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Abstract

Multimodal sentiment analysis has attracted in-
creasing attention and lots of models have been
proposed. However, the performance of the
state-of-the-art models decreases sharply when
they are deployed in the real world. We find that
the main reason is that real-world applications
can only access the text outputs by the auto-
matic speech recognition (ASR) models, which
may be with errors because of the limitation of
model capacity. Through further analysis of the
ASR outputs, we find that in some cases the sen-
timent words, the key sentiment elements in the
textual modality, are recognized as other words,
which makes the sentiment of the text change
and hurts the performance of multimodal sen-
timent analysis models directly. To address
this problem, we propose the sentiment word
aware multimodal refinement model (SWRM),
which can dynamically refine the erroneous
sentiment words by leveraging multimodal sen-
timent clues. Specifically, we first use the sen-
timent word position detection module to ob-
tain the most possible position of the sentiment
word in the text and then utilize the multimodal
sentiment word refinement module to dynam-
ically refine the sentiment word embeddings.
The refined embeddings are taken as the textual
inputs of the multimodal feature fusion module
to predict the sentiment labels. We conduct ex-
tensive experiments on the real-world datasets
including MOSI-Speechbrain, MOSI-IBM, and
MOSI-iFlytek and the results demonstrate the
effectiveness of our model, which surpasses the
current state-of-the-art models on three datasets.
Furthermore, our approach can be adapted for
other multimodal feature fusion models easily1.

1 Introduction

Multimodal sentiment analysis (MSA) has been
an emerging research field for its potential appli-
cations in human-computer interaction. How to

∗ Corresponding Author
1Data and code are available at

https://github.com/albertwy/SWRM

(a) Results of the Self-MM model on
the real-world datasets. SpeechBrain,
IBM, and iFlytek are three ASR APIs
we adopted.

And I was really set about it
ASR:

Gold:
And I was really upset about it

(b) An example of the sentiment word substi-
tution error and the percentages of it on the
datasets.

And I was really set about itASR Input

 set 
Step 1: Sentiment Word 

                 Position Detection
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Step 2: Mutlimodal  Sentiment 
    Word Refinement

 upset 

Similar 
Sentiment

Step 3: Multimodal Feature Fusion

(c) Our approach to reduce the negative im-
pact of the sentiment word substitution error
on the MSA models.

Figure 1: Illustration of our motivation.

effectively fuse multimodal information including
textual, acoustic, and visual to predict the senti-
ment is a very challenging problem and has been
addressed by many previous studies. Some works
focus on introducing additional information into
the fusing model, such as the alignment informa-
tion between different modal features (Wu et al.,
2021) and unimodal sentiment labels (Yu et al.,
2021). And other works consider the semantic
gaps between multimodal data and adopt the ad-
versarial learning (Mai et al., 2020) and multi-task
learning (Hazarika et al., 2020) to map different
modal features into a shared subspace.

Despite the apparent success of the current state-
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of-the-art models, their performance decreases
sharply, when deployed in the real world. The
reason is that the input texts are provided by the
ASR models, which usually are with errors because
of the limitation of model capacity. To further ana-
lyze this problem, we build three real-world mul-
timodal sentiment analysis datasets based on the
existing dataset, CMU-MOSI(Zadeh et al., 2016).
Specifically, we adopt three widely used ASR APIs
including SpeechBrain, IBM, and iFlytek to pro-
cess the original audios and obtain the recognized
texts. Then, we replace the gold texts in CMU-
MOSI with the ASR results and get three real-
world datasets, namely MOSI-SpeechBrain, MOSI-
IBM, and MOSI-iFlytek. We evaluate the current
state-of-the-art model, Self-MM(Yu et al., 2021),
and report the mean absolute error (MAE) on the
multimodal sentiment analysis task. As we can
see in Figure 1(a), when the model is deployed in
the real world, there is an obvious drop in model
performance.

