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Abstract

Computing the semantic similarity between
two texts is crucial in various NLP tasks. For
more than a decade, a framework, known as
Semantic Textual Similarity (STS) has been
used to test computational models of semantic
similarity (Agirre et al., 2012). The STS evalu-
ation framework assumes that a model that per-
forms well for the general STS task should also
perform well for specific application-oriented
tasks. However, does this assumption indeed
hold? This study empirically demonstrates that
the answer is not always positive. We found a
considerable gap between model performance
in STS and each specific task. We identified
three factors that contributed to the gap, namely,
(i) sentence length distribution, (ii) vocabulary
coverage, and (iii) granularity of gold-standard
similarity scores. We believe that these find-
ings will be considered in future research on
semantic similarity.

1 Introduction

Computing the semantic similarity between two
texts is crucial in various NLP tasks. One promi-
nent cluster of application examples is the use of
semantic similarity as a metric for evaluating auto-
matically generated text (e.g., machine translation
and text summarization) considering gold reference
texts (Zhang et al., 2020a; Sellam et al., 2020; Rei
et al., 2020). Such semantic similarity metrics are
also reported effective as a loss function for training
language generation models (Wieting et al., 2019;
Yasui et al., 2019). Another common application of
the semantic similarity can be seen in text/sentence
retrieval, where estimating the relevance between a
given query and retrieved texts is an essential com-
ponent (Chen et al., 2017; Karpukhin et al., 2020;
Gao et al., 2021a; Qu et al., 2021).

For more than a decade, a framework, known as
Semantic Textual Similarity (STS) has been widely
used to test computational models of semantic sim-
ilarity (Agirre et al., 2012). Over the last decade,

STS has emerged as the de-facto standard task for
evaluating semantic similarity models, and numer-
ous studies have been published to propose seman-
tic similarity models over a decade (Severyn et al.,
2013; Lan and Xu, 2018; Reimers and Gurevych,
2019; Li et al., 2020; Zhang et al., 2020b; Yan
et al., 2021; Giorgi et al., 2021; Gao et al., 2021b;
Chuang et al., 2022, etc.).

The STS evaluation framework assumes that a
model that performs well for the general STS task
should also perform well for specific application-
oriented tasks. Based on this assumption, models
proposed for and evaluated on STS have been ap-
plied to application-oriented tasks. For example, in
machine translation (MT) evaluation, for the model
incorporating several universal sentence encoders
(USE) (Conneau et al., 2017; Logeswaran and Lee,
2018; Cer et al., 2018), which performed well on
STS, had the highest performance in WMT18 (Shi-
manaka et al., 2018). In addition, for semantic re-
trieval, STS-based models such as USE have been
developed and validated their effectiveness (Yang
et al., 2020). These studies appear to provide em-
pirical evidence supporting the assumption that
STS performs well as a general proxy for specific
application-oriented tasks.

However, in this study, we question this widely
accepted assumption. Specifically, we empirically
investigated whether semantic similarity models
superior to the general STS task perform better on
specific application-oriented tasks. In the exper-
iments, we chose two representative application-
oriented tasks, MT Metrics (MTM) and passage
retrieval (PR), and investigated the correlation of
the performance of numerous (> 20) sampled mod-
els between STS and each specific task. From the
results, we gained several findings as follows:

• Semantic similarity models exhibited a non-
negligible gap in performance on STS and
each specific task (i.e., MTM or PR) (Fig. 1).
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• The discrepancies appeared to be caused by
the discrepancies between the STS dataset and
each application-specific dataset, including
(i) sentence length distribution, (ii) vocabu-
lary coverage, and (iii) granularity of gold-
standard similarity scores.

The identified gap, which we refer to as the eval-
uation gap, indicates that the assumption in ques-
tion does not necessarily hold and demonstrates
the potential dangers of relying solely on the cur-
rent STS-based evaluation alone in studying the
semantic similarity. We believe that our findings
will be considered in future research on the crucial
components of NLP.

