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Abstract

There has been an increase in the number of
large and high-performing models made avail-
able for various biomedical natural language
processing tasks. While these models have
demonstrated impressive performance on var-
ious biomedical tasks, their training and run-
time costs can be computationally prohibitive.
This work investigates the use of knowledge
distillation, a common model compression
method, to reduce the size of large models for
biomedical natural language processing. We
further improve the performance of knowledge
distillation methods for biomedical natural lan-
guage by proposing a meta-learning approach
which adaptively learns parameters that enable
the optimal rate of knowledge exchange be-
tween the teacher and student models from the
distillation data during knowledge distillation.
Experiments on two biomedical natural lan-
guage processing tasks demonstrate that our
proposed adaptive meta-learning approach to
knowledge distillation delivers improved pre-
dictive performance over previous and recent
state-of-the-art knowledge distillation methods.

1 Introduction

While there has been an increase in the number
of large, pre-trained language models with impres-
sive performance on various biomedical tasks (Shin
et al., 2020; Gururangan et al., 2020; Lee et al.,
2020; Lewis et al., 2020; Gu et al., 2022), the
training and deployment of these models can be
computationally prohibitive and time-consuming,
especially in resource-constrained settings. The
inference latencies and storage costs of these mod-
els make their deployment for real-word biomed-
ical applications a challenge. Knowledge distilla-
tion (Bucila et al., 2006; Ba and Caruana, 2014;
Hinton et al., 2015; Romero et al., 2015), a model
compression technique which aims to transfer the
performance of a large and computationally ineffi-
cient teacher model to a smaller and more efficient

student model, has been proposed as a way to re-
duce the size of large models while retaining their
predictive performance.

While a variety of knowledge distillation ap-
proaches have been proposed in the literature (Hin-
ton et al., 2015; Sun et al., 2019; Gajbhiye et al.,
2021; Zhou et al., 2022), their effectiveness have
largely not been evaluated on biomedical natural
language processing tasks. In this work, we evalu-
ate the effectiveness of the proposed approaches for
knowledge distillation on biomedical NLP tasks.
To further enhance performance, we propose an
adaptive meta-learning method for distilling large
and inefficient biomedical models into more effi-
cient and smaller ones. In experiments conducted
on two biomedical natural language processing
tasks, we find that our proposed meta-learning ap-
proach to knowledge distillation delivers improved
predictive performance over previous and recent
state-of-the-art knowledge distillation methods.

2 Knowledge Distillation

Knowledge distillation is a model compression
method which aims to transfer knowledge from
large and accurate but computationally inefficient
models to smaller and more efficient models with-
out significant loss in task performance. This is
usually achieved by training a smaller and compu-
tationally efficient student model to imitate the out-
puts of a larger and inefficient teacher model with
a knowledge distillation objective. For instance,
the knowledge distillation objective proposed in
Hinton et al. (2015) uses the final output logits pro-
duced by the teacher model to transfer its hidden
knowledge to the student model. Concretely, given
a teacher model T parametrized by θT , a student
model S parametrized by θS and a dataset D con-
taining N instances D = {(xi, yi)}Ni=1 , the knowl-
edge transfer between teacher and student can be
achieved by training the student with a knowledge
distillation objective LKD of the form:
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LKD =
1

N

N∑
i=1

[
αLD

(
T (xi, θT ) , S (xi, θS)

)
+ βLT

(
yi, S (xi, θS)

)
] (1)

where LD is a measure of divergence (such as
the KL-divergence) between the teacher’s output
predictive distribution T (xi, θT ) and the student’s
output predictive distribution S (xi, θS), LT is a
task-specific loss function (such as the standard
cross-entropy loss), xi is an input instance with la-
bel yi, while α and β are (scalar) hyper-parameters
which determine the relative weight between the
two components of the overall knowledge distil-
lation loss function. In other words, α and β de-
termine the rate of knowledge exchange between
teacher and student during knowledge distillation.
Typically, the values of α and β are manually set
before knowledge distillation training, and are then
kept fixed throughout. Gou et al. (2021) and Gupta
and Agrawal (2022) give further overviews of vari-
ous knowledge distillation methods.