The further in-depth analysis of ASR errors
shows that the sentiment word substitution error
can hurt the MSA model directly. The reason is
that the sentiment words in the text are the most im-
portant clues in the textual modality for detecting
sentiment and incorrectly recognizing them could
change the sentiment conveyed by the text. To
have an intuitive understanding of the sentiment
word substitution error, we take an example in Fig-
ure 1(b). The gold text is “And I was really upset
about it", but the ASR model (SpeechBrain) recog-
nizes the sentiment word “upset" wrongly as “set",
which results in the change of the sentiment seman-
tics of the text and directly affects the MSA model
performance. We list the percentages of the senti-
ment word substitution error on the MOSI dataset
for three ASR APIs in Figure 1(b). The percent-
age of the sentiment word substitution error on the
MOSI-IBM is 17.6%, which means about 17 of
100 utterances have this type of error. To further
demonstrate the negative effect of the substitution
error on the MSA models, we split the test data of
MOSI-IBM into two groups by whether there is a
substitution error. We evaluate Self-MM on the test
data and observe that the misclassification rate of
the group in which the substitution error exists is
higher than the other group (29.9% vs 15.8%). This
result indicates that the sentiment word substitution
error could hurt the state-of-the-art MSA model.

To tackle this problem, we propose the sentiment

word aware multimodal refinement model, which
can detect the positions of the sentiment words in
the text and dynamically refine the word embed-
dings in the detected positions by incorporating
multimodal clues. The basic idea of our approach
is shown in Figure 1(c). We consider leveraging
the multimodal sentiment information, namely the
negative sentiment conveyed by the low voice and
sad face, and textual context information to help
the model reconstruct the sentiment semantics for
the input embeddings. Specifically, we first use the
sentiment word location module to detect the posi-
tions of sentiment words and meanwhile utilize the
strong language model, BERT, to generate the can-
didate sentiment words. Then we propose the multi-
modal sentiment word refinement module to refine
the word embeddings based on the multimodal con-
text information. The refinement process consists
of two parts, filtering and adding. We apply the
multimodal gating network to filter out useless in-
formation from the input word embeddings in the
filtering process and use the multimodal sentiment
word attention network to leverage the useful in-
formation from candidate sentiment words as the
supplement to the filtered word embeddings in the
adding process. Finally, the refined sentiment word
embeddings are used for multimodal feature fusion.

We conduct extensive experiments on the MOSI-
SpeechBrain, MOSI-IBM, and MOSI-iFlytek
datasets to demonstrate the effectiveness of our
proposed model. The experimental results show
that: (1) There is an obvious performance drop for
the state-of-the-art MSA model, when the model is
deployed in the real world taking the ASR outputs
as the input of textual modality; (2) Our proposed
model outperforms all baselines, which can dynam-
ically refine the sentiment word embeddings by
leveraging multimodal information.

The main contributions of this work are as fol-
lows: (1) We propose a novel sentiment word aware
multimodal refinement model for multimodal senti-
ment analysis, which can dynamically reconstruct
the sentiment semantics of the ASR texts with er-
rors by utilizing the multimodal sentiment informa-
tion resulting in more robust sentiment prediction;
(2) We validate the negative effect of the sentiment
word substitution error on the state-of-the-art MSA
model through the in-depth analysis; (3) We evalu-
ate our model on three real-world datasets, and the
experimental results demonstrate that our model
outperforms all baselines.
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2 Related Work

Multimodal sentiment analysis has gained increas-
ing attention from the community recently and
some process has been made. In general, there
are three findings presented by previous work.