2 Related work

The necessity of the semantic similarity in
application-oriented tasks. Semantic similarity
is required in various NLP application tasks, and
STS was motivated by being a surrogate task for
such application-oriented tasks (Agirre et al., 2012;
Cer et al., 2017). These tasks comparing simi-
larity can be categorized into two types, namely,
(1) reference-based evaluation and (2) semantic
retrieval. For example, the reference-based evalua-
tion is commonly used in the natural language gen-
eration (NLG) fields such as MT, summarization,
and simplification. Semantic retrieval includes PR,
dialog retrieval, as well as machine reading compre-
hension. Among these application-oriented tasks,
we selected (1) MT evaluation and (2) PR as repre-
sentatives, respectively.

In fact, MT evaluation and semantic retrieval
have several examples that incorporate STS-based
models. For example, Castillo and Estrella (2012);
Shimanaka et al. (2018) applied STS model for
MT evaluation and demonstrated the effectiveness
of those models. For semantic retrieval, Yang
et al. (2020) demonstrates the effectiveness of mul-
tilingual USE as a semantic retriever. Following
this success, recent semantic similarity models
have also reported performance as semantic re-
trievers (Gao et al., 2021b; Chuang et al., 2022).
However, relying on the STS evaluation for seman-
tic similarity models could be risky when there
is no sufficient correlation between the evaluation
of STS and application-oriented tasks. We inves-
tigates the evaluation gap between STS and two
tasks, such as MT evaluation and PR, to identify
vulnerabilities in the STS evaluation in the real
world.

Validity of NLP evaluation protocol. Recently,
the validity of evaluation protocols, such as bench-
mark datasets (Bowman and Dahl, 2021) or met-
rics (Mathur et al., 2020; Durmus et al., 2022) has
been questioned on various NLP tasks. Many stud-
ies have identified the bias or lack of certain factors
in the evaluation protocol. Søgaard et al. (2021);
Varis and Bojar (2021) investigated the effects of
differences in the sentence length distribution be-
tween train and test sets. Additionally, a difference
in vocabulary distribution (domain mismatch) is
also often mentioned as an important factor affect-
ing the evaluation (Zhang et al., 2020b; Wang et al.,
2022). In terms of an STS-specific factor, Reimers
et al. (2016) highlighted the difference in the gran-
ularity of similarity between STS and downstream
tasks. They focus on appropriate task-intrinsic eval-
uation metrics for STS-based models, considering
different downstream tasks; however, their thought
is also based on the assumption that the STS-based
models are useful for the downstream tasks. In our
study, we question this assumption. Based on these
previous studies, we analyze the effects of three
factors, sentence length, vocabulary, and similar-
ity granularity, contributing to the evaluation gap
between STS and the application-oriented tasks.

Discussion of the problems of STS benchmark.
While many models have been proposed using the
STS evaluation, some studies have also questioned
the STS or conducted an additional evaluation for
specific factors that are not captured by the STS
evaluation. Wang et al. (2021) argue that previ-
ous studies rely on the STS evaluation and argues
that STS lacks domain adaptability. Futhermore,
Liu et al. (2021) did not adopt the STS evalua-
tion because of the lack of domain coverage and
lack of consideration for context, so they created
a new contextual dialog domain STS dataset. In
addition, Wieting et al. (2020) extracted a more
difficult subset which contains the examples with
low word overlap by focusing on a specific factor
such as word overlap. Wang et al. (2022) focused
on the discrepancy between the evaluation of STS
and single-sentence downstream tasks in SentEval,
highlighting the problems of domain mismatch and
ambiguous annotations. In comparison, we investi-
gated whether STS satisfies the original motivation
for application-oriented tasks practically using se-
mantic similarity (Agirre et al., 2012; Cer et al.,
2017).

In summary, we shed the light on the specific
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Figure 1: Correlation between evaluation using STS and
that using task-specific datasets, such as MT Metrics
(MTM) and Passage Retrieval (PR).

factors such as sentence length, vocabulary, and
similarity granularity to make the relationship to
the evaluation gap explicit. We provided the first
evidence that STS has a considerable evaluation
gap even from two tasks, such as MT evaluation
and PR that have been considered representative
application tasks since the inception of STS.