3 Meta-Learning

Meta-learning, also known as learning to
learn (Biggs, 1985; Schmidhuber, 1987; Bengio
et al., 1991; Thrun and Pratt, 1998) aims to de-
velop algorithms and models that are able to learn
more efficiently with experience, by generalizing
from the knowledge of related tasks. These mod-
els are able to learn how to learn, by improv-
ing their own learning process over time. Vari-
ous approaches to meta-learning have been pro-
posed and applied in various areas. These ap-
proaches include specific-architectures for learning
to learn (Vinyals et al., 2016; Snell et al., 2017),
learning to update model parameters from back-
ground knowledge (Andrychowicz et al., 2016;
Ravi and Larochelle, 2017), and gradient-based
model-agnostic meta-learning methods (Finn et al.,
2017; Nichol et al., 2018; Rothfuss et al., 2021).
Example natural language processing tasks to
which meta-learning has been applied include ma-
chine translation (Gu et al., 2018) and quality esti-
mation (Obamuyide et al., 2021a,b).

Gradient-based model-agnostic meta-learning al-
gorithms such as MAML (Finn et al., 2017) of-
ten involve a bi-level optimization objective where
feedback from the performance of an inner-learner
(student model) is used to optimize a meta-learner

(teacher model) with the aid of a meta-objective. In
other words, in contrast with the teacher model in
common knowledge distillation approaches which
does not take into account feedback from the stu-
dent model, the teacher model in meta-learning is
able to receive and utilize feedback from the stu-
dent model in order to improve itself.

Additionally, in knowledge distillation the
teacher and student models are usually trained one
after the other, with the teacher model trained first
and then fixed during the student training. On the
other hand, the student and teacher models in meta-
learning are trained jointly together in order for
them to improve each other.

4 Knowledge Distillation with
Meta-Learning

Some works have investigated the use of the bi-
level optimization framework in meta-learning to
improve knowledge distillation, that is, to employ
meta-learning to explicitly optimize the teacher for
better knowledge transfer during the knowledge
distillation process. For instance, Pan et al. (2021)
trained a teacher network that can be adapted across
several domains with meta-learning, and then per-
form standard knowledge distillation to distil the
knowledge present in the teacher network into a
student network. However, Pan et al. (2021) utilize
meta-learning only to train a teacher model, and
not throughout knowledge distillation training, thus
limiting the generalizability of their approach. In
order to enable the teacher model to better transfer
knowledge to the student, Zhou et al. (2022) pro-
posed the use of a meta-learning pilot update mech-
anism which improves the alignment between the
student and the teacher in knowledge distillation.
In their approach, Zhou et al. (2022) update both
the teacher and student throughout the knowledge
distillation training process, resulting in improved
knowledge distillation performance.

5 Meta-Learning Adaptive Knowledge
Distillation

An important limitation in all aforementioned
knowledge distillation methods, including those
that make use of meta-learning, is that they treat
the rate of knowledge exchange between teacher
and student (α and β in Equation 1) as fixed dur-
ing training. This is not ideal, as the optimal rate
and level of knowledge exchange between teacher
and student should be updated during training to
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account for their current state.
A relevant and analogous human analogy is that

school teachers teach and students learn different
curricula depending on the student’s educational
level (e.g. nursery, primary, secondary, or univer-
sity student). In most circumstances, it would not
be appropriate for a human teacher to be teach-
ing university-level knowledge to primary school
students, and vice-versa. Therefore, α and β in
knowledge distillation also need to be adaptive and
learnable.

As a solution to the aforementioned issue, in
this work we propose to treat α and β as learn-
able parameters which are updated during training.
Our work builds on that of Zhou et al. (2022) and
further enhances it with learnable α and β. This
would allow the values of α and β to change to
reflect the needs of the student throughout train-
ing. As we demonstrate in the experiments, this
change results in improved knowledge distillation
performance. We refer to our adapted approach
as Meta-Learning Adaptive Knowledge Distilla-
tion (MetaAdaptiveKD), and our overall training
algorithm is illustrated in Algorithm 1.