Performing the cross-modal alignment is help-
ful for multimodal feature fusion. Chen et al.
(2017) considered that the holistic features mainly
contain global information, which may fail to cap-
ture local information. Therefore, they applied
the force-alignment to align the visual and acous-
tic features with the words and further obtained
the word-level features. To effectively fuse them,
they proposed the GME-LSTM(A) model, which
consists of two modules, the gated multimodal em-
bedding and the LSTM with the temporal atten-
tion. However, obtaining the word-level features
needs to perform the force-alignment, which is
time-consuming. To address it, Tsai et al. (2019)
proposed the MulT model, which uses the cross-
modal attention to align different modal features
implicitly. Instead of performing the alignment
in the time dimension, some works focusing on
semantic alignment. Hazarika et al. (2020) con-
sidered that the semantic gaps between heteroge-
neous data could hurt the model performance and
proposed the MISA model, which maps the differ-
ent modal data into a shared space before multi-
modal feature fusion. Wu et al. (2021) first utilized
the cross-modal prediction task to distinguish the
shared and private semantics of non-textual modali-
ties compared to the textual modality and then fuse
them. The above works show that performing the
cross-modal alignment is helpful for multimodal
feature fusion.

Training the MSA models in an end-to-end
manner is more effective. Most of the previous
studies adopt a two-phase pipeline, first extract-
ing unimodal features and then fusing them. Dai
et al. (2021) considered that it may lead to sub-
optimal performance since the extracted unimodal
features are fixed and cannot be further improved
benefiting from the downstream supervisory sig-
nals. Therefore, they proposed the multimodal end-
to-end sparse model, which can optimize the uni-
modal feature extraction and multimodal feature
fusion jointly. The experimental results on the mul-
timodal emotion detection task show that training
the models in an end-to-end manner can obtain
better results than the pipeline models.

Leveraging the unimodal sentiment labels to

learn more informative unimodal representa-
tions is useful for multimodal feature fusion. Yu
et al. (2020) considered that introducing the uni-
modal sentiment labels can help the model capture
the unimodal sentiment information and model the
difference between modalities. Motivated by it,
they built the CH-SIMS dataset, which contains not
only the multimodal sentiment labels but also uni-
modal sentiment labels. And based on it, they pro-
posed a multi-task learning framework to leverage
two types of sentiment labels simultaneously. How-
ever, this method needs unimodal labels, which
is absent for most of the existing datasets. To ad-
dress it, Yu et al. (2021) proposed the Self-MM
model, which first generates the unimodal labels
by utilizing the relationship between the unimodal
and multimodal labels and then uses the multi-task
learning to train the model. These two works both
address the usefulness of introducing unimodal la-
bels.

However, even though lots of models are pro-
posed and obtain promising results on the bench-
mark datasets, there are few works considering the
noisy inputs when the MSA models are deployed
in the real world. Chen et al. (2017) presented
the Gated Multimodal Embedding to filter out the
noises from the acoustic and visual data. Pham et al.
(2019) considered that visual and acoustic data may
be absent and proposed the MCTN model to handle
it. Liang et al. (2019) and Mittal et al. (2020) also
mainly focused on dealing with the noises intro-
duced by the visual and acoustic data, and their
models are based on the word-level features, which
are obtained by aligning the audios with the gold
texts. There is only one work (Dumpala et al.,
2018) considering that the texts are output by the
ASR models, which may be erroneous. But this
work does not study how do the ASR errors affect
the MSA models and does not evaluate the SOTA
MSA models on the datasets. Besides, the pro-
posed model needs the gold texts when training,
which is time-consuming and labor-consuming.

Comparing to the above works, we evaluate the
SOTA MSA models on the real-world datasets
and observe that the performance of models de-
creases sharply because of the erroneous ASR texts.
Through in-depth analysis of the ASR outputs, we
find the sentiment word substitution error in the
ASR texts could hurt the MSA models directly. To
address it, we propose the sentiment word aware
multimodal refinement model, which only uses the
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ASR texts in the training and testing phrases.

3 Approach

In this section, we describe the sentiment word
aware multimodal refinement model in detail. An
illustration of our proposed model is given in Fig-
ure 2. Our model consists of three modules in-
cluding the sentiment word location module, mul-
timodal sentiment word refinement module, and
multimodal feature fusion module. We first use the
sentiment word location module to detect the pos-
sible positions of sentiment words and then utilize
the multimodal sentiment word refinement module
to dynamically refine the word embeddings in the
detected positions. Finally, the refined word em-
beddings are fed into the multimodal feature fusion
module to predict the final sentiment labels.