3 Is there a gap between evaluation using
STS and that using individual tasks?

STS dataset (Agirre et al., 2012; Cer et al., 2017)
was proposed as a semantic similarity benchmark
that can be directly applied to several NLP tasks
and is currently the de-facto standard for evaluat-
ing semantic similarity models. In this study, to
validate the STS benchmark, we conducted com-
prehensive experiments to examine whether there
is a sufficient correlation between the evaluation
results on STS and that on two specific application-
oriented task datasets.

3.1 Tasks and datasets

General settings. We present the definitions of
three tasks—STS and two application-oriented
tasks—that must capture the semantic similarity
addressed in this study. The main structure of all
three tasks is comparing a sentence pair (s, s′) and
predicting the semantic similarity score between
the two sentences. We selected two application-
oriented tasks, MTM and PR, on which the STS
motivation is focused. The two tasks are identical
in that they require considering the semantic simi-
larity, but they are very different in nature. MTM
compares relatively similar sentence pairs and pro-
vides a gradation score as the gold standard. PR
compares sentence pairs with large differences in
sentence length and provides a binary label (related
or not) as the gold standard. We examine the eval-

uation gap between these two different tasks and
STS to test the adaptability of the STS evaluation
to different tasks.

STS (STS-b). STS (Agirre et al., 2012) is a task
that compares a sentence pair (s1, s2) and predicts
a similarity score between the two sentences. The
gold-standard similarity score is provided in the
range of 0-5. Model prediction scores are evalu-
ated using Pearson or Spearman correlations with
the gold standard. In this study, we used Pear-
son correlation. We used the STS-b dataset (Cer
et al., 2017) with image captions, news articles,
and forum domain data over a 5-year pilot task
(STS12-17).

MT Metrics (WMT17). MT Metrics (MTM) is a
task that compares a (model hypothesis, reference)
pair and predicts the adequacy scores of the model
hypothesis relative to the reference. In this study,
we use the segment-level Direct Assessment dataset
(to-English) in WMT17 (Bojar et al., 2017).1 We
selected this because of the reliability of the manual
scores (Zhang et al., 2020a; Sellam et al., 2020).
The gold standard score is the normalized value of
scores manually evaluated with 100 scales to the
pair (model hypothesis, reference). The Pearson
or Kendall correlation between the gold standard
and the model prediction score is usually used in
the evaluation. In this study, we used the Pearson
correlation.

Passage Retrieval (MS-MARCO). Passage Re-
trieval (PR) is an important subtask of question-
answering that is required to improve the per-
formance of search systems used by many
users. We use passage re-ranking data from MS-
MARCO (Bajaj et al., 2018) as a dataset for PR.
MS-MARCO is a highly competitive dataset that
has been used as a PR benchmark in several stud-
ies (Gao et al., 2021a; Qu et al., 2021). Passage
re-ranking must re-rank 1,000 candidate passages
for a query in the order of their relevance to the
query. Generally, the model predicts the relevance
of each candidate sentence to the (query, passage)
pair and extracts the sentence with the highest rel-
evance score. Models are usually evaluated using
Mean Reciprocal Rank (MRR), which determines
whether passages with a gold-standard related la-
bels appear at the top after re-ranking.

1We use cs–en, de–en, fi–en, lv–en, ru–en, tr–en and zh–en
datasets, which are sourced from news domain texts. https:
//www.statmt.org/wmt17/results.html
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3.2 Semantic similarity prediction model

A semantic similarity prediction model usually in-
volves the following two steps: (i) obtaining a sen-
tence representation and (ii) calculating the similar-
ity between two representations.