Algorithm 1 Meta-Learning Adaptive Knowledge
Distillation (MetaAdaptiveKD)
Require: Training data Dtrain, holdout data Dhold

Require: Teacher θT and student θS models
Require: Teacher µ and student ϵ learning rates
Require: Learnable α and β

1: Initialize θT , θS , α, β
2: while not done do
3: Create a copy of student parameter θS to θ′S
4: Sample mini-batches of train data xtrain ∼ Dtrain

5: for each xtrain do
6: θ′S ← θ′S − ϵ∇θ′

S
LKD (xtrain, θ

′
S , θT , α, β)

7: end for
8: Sample mini-batches of holdout data xhold ∼ Dhold

9: for each xhold do
10: α← α− µ∇αLT

(
xhold, θ

′
S (θT , α, β)

)
11: β ← β − µ∇βLT

(
xhold, θ

′
S (θT , α, β)

)
12: θT ← θT − µ∇θTLT

(
xhold, θ

′
S (θT , α, β)

)
13: end for
14: Update θS ← θS − ϵ∇θSLKD (xtrain, θS , θT , α, β)
15: end while

Our approach described in Algorithm 1 assumes
access to both training and holdout datasets1. We
start by initializing parameters of the teacher and
student models, and α and β (line 1). At each
training step, we first create a copy of the student
parameters (line 3) and sample a number of mini-
batches from the training data (line 4). Then for

1The holdout dataset can, for instance, be obtained by
splitting from the training set.

each mini-batch of training data, we update the
copy of the student model (lines 5-7). Because the
updated student model θ′S as well as its loss on
the holdout set LT

(
xhold, θ

′
S (θT , α, β)

)
is now a

function of α, β and θT , we can use the holdout loss
to optimize α, β and θT . Thus, we sample mini-
batches of data from the holdout set (line 8), and
for each mini-batch of holdout data, we update α, β
and θT (lines 9-13). Finally, we update parameters
of the original student model θS (line 14). At the
end of training, the final student model θS can be
evaluated and deployed.

6 Experimental Setup and Details

6.1 Datasets

Given our interest in improving the efficiency of
biomedical models with knowledge distillation,
we conduct experiments on the following two (2)
biomedical datasets:

ChemProt: The Chemical Protein Interaction
corpus (ChemProt) (Krallinger et al., 2017) is a
dataset of PubMed 2 abstracts annotated with in-
teractions between chemical and protein entities.
Following common practice, we evaluate on five(5)
classes from this dataset.

GAD: The Genetic Association Database (GAD)
(Bravo et al., 2014) is a binary relation classifica-
tion corpus containing a list of gene-disease associ-
ations, with the corresponding sentences reporting
the association.

Table 1 provides a breakdown of the instances
in both datasets.

Dataset Train Dev Test

ChemProt 18035 11268 15745
GAD 4261 535 534

Total 22296 11803 16279

Table 1: Number of instances in the train/dev/test splits
of the ChemProt and GAD datasets.

6.2 Teacher and Student Models

Both the teacher and student models are based
on the transformer architecture (Vaswani et al.,
2017). Specifically, the teacher model is a
transformer model with 12 layers and 110M pa-
rameters. It is initialized with weights from

2https://pubmed.ncbi.nlm.nih.gov
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BioLinkBERTbase (Yasunaga et al., 2022), a state-
of-the-art biomedical transformer model with same
architecture as BERT (Devlin et al., 2019), but
pre-trained using citation links between PubMed
articles. In contrast, the student model is a 6-
layer transfomer with 66M parameters. It is ini-
tialized with weights from the first six(6) layers of
BioLinkBERTbase.

6.3 Baselines
We compare our approach with the following base-
lines:

Finetune This is the conventional finetuning ap-
proach, where a pre-trained transformer student
model is finetuned on each dataset without any
knowledge distillation loss. This student model
has the same number of parameters as the student
model used by our approach and the other base-
line knowledge distillation approaches. It is ini-
tialized with weights from the first six(6) layers of
BioLinkBERTbase.

KD This is the original knowledge distillation
approach proposed in (Hinton et al., 2015). This
approach first trains a teacher model, which is then
kept fixed while the student is trained with the stan-
dard knowledge distillation objective in Equation
1.

PatientKD This approach to knowledge distilla-
tion was proposed by Sun et al. (2019). It works by
aligning intermediate layer feature representations
from the teacher and the student.

MetaDistil This is a recent, state-of-the-art meta-
learning approach to knowledge distillation pro-
posed by Zhou et al. (2022). Different from our
approach, MetaDistil uses fixed values for α and
β.