3.1 Sentiment Word Position Detection

The core idea of the sentiment word position de-
tection module is to find out the possible positions
of sentiment words in the ASR texts. Note that, it
is different from locating sentiment words depend-
ing on the word semantics, since the ASR models
may recognize a sentiment word as a neutral word,
which makes it hard to locate correctly. For ex-
ample, given a gold text “And I was really upset
about it", the ASR model recognizes it as “And I
was really set about it". It is easy for the model to
label the word “set" as a neutral word. Therefore,
we choose to detect the position of the sentiment
words instead of locating them.

To achieve it, we consider adopting a power-
ful language model, since the language model can
model the context information of the sentiment
words such as syntactic and grammatical informa-
tion and predict the appropriate words for the tar-
get position. Specifically, we choose the BERT
model (Devlin et al., 2019) as our language model
since the masked language modeling pretraining
objective meets our needs perfectly. Given the sen-
tence {w1, w2, ..., wnl

}, we first mask each word
wi in the sentence sequentially, and in practice, we
replace the word with the special word [MASK].
For example, we mask the first word in the sen-
tence and obtain {[MASK], w2, ..., wnl

}. And then
we use the BERT model to predict the possible
words in the position of the masked word. We sort
the predicted candidate words by the prediction
probabilities and get the Top-k candidate words
Ci = {ci1, ci2, ..., cik}.

Next, we distinguish the sentiment words from
the candidates using the sentiment lexicons (Hu
and Liu, 2004; Wilson et al., 2005) and ki is the
number of selected sentiment words correspond-
ing to the position i. The larger the number is,
the more possible the position is. And we ob-
tain the most possible position of sentiment word,
s = argmax({k1, k2, ..., knl

}). Considering that
in some cases there is not a sentiment word in the
sentence, we use a sentiment threshold to filter out
the impossible ones. In practice, we use the gate
mask p to record it, and p is 1 if ks is larger than
k/2 and 0 otherwise.

3.2 Multimodal Sentiment Word Refinement
In order to reduce the negative effects of the ASR
errors, we propose the multimodal sentiment word
refinement module, in which we refine the word
embeddings of sentiment words from two aspects.
One is that we uses the multimodal gating network
to filter out the useless information from the input
word embeddings. The other one is that we design
the multimodal sentiment attention network to in-
corporate the useful information from candidate
words generated by the BERT model.

Given an utterance, which includes three modal
unaligned features, word embeddings, acoustic
features, and visual features, we denote them as
xi = {xit : 1 ≤ t ≤ ni, x

i
t ∈ Rdix}, i ∈ {l, v, a}.

To obtain the multimodal information correspond-
ing to each word, We utilize the pseudo-alignment
method to align the features. We split the the acous-
tic and visual features into non-overlapping feature
groups, of which lengths are

⌊
na
nl

⌋
and

⌊
nv
nl

⌋
re-

spectively, and average the features in each group
and obtain the aligned features, ui = {uit : 1 ≤
t ≤ nl, u

i
t ∈ Rdix}, i ∈ {v, a}.

To obtain the context-aware representations, we
apply the BERT model and LSTM networks to
encode the features, producing hi = {hit : 1 ≤
t ≤ nl, h

i
t ∈ Rdih}, i ∈ {v, a, l}. Besides, we

also use an LSTM network to fuse the acoustic and
visual features for capturing high-level sentiment
semantics and obtain hva = {hvat : 1 ≤ t ≤
nl, h

va
t ∈ Rdvah }.

hl = BERT(xl)

hv = LSTMv(u
v)

ha = LSTMa(u
a)

hva = LSTMva([u
v;ua])

(1)

Subsequently, We propose the multimodal gating
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Figure 2: Illustration of our proposed model.
.