To determine whether there is an evaluation gap
between various models, we measured the cor-
relation between the evaluation results on STS
and those on the two application tasks. In this
study, we used the following 23 semantic similar-
ity prediction models: BoW-{raw, TFIDF}-sum,
BoV-{Word2vec*, Glove, Fasttext}-{mean, max},
USE-{normal, large}, Avg. of BERT-{BERT-base-
uncased (bbu), RoBERTa-large (rl)}, BERTScore
(BScore)-{BERT-base-uncased, RoBERTa-large}-
{precision, recall, F1-score}, Sentence-BERT
(SBERT)-{bertbase-NLI-mean, MiniLM, mpnet},
and SimCSE-{supervised, unsupervised}.2

3.3 Experimental procedure and results

Fig. 2 compares the evaluation for each semantic
similarity prediction model on STS and the two
application tasks, MTM and PR. The x-axis rep-
resents the semantic similarity prediction models,
which are ordered by decreasing the performance
on STS from left to right. Compared with STS, the
performance of each model differs largely in both
MTM and PR. For the STS evaluation, SBERT (mp-
net: 0.86) outperforms BScore (RoBERTa-large,
F1-score: 0.55); however, in the MT evaluation
task (MTM), those performances are inverse as
SBERT (0.66) < BScore (0.76). By comparing
STS and PR, the performances of the SBERT-bb-
NLI, the original model in (Reimers and Gurevych,
2019), and BoW models are much lower with PR
than with STS. Both STS and MTM, both correla-
tion measures have a similar trend for model rank-
ing in each task (Fig. 2), thus we used the Pearson
correlation in each task’s evaluation. In addition,
we calculated Spearman correlation coefficients be-
tween the performance on STS and that on each
task to precisely visualize these performance gaps
(Fig. 1). Here, we define these correlation coeffi-
cients as the value of the evaluation gap. A lower
correlation value indicated a larger evaluation gap.
In Sec. 4, we examine changes in the evaluation
gap when the explanatory variables (e.g., sentence
length, vocabulary coverage, similarity granularity)
are changed.

2* We remove Word2vec models due to computational
order in PR.

(a) STS

(b) MT Metrics

(c) Passage Retrieval

Figure 2: Performance of semantic similarity models on
STS and task-specific datasets (MT Metrics and Passage
Retrieval).

4 What factors cause the evaluation gap?

As mentioned in Sec. 3, there is a large gap be-
tween the specific application-oriented tasks and
STS used as frameworks for evaluating the sen-
tence similarity prediction models. In this section,
we discuss three potential factors contributing to
the gap between evaluation frameworks, as well as
the dataset features that should considered to when
using STS for evaluation.
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Figure 3: Histogram of sentence length in STS and two
application-oriented datasets (MT Metrics: MTM and
Passage Retrieval: PR).

4.1 Factor 1: difference in sentence length
In the following, we discuss the sentence length
(i.e., the number of words in a sentence). Words are
commonly used as the basic unit in NLP models.
This is also true when making predictions of seman-
tic similarity measures. We focused on the large
variance in the number of words (i.e., sentence
length) in the target text for similarity measure-
ment. For example, in PR, the model should handle
very short search snippets (queries) or very long
documents (passages). Some studies reported that
differences in the sentence length distributions pro-
duce different scores on different test sets (Søgaard
et al., 2021; Varis and Bojar, 2021). Therefore, we
hypothesize that differences in the distribution of
sentence lengths by task may result in an evaluation
gap.

4.1.1 Short sentence length in STS benchmark
Here, we demonstrate that the STS dataset has
shorter sentence lengths than the datasets for other
specific tasks, such as MTM and PR. Histograms
of the sentence length distribution for each dataset
are presented in Fig. 3. Note that the PR queries
contain many short nonsentences, such as “define
preventive.” Compared with the sentence length
distribution of the application-oriented task, STS
has a biased sentence length distribution consisting
of short sentences.

4.1.2 Does the sentence length gap cause the
evaluation gap?

There is a difference in the sentence length distribu-
tion between STS and the application-oriented task
datasets. Here, we investigate whether eliminating
the difference in sentence length between the STS
and the application tasks alleviates the evaluation
gap.