6.4 Experimental Details

Hyper-parameter Value

Learning rate 5e-5
Mini-batch size 8

Max. sequence length 128
Distillation temperature 2

Number of training epochs 20

Table 2: Hyper-parameter values for all compared ap-
proaches

Our implementation makes use of Py-
torch (Paszke et al., 2019), transformers (Wolf

et al., 2020) and higher (Grefenstette et al., 2019)
libraries. All compared knowledge distillation
approaches, including ours, make use of the same
values for hyperparameters such as the number of
training epochs, learning rate and batch size. These
values were selected by manual search in initial
experiments, and are provided in Table 2. Each
experiment is repeated across five (5) different
random seeds, and we report the average.

6.5 Evaluation

We make use of the F1 measure as performance
metric. We repeat each distillation experiment
five(5) times and report the average F1 perfor-
mance of the distilled student on the test set of
each dataset.

7 Results and Discussion

The results obtained by our approach and the other
knowledge distillation methods on the two biomed-
ical datasets are as shown in Table 3. All student
models have nearly twice (x1.94) the inference
speed of the teacher model and only about 60%
(66M) of the teacher’s parameters.

Method # Speed↑ F1 (%)

ChemProt GAD

BioLinkBERT (Teacher) 110M x1.00 77.57 84.39

Finetune 66M x1.94 72.17 78.53
KD 66M x1.94 72.49 78.84
PatientKD 66M x1.94 72.10 78.89
MetaDistil 66M x1.94 72.73 79.08

MetaAdaptiveKD 66M x1.94 73.03 79.62

Table 3: Experimental results on the ChemProt and
GAD datasets. The # column represents the number
of parameters in each model, while the Speed↑ column
represents the speedup of each approach when compared
to the teacher model. F1 results of the teacher model are
obtained from Yasunaga et al. (2022). The F1 results
for all student models including ours are the average of
five(5) runs with different random seeds.

In terms of F1 performance of the student mod-
els, we find that just finetuning the student model
(Finetune) without any knowledge distillation ob-
jective underperforms all other distillation methods
on the GAD dataset and also underperforms all
other methods except PatientKD on the Chemprot
dataset, which demonstrates the effectiveness of
knowledge distillation in general. PatientKD out-
performed KD on the GAD dataset but not on the



135

ChemProt dataset, while MetaDistil outperforms
KD and PatientKD on both datasets.

Finally, we find that our approach MetaAdap-
tiveKD, which adaptively learns α and β with meta-
learning, outperforms all previous distillation meth-
ods on both datasets. The fact that our approach
outperforms MetaDistil (a meta-learning method
which uses fixed α and β) demonstrates the impor-
tance of not keeping α and β fixed during knowl-
edge distillation, but instead learning their optimal
values from the distillation data during training, as
done in our approach.

8 Conclusion

In this work, we proposed a new meta-learning
approach to knowledge distillation. In contrast to
previous methods which manually set the rate of
knowledge exchange between student and teacher
and keep them fixed throughout training, our ap-
proach learns their optimal values adaptively from
the distillation data during training. In experiments
conducted on two biomedical datasets, we demon-
strated that our approach outperforms previous
knowledge distillation methods.

Limitations, Risks and Ethical
Considerations

Meta-learning methods for knowledge distillation
in general require additional computational re-
sources compared to traditional distillation meth-
ods. The MetaAdaptiveKD algorithm for knowl-
edge distillation introduced in this work is a
meta-learning based approach with similar com-
putational requirements as previous meta-learning
methods.

Although this computational cost can be high,
it is a one-time investment with long-term returns
since it would result in an efficient and more accu-
rate compressed model with reduced run-time costs.
In addition, while we have conducted experiments
on two english biomedical datasets, MetaAdap-
tiveKD is a generic distillation technique that can
be applied to data from other languages and do-
mains.

In terms of risks and ethical considerations,
MetaAdaptiveKD improves on the performance of
previous knowledge distillation methods and does
not introduce additional risks and ethical concerns
in comparison with these previous methods. Never-
theless, as has been noted in previous work (Hooker
et al., 2020), the introduction or amplification of

algorithmic biases is a common risk of model com-
pression methods in general, and devising ways of
addressing these concerns is an important line of
future work.
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