network to filter the word embedding, which is im-
plemented by a non-linear layer. The motivation is
that the ASR model may recognize incorrectly the
sentiment word resulting in the corrupted sentiment
semantics of the text. Therefore, we leverage the
multimodal sentiment information to decide how
much information of the input word embedding to
pass. Specifically, we concatenate the unimodal
context-aware representations, hl

s, h
v
s , ha

s , and bi-
modal representation hva

s in the detected position
s and feed them into a non-linear neural network,
producing the gate value gv. And then the gate
value is used to filter out the useless information
from the word embedding. To make the model ig-
nore the impossible one, we use the gate mask p to
achieve it.

gv = Sigmoid(W1([h
l
s;h

v
s ;h

a
s ;h

va
s ]) + b1)

rv = (1− gvp)xl
s

(2)

where W1 ∈ R1×
∑

i∈{l,v,a,va} dih , b1 ∈ R1 are
the parameters of the multimodal gating network.

Furthermore, we propose a novel multimodal
sentiment word attention network to leverage the
sentiment-related information from the candidate
words, more than half of which are sentiment

words, generated by the BERT model to comple-
ment the word embeddings. For example, the ASR
model recognizes the “upset" as “set", we first want
to remove the useless information of “set" and then
incorporate the information of negative sentiment
words to reconstruct the original sentiment seman-
tics. We use a linear layer to implement the multi-
modal sentiment word attention network. We first
concatenate the word embedding xc

s
t of the candi-

date word cst and multimodal representations, hv
s ,

ha
s , and hva

s at the most possible time step s. Then,
we pass them to the linear layer and obtain the at-
tention score get . The attention scores are fed into
a softmax function to obtain the attention weights.
Finally, we apply the weights to the candidate word
embeddings and get the sentiment embedding re.

get = W2([x
cst ;hv

s ;h
a
s ;h

va
s ]) + b2

we
t =

eg
e
t∑k

t=1 e
get

re =
k∑

t=1

we
tx

cst

(3)

where W2 ∈ R1×(dlx+
∑

i∈{v,a,va} dih), b2 ∈ R1

are the parameters of the multimodal sentiment
word attention network.
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In addition, there may not be suitable words in
the candidate words. Hence, we incorporate the
embedding of the special word [MASK], xmask,
to let the BERT model handle this problem based
on the context. We then design an aggregation net-
work to balance the contributions of the special
word embedding xmask and the sentiment embed-
ding re. Finally, we add the radd to the filtered
word embedding uls and obtain the refined word
embedding rl for the target word.

gmask = Sigmoid(W3([r
e;xmask]) + b3)

radd = gmaskre + (1− gmask)xmask

rl = (gvp)radd + rv

(4)

where W3 ∈ R1×2dlx , b3 ∈ R1 are the trainable
parameters.

3.3 Multimodal Feature Fusion

We describe our multimodal feature fusion mod-
ule in the section and it is noted that our proposed
refinement approach only modifies the textual in-
put token embeddings, which makes it easy to be
adapted for other multimodal feature fusion mod-
els based on BERT, such as MISA (Hazarika et al.,
2020).

We first use the BERT model to
encode the refined word embeddings
zl = {xl1, xl2, ..., rl, .., xlnl

} and take the rep-
resentation of [CLS] as the textual representation,
which is denoted as vl. And then we use two
LSTM networks to encode the visual and acoustic
features and take the representations of the first
words as the visual representation vv and acoustic
representation va. Finally, we fuse them using a
non-linear layer to capture the interactions between
them.

vl = BERTtextual(z
l)

vv = LSTMvisual(x
v)

va = LSTMacoustic(x
a)

vf = Relu(W4([v
l; vv; va]) + b4)

(5)

where W4 ∈ Rdfv×(dlv+dav+dvv), b4 ∈ Rdfv are the
trainable parameters of the fusion network.