Settings. We created subsets of the application-
oriented datasets (MTM and PR) to match or dif-
fer the STS sentence length distribution, and then,
compared the correlations between the STS eval-
uation result and each subset’s result for the dif-
ferent models. The subset [x, y) was drawn from
a range of sentence lengths [x, y) according to
the STS distribution. In MTM, the subsets were
split based on the average sentence length of the
sentence pairs. In PR, the split was based on the
length of the passage because of a large-sentence
length difference between the query and passage.
Histograms of the created subsets according to sen-
tence length distribution are shown in Fig. 4. We
created MTM subsets from [0, 40) to [30, 70) and
PR subsets from [10, 50) to [40, 80). The shorter
MTM subsets, such as [0, 40) and [5, 45), had
nearly the same distribution as the STS set. Note
that we could not create a subset of PR with the
same distribution as STS because the original sen-
tence length distributions were very different. We
investigated whether correlations were lower in the
task-specific datasets (i.e., the evaluation gap was
amplified) when their sentence length distribution
was more different from that of STS.

Results. Figs. 5(a) and (b) present the Spearman
correlations between the performance of the mod-
els on STS and those on the MTM and PR subsets
with adjusted sentence length distributions, respec-
tively. For MTM, the greater the difference in the
sentence length distribution, the lower the correla-
tion (i.e., the larger the evaluation gap). In com-
parison, no trend was observed for PR. This result
indicates that the difference in the sentence length
distribution contributes to the evaluation gap be-
tween STS and MTM.

Analysis: In-domain vs. Out-of-domain. The
STS dataset is sourced from three different domains
(news, image captions, and forum), and the sen-
tence length distribution actually differs for each
domain. We conducted additional experiments for
three sub-domain sets following the same proce-
dure using subsets, and found that the similar trends
that the evaluation gap increases with the larger sen-
tence length subset (See Appendix for details).

4.2 Factor 2: difference in vocabulary
coverage

Beyond sentence length, there are still other factors
that may contribute to the evaluation gap between
STS and the application-oriented tasks. Here, we
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Figure 4: Histogram of subsets extracted from two application tasks (MT Metrics and Passage Retrieval) according
to sentence length.
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Figure 5: Spearman correlations between performance
with STS and that with the subsets split according to
sentence length with specific tasks (MT Metrics: MTM
and Passage Retrieval: PR). The darker color represents
the lower correlation (= the larger evaluation gap). [x,
y) means that the subsets consist of the examples of the
sentence length from x to y.

discuss the vocabulary coverage of the application-
oriented tasks using STS. One reason for focusing
on this factor is that the text domains represented
in the datasets are distinct. Some studies have high-
lighted the strong dependence of the STS-based
models on domains (Zhang et al., 2020b), as well
as mismatch with a dialog domain (Liu et al., 2021).
Therefore, we hypothesize that differences in vo-
cabulary coverage due to domain differences may
influence the evaluation gap.

4.2.1 Low vocabulary coverage with STS for
vocabulary in the applications

Here, we demonstrate that the STS vocabulary does
not adequately cover task vocabulary (MTM, PR).

0.4 0.6 0.8 1.0
Vocabulary coverage with STS for (s,s')

0

1

2

3

4

5 MTM
PR

Figure 6: Histogram of the ratio of the vocabulary cov-
ered with the vocabulary of STS in the application tasks
(MT Metrics: MTM and Passage Retrieval: PR) for
each sentence pair.

For each sentence pair, we calculate the vocabu-
lary coverage, which is the recall of vocabulary in
STS (Vsts) to the vocabulary in the sentences in the
specific task (s, s′), as follows:

Recall(s, s′) =
|(s ∪ s′) ∩ VSTS|

|s ∪ s′| (1)

Fig. 6 shows the histograms of Recall(s, s′) for
each sentence pair in MTM and PR. In both tasks,
most sentence pairs have a vocabulary coverage
of less than 1, i.e., they contain vocabulary not
covered by STS. Thus, STS vocabulary does not
sufficiently cover the vocabulary of the other tasks.

