc-
ing soft ambiguity label differs from each other. So
we simulate a setting at risk of introducing much
noise, where for each instance, they have an unique
soften factor α which is uniformly sampled from
the real interval (0.6. 1.0), i.e. the row “+AmbiSM
(>0.6)” α is set greater than 0.6 because we assume
gold label is agreed by at least 60% annotators. It’s
inferior to using gold ambiguous labels.

Discussion Ambi-UNLI: Using AmbiU, look-
ing at the AmbiU and AmbiSMU results in Ta-
ble 10, apparently UNLI data is not always benefi-
cial. Specifically, it seems to worsen scores in all
metrics except for ChaosMNLI accuracy. The origi-
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nal paper supposes that UNLI’s skewed distribution
worsens scores. The distribution of labels in UNLI
is drastically different from SNLI and MultiNLI,
including textual topic, style and label type, when
a model is fine-tuned on it, this distribution shift
has a negative influence.

They found a very large number of samples with
labels very close to 0 or 1, which translate into
very extreme non-ambiguous distributions when
converted. They confirm their hypothesis by fil-
tering out all UNLI samples that had a probability
label p < 0.05 or p > 0.97, and ran the “Filtered”
experiments. Following this line, if it’s due to ex-
treme non-ambiguous distributions, label smooth-
ing (α=0.8) over these samples should have ob-
tained comparable results as filtering, even better
because of more training data, but the fact is that
it’s better than +AmbiU, worse than +AmbiU Filt.,
enlarging the range of soft samples to p < 0.1 or
p > 0.9 worsens more. This indicates filtering is
occasionally a useful remedy in this setting, it does
not result from non-ambiguous labels.

We further confirm this by randomly select
(RS) subset of AmbiU to AmbiSM, i.e. Am-
biSMU RS32924 8, AmbiSMU RS18000, Am-
biSMU RS9000, the number behind SR represents
the size of the subset, we can see that the less Am-
biU is incorporated, the better scores can be gained.
Thus, UNLI data, under the current conversion ap-
proach, is somewhat problematic. We only apply
AmbiSNLI and AmbiMNLI in the experiments.

832924 is the number of examples of AmbiU which is re-
mained for after filtering by (p<0.05 || p>0.97), we randomly
sample the same number of cases to make a comparison, result
shows Filt. is better than RS.
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