We utilize a linear layer to predict the final senti-
ment regression labels.

pf = W5v
f + b5 (6)

where W5 ∈ R1×dfv , b5 ∈ R1 are the trainable
parameters of the prediction network.

Besides, to enhance the model to capture uni-
modal sentiment information, we use the Uni-
modal Label Generation Module (ULGM) (Yu
et al., 2021) to generate pseudo unimodal senti-
ment labels and adopt them to train our model in a
multi-task learning manner. For more details, we
refer you to Yu et al. (2021).

4 Experiment

4.1 Datasets

We build three real-world datasets including MOSI-
SpeechBrain, MOSI-IBM, and MOSI-iFlytek, on
CMU-MOSI(Zadeh et al., 2016).

CMU-MOSI CMU multimodal opinion-level
sentiment intensity (CMU-MOSI) consists of 93
videos collected from the YouTube website. The
length of the videos varies from 2-5 mins. These
videos are split into 2,199 short video clips and
labeled with sentiment scores from -3 (strongly
negative) to 3 (strongly positive). For multimodal
features, we extract the visual features using Facet,
which can extract the facial action units (Ekman
et al., 1980) from each frame. The acoustic fea-
tures are obtained by applying COVAREP (Degot-
tex et al., 2014), which includes 12 Mel-frequency
cepstral coefficients (MFCCs) and other low-level
features.

However, the provided texts of the utterances in
the MOSI dataset are manually transcribed from
the corresponding videos by the expert transcribers,
which is unrealistic for the real-world applications
to obtain the texts in such a way. To evaluate the
models in the real world, we replace the manu-
ally gold texts in the dataset with the texts out-
put by the ASR models. We adopt a strong ASR
model and two widely used commercial APIs to
produce the texts. The utilized ASR model released
by Ravanelli et al. (2021) is built on the trans-
former encoder-decoder framework and trained on
the Librispeech dataset(Panayotov et al., 2015).
The commercial APIs used by us are IBM2 and
iFlytek3 speech-to-text APIs, which are wildly
used by researchers and software developers. Fi-
nally, we apply the three ASR models to tran-
scribe the videos into texts and construct three new
datasets, namely MOSI-SpeechBrain, MOSI-IBM,

2https://www.ibm.com/cloud/watson-speech-to-text
3https://global.xfyun.cn/products/lfasr
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Datasets Models
Evaluation Metrics

Has0-Acc ↑ Has0-F1 ↑ Non0-Acc ↑ Non0-F1 ↑ MAE ↓ Corr ↑

MOSI-SpeechBrain

TFN(B) 68.98 68.95 69.51 69.57 115.55 48.54
LMF(B) 68.86 68.88 69.36 69.48 117.42 48.66
MulT(B) 71.78 71.70 72.74 72.75 109.00 54.69

MISA 73.79 73.85 74.51 74.66 98.52 65.37
Self-MM 73.67 73.72 74.85 74.98 90.95 67.23

Ours 74.58 74.62 75.70 75.82 90.56 67.47

MOSI-IBM

TFN(B) 71.81 71.78 72.13 73.21 109.42 58.19
LMF(B) 73.06 73.09 74.30 74.41 104.70 59.07
MulT(B) 75.57 75.54 76.74 76.79 100.32 64.34

MISA 76.97 76.99 78.08 78.17 91.23 71.30
Self-MM 77.32 77.37 78.60 78.72 85.65 73.23

Ours 78.43 78.47 79.70 79.80 82.91 73.91

MOSI-iFlytek

TFN(B) 71.95 72.01 72.62 72.76 107.01 56.52
LMF(B) 71.98 72.03 72.35 72.49 106.63 59.48
MulT(B) 77.32 77.05 78.75 78.56 89.84 68.14

MISA 79.59 79.62 79.82 79.91 85.63 74.53
Self-MM 80.26 80.26 81.16 81.20 78.79 75.83

Ours 80.47 80.47 81.28 81.34 78.39 75.97
MOSI-Gold Self-MM 82.54 82.51 84.02 84.05 72.49 78.90

Table 1: Results on the MOSI-SpeechBrain, MOSI-IBM, and MOSI-iFlytek datasets. (B) means the textual features
are based on BERT. The best results are in bold.

and MOSI-iFlytek. We report the WER results of
the adopted ASR models on MOSI in Appendix A.
Noted that, we do not adopt MOSEI (Bagher Zadeh
et al., 2018), because it does not provide the origi-
nal video clips for the extracted features and anno-
tated sentiment labels, and we can not process the
original audios.