4.2.2 Does the vocabulary distribution gap
cause an evaluation gap?

We investigate whether the low vocabulary cover-
age with STS examined in Sec. 4.2.1 is indeed a
factor contributing to the evaluation gap.

Settings. For the MTM and PR datasets, we
extract the top and bottom 100 pairs as the
Recall(s, s′)-High and Recall(s, s′)-Low subsets,
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respectively. The MTM Recall(s, s′)-High subset
contains all sentence pairs composed of STS vo-
cabulary. Furthermore, the average of the PR High
subset is 0.988 ± 0.011, which is almost all the
pairs composed of STS vocabulary. In this experi-
ment, we examine whether higher lexical coverage
with the STS vocabulary for the subsets resulted in
a higher correlation.

Results. Table 1 presents the Spearman correla-
tion between the performance on STS and those on
the Recall(s, s′)-High and Low subsets in MTM
and PR, respectively. The PR High subset corre-
lated better than the Low subset, as hypothesized.
However, no such trend was observed in MTM. A
reason for the MTM result is that STS is a mix of
three different domains (news, image captions, and
forum). In contrast, MTM is a single news domain
dataset, which might have caused a divergence in
the evaluation of sentence pairs from the same or
different domains.

Analysis: In-domain vs. Out-of-domain. To
confirm the influence of STS inner domains, we per-
formed an additional analysis. We created vocabu-
lary coverage subsets for the three STS sub-domain
sets (news, image captions, and forum) in the same
way as for the entire STS, and calculated the corre-
lation between the three STS sub-domain sets and
MTM High/Low subsets. For an in-domain setting,
the MTM subset with High vocabulary coverage us-
ing STS-news correlated better than that with Low
vocabulary coverage (0.438 > 0.373), as hypothe-
sized. For out-of-domain settings, the STS-forum
set also showed that the High subset has a better
correlation than the Low subset (0.779 > 0.458);
however, in the image caption set, the correlation
of the Low subset (0.177) is better than that of
High subset (0.046). For the image caption do-
main, the correlation values are extremely low for
both the subsets, indicating that the STS image
caption set did not play a good role in the evalu-
ation of application-oriented tasks such as MTM.
In summary, these results indicate that the vocabu-
lary coverage contributes to evaluating gap between
STS and the two application-oriented tasks, such
as MTM and PR.

4.3 Factor 3: difference in granularity of
gold-standard scores

Below, we consider the granularity gap of the
gold-standard similarity scores between STS and

Recall(s, s′)-Low Recall(s, s′)-High

MTM 0.276 > 0.272
PR 0.673 < 0.851

Table 1: Spearman correlations between the perfor-
mance with STS and that with the subsets split accord-
ing to higher vocabulary coverage (Recall(s, s′)-High)
and lower one (Recall(s, s′)-Low) with STS of specific
tasks (MT Metrics: MTM and Passage Retrieval: PR).

MTM. 3

We suspect that the granularity of the similar-
ity that was considered in each task varies. The
distinction between better or worse hypotheses for
high-similarity sentence pairs is an arresting chal-
lenge in MTM (Ma et al., 2019). More concretely,
the current semantic evaluation model for MTM
is unable to finely discriminate the better outputs
in highly competitive language pairs such as to-
English because of high quality of recent MT out-
put for highly competitive language pairs. Con-
sidering this application, we hypothesize that the
similarity granularity of STS is insufficient to eval-
uate such MTM problems.

4.3.1 The discrepancy of the similarity
granularity between STS and MTM

The difference in the similarity score between STS
and MTM can be seen in some real examples. The
actual examples in STS and MTM are illustrated in
Table 2. STS provides give relatively high scores
for the difference between the past and present
progressive tenses, and the difference in including
proper nouns such as cholera, as long as they gen-
erally share some elements. However, in MTM,
the first example is given a relatively higher score
(0.49) for the different actions between continues
to take and is already given, whereas the second
example (Fresh fruit ...) is assigned a lower score
(-0.83), sharing almost similar elements but the hy-
pothesis is somewhat difficult to understand. Can
this similarity granularity gap cause the evaluation
gap?