4.2 Training Details

We use Adam as the optimizer and the learning
rate is 5e-5. The batch size is 64. The sentiment
threshold is set to 0.5 while detecting the sentiment
word position. The number of the candidate words
k is 50. The other hyper-parameters of the model
are reported in Appendix B. All experiments are
run on an Nvidia Tesla P100 GPU. We run five
times and report the average performance. The
random seeds we used are 1111,1112, 1113, 1114,
and 1115.

4.3 Evaluation Metrics

For the MOSI-SpeechBrain, MOSI-IBM, and
MOSI-iFlytek datasets, following previous work
(Yu et al., 2021), we take 2-class accuracy(Acc-
2), F1 score(F1), mean absolute error (MAE), and
correlation(Corr) as our evaluation metrics. And
for Acc-2 and F1-Score, we calculate them in two
ways, negative/non-negative (Non0-Acc, Non0-F1)

and negative/positive (Has0-Acc, Has0-F1). As
the prediction results are real values, we obtain
the sentiment classification labels by mapping the
sentiment scores into labels.

4.4 Baselines
We compare our proposed model with the follow-
ing baselines 4. TFN (Zadeh et al., 2017) uses the
three-fold Cartesian product to capture unimodal,
bimodal, and trimodal interactions. LMF (Liu
et al., 2018) uses the low-rank tensors to accelerate
the multimodal feature fusion process. MulT (Tsai
et al., 2019) uses the cross-modal transformers to
fuse multimodal features. MISA (Hazarika et al.,
2020) adopts multi-task learning to map different
modal features into a shared subspace. Self-MM
(Yu et al., 2021) first generates the pseudo unimodal
sentiment labels and then adopts them to train the
model in a multi-task learning manner.

5 Results and Analysis

5.1 Quantitative Results
In Table 1, we show the results on the MOSI-
SpeechBrain, MOSI-IBM, MOSI-iFlytek datasets.

4Because applying the force-alignment using the errorous
ASR texts leads to cascading errors resulting in poor aligned
features, we only take the models using unaligned features as
our baselines for a fair comparison.
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Models Has0-Acc ↑ Non0-Acc ↑ MAE ↓
SWRM 74.58 75.70 90.56

w/o Position 73.59 74.57 93.67
w/o Attention 74.17 75.42 91.53

w/o Multi-modal 73.82 75.09 91.22

Table 2: Ablation analysis of our proposed model evalu-
ated on the MOSI-SpeechBrain dataset. The best results
are in bold.

And we also list the results of the SOTA model,
Self-MM, on the original MOSI dataset in the last
row of the table for the performance comparison
between Self-MM in the ideal world and real world.
As we can see from the results, Self-MM obtains
the best results on the MOSI-Gold dataset than the
other datasets, which demonstrates that the ASR
errors hurt the MSA models. We also observe that
the better ASR model can help the MSA models
achieve better performance. But it should be noted
that, according to the analysis in the previous sec-
tion, current ASR models still can not produce
satisfactory results for the MSA models in the real
world.

Comparison between the feature-based models
including TFN, LMF, and MulT and finetuning-
based baselines such as MISA and Self-MM, we
can find that finetuning-based models obtain better
results. We consider that the finetuning-based mod-
els can adapt the BERT encoder to the target task
and learning more informative textual representa-
tions, which also makes them benefit more as the
quality of texts increases.