4.3.2 Does the gap in the granularity of
similarity cause an evaluation gap?

Here, we investigate whether the difference in the
similarity granularity mentioned in Sec. 4.3.1 re-
sults in the evaluation gap.

3In this section, we omit considering PR because the prop-
erty of PR is different from the other tasks in terms of binary
labels.
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source s1 (ref) s2 (hyp) gold BScore SimCSE

STS (i) A man is riding a mechanical bull. A man rode a mechanical bull. 4 0.98 0.96
(ii) A total of 17 cases have been con-

firmed in the southern city of Basra,
the Organization said.

A total of 17 confirmed cases of
cholera were reported yesterday by
the World Health Organisation in
the southern Iraqi city of Basra.

3.6 0.93 0.74

MTM (i) This drug continues to take 12
months after a heart attack, which
can reduce the risk of a stroke or
heart attack.

The drug is already given for 12
months after a heart attack, reducing
the risk of a stroke or another attack.

0.49 0.94 0.90

(ii) Fresh fruit was replaced with
cheaper dried fruit.

Fresh fruit is cheap dried fruit in-
stead.

-0.83 0.94 0.82

Table 2: Actual examples of STS and MT Metrics (MTM). The gold scores of MTM are normalized in the range
(-1.81, 1.44) from with manually evaluated 100-scale scores. “BScore” and “SimCSE” mean prediction scores with
BERTScore (RoBERTa-large, F1-score) and SimCSE (supervised), respectively.

Settings. For the STS and MTM datasets, we cre-
ate subsets according to the similarity scores for
a sentence pair. We divide the STS dataset into
five subsets by considering six labels from 0 to
5. For the MTM dataset, we separated four sub-
sets (Sim-{Low, MidLow, MidHigh and High}) by
quartiles for human-rated golden scores. We deter-
mined the gap between the evaluations using STS
and MTM subsets to confirm which range of the
similarity granularity impacts the gap in the evalu-
ation. Specifically, the correlation might be higher
between the narrower range of the similarity band
of STS and the wider range of that of MTM. We an-
ticipate that the higher similarity band in STS only
correlates with the MTM dataset, to consider the
demand of the MTM that must distinguish higher
similarity pairs.

Results. Fig. 7 shows the Spearman correlations
between the similarity granularity subsets of STS
and that of the MTM. As hypothesized, only the
high-similarity subsets of STS, STS-(3,4] and STS-
(4,5], were highly correlated with all the MTM
subsets. These results significantly show that STS
is unable to evaluate discrimination performance
in the fine-grained higher similarity bands.

In Fig. 8, we describe one interpretation of the
above result. We suspect that STS cannot capture
fine-grained granularity at higher similarity bands,
as discussed (Sec 4.3.1). Not only is the evaluation
of the high-similarity band of STS is higher cor-
related with that of MTM, but the low-similarity
band of STS and MTM are nearly uncorrelated or
inversely correlated (Fig. 7). We should consider in-
troducing finer granularity in high similarity bands
for STS, while also considering exclusion exam-
ples in ineffective low similarity bands as a widely

Figure 7: Spearman correlations between performance
on subsets according to gold-standard similarity scores
of STS and MT Metrics (MTM). The darker color repre-
sents the lower correlation (= the larger evaluation gap).

STS

MT
Metrics

Gold-standard scores
0 1 2 3 4 5

0 100…gap

Figure 8: The relationship of the granularity of similar-
ity scores between STS and MT Metrics.

applicable benchmark.