Comparing to the baselines especially Self-MM,
our model achieves better performance in all evalu-
ation metrics since our model can detect the substi-
tution error of the sentiment words and then refine
the word embeddings to reconstruct the sentiment
semantics in the textual modality by filtering out
useless information from the input words and in-
corporating useful information from the candidate
words generated by the language model. We also
observe that the improvement of our model com-
pared with Self-MM on MOSI-iFlytek is smaller.
We consider that the main reason is fewer sentiment
word substitution errors on MOSI-iFlytek.

5.2 Ablation Study

We conduct the ablation experiments to distinguish
the contribution of each part. There are several
different variants of our model. SWRM is our pro-
posed full model. SWRM w/o Position does not

They have really cruel technology that’s really interestingASR 

Gold

Sentiment Word
 Position Detection

cruel
Step 1: 

Multimodal Sentiment
Word Refinement

Step 2: 
special
cool

awesome

Attend

Top 3 Attended Words:

Candidate 
Words

They have really technology that’s really interesting
The most possible position

Multimodal Feature 
Fusion

Step 3: Prediction:  Positive
Gold:  Positive

They have really cool technology that’s really interesting

         They have really technology that’s really interesting

Figure 3: Case study for the SWRM.
.

use the sentiment word position location module
and only uses the information of the special word
[MASK] to dynamically refine all words. SWRM
w/o Attention only incorporates the information
of the special word [MASK] to refine the word in
the multimodal sentiment word refinement module.
SWRM w/o Multi-modal only performs the mul-
timodal sentiment word attention and multimodal
gating network based on the textual features with-
out the acoustic and visual features.

Table 2 shows the results of the variants of our
model. After ablating the sentiment word posi-
tion location module, SWRM w/o Position obtains
worse results than SWRM, which indicates that
finding the right word for refinement is very impor-
tant. The comparison between SWRM w/o Atten-
tion and SWRM w/o Position further demonstrates
this conclusion. SWRM w/o Attention first de-
tects the right position and then incorporates the
information of the special word [MASK], which
achieves better performance than SWRM w/o Posi-
tion. But SWRM w/o Attention is still worse than
SWRM, which shows using the attention network
to incorporating extra information from the candi-
date words is useful for refinement. Comparing
the SWRM w/o Multi-modal between SWRM, we
can find that the model benefits from the visual
and acoustic features. It is in line with our expecta-
tions since the sentiment information provided by
the multimodal features can help the model detect
the sentiment word and incorporate the sentiment-
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related information from the candidate words.

5.3 Case Study
To have an intuitive understanding of our proposed
model, we show a case in Figure 3. We can see
that our model first detects the most possible po-
sition based on the context and then finds that the
input word in the position may be recognized in-
correctly since there is a mismatch between the
negative word “cruel" and either the smile or the
excited tone. Hence our model decides to incor-
porate the related sentiment information from the
candidate words to refine the word embedding. As
shown in Figure 3, our model pays more attention
to the candidate words "special", "cool", and "awe-
some". The word "cool" is exactly the gold word
and the others have the same sentiment polarity as
it. Beneficial from the attended candidate words,
our model refines the input word and reconstructs
its sentiment semantics. Finally, the refined word
embeddings are fed into the multimodal feature
fusion module to predict the sentiment label.

6 Conclusion

In this paper, we observe an obvious performance
drop when the SOTA MSA model is deployed in
the real world, and through in-depth analysis, we
find that the sentiment word substitution error is
a very important factor causing it. To address it,
we propose the sentiment word aware multimodal
refinement model, which can dynamically refine
the word embeddings and reconstruct the corrupted
sentiment semantics by incorporating the multi-
modal sentiment information. We evaluate our
model on MOSI-SpeechBrain, MOSI-IBM, and
MOSI-iFlytek and the results demonstrate the ef-
fectiveness of our approach. For future work, we
will explore leveraging the multimodal information
to detect the sentiment word positions.
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