Analysis: Tendency for each domain. As in the
previous analyses, we investigated the difference in
the tendencies for each domain. The correlations
between subsets and MTM similarity subsets in
each STS sub-domain sets are shown in Fig. 11.
For the in-domain setting (STS-news ↔ MTM),
only the middle similarity band showed a strong
negative correlation with the MTM evaluation. For
the two domains in the out-of-domain setting, the
image caption set showed no correlation with MTM
at lower similarity levels, whereas the forum do-
main set showed correlation only at very high or
low similarity levels. One of the possible reasons
for this strange phenomenon is the ambiguity of
STS annotations due to label definition and am-
ateur annotator discussed in (Wang et al., 2022).
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(a) news

(b) image captions

(c) forum

Figure 9: Spearman correlations between performance on subsets divided according to gold-standard similarity
scores of each STS domain (news, forum, image captions) and MT Metrics (MTM). The darker color represents the
lower correlation (= the larger evaluation gap).

Particularly, there is a large gap between the defini-
tions of 2 (not equivalent but share some details)
and 3 (roughly equivalent) in terms of semantic
equivalence, which can be attributed to this result.

5 Discussion and conclusions

We have investigated the gap between evaluation
scores on the STS benchmark dataset and those on
the evaluation datasets for MT evaluation (MTM)
and Passage Retrieval (PR). We identified three fac-
tors contributing to this evaluation gap; namely, (i)
sentence length distribution, (ii) vocabulary cov-
erage ratio, and (iii) similarity granularity. These
factors actually contributed to the evaluation gap,
indicating that STS is not currently a directly appli-
cable benchmark for evaluating semantic similarity
at present. Future work could include checking
for causal effects and controlling for covariates to
rigorously identify factors, as well as investigate
evaluation gaps in other tasks and domains.

Therefore, what should we do? The evaluation of
semantic similarity alone must continue to be stud-
ied because of the significant demand for predicting
semantic similarity (Sec. 1). One feasible approach
is to evaluate and validate the model performance

on multiple datasets that engage real-world tasks,
rather than just STS. Wang et al. (2021) argued
that the evaluation of existing semantic similarity
models is biased toward STS and reported eval-
uation results on several datasets, including STS.
Additionally, there have also been attempts to cre-
ate a union of evaluation datasets from multiple
task data and use it as a basis for evaluation in
neighboring fields, such as PASCAL-RTE (Dagan
et al., 2006) or SentEval (Conneau and Kiela, 2018).
While these attempts have been achieved, there is
an assumption that there are substantial costs are
involved in regularly maintaining the infrastruc-
ture in each of these areas. To proceed with this
approach, including STS, we should address the
problem of STS shown in this study, and pursue
what it should be as a benchmark for semantic sim-
ilarity evaluation. Whatever approach we take, we
must consider each of these factors contributing
to the evaluation gap described in this study and
refine them stably.
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A Appendix

A.1 Limitation: Experiments on only English
STS

We would like to investigate other languages in
this paper, but we are only concerned with the orig-
inal English STS. Other languages than English
also have benchmark datasets of the semantic sim-
ilarity but are generally based on the STS frame-
work. Since the GLUE (Wang et al., 2019), in-
cluding STS, is facilitating model development for
each task, a language-specific GLUE-like bench-
mark set (Le et al., 2020; Park et al., 2021) or
cross-lingual benchmark set (Liang et al., 2020;
Hu et al., 2020) are constructed. The benchmarks
of the semantic similarity for each language are cre-
ated in two methods: re-constriction by automatic
translation or new construction by each language’s
expert following the original method. Crucially,
the former method is likely to fundamentally face
the same biases such as vocabulary distribution
as those in the English benchmarks, albeit includ-
ing the issue of translation quality. Regarding the
latter, dataset creators may improve the original
dataset creation method. For example, in the Ko-
rean GLUE (KLUE; Park et al., 2021), they added
more detailed instructions on label definition when
annotating the similarity by non-expert. Thus, it is
necessary to re-consider the requirements for an ap-
propriate benchmarks before straightforwardly fol-
lowing the original method when creating datasets.

A.2 Statistics of datasets and subsets in the
experiments

Satistics of datasets. Table 3 shows statistics of
three datasets (STS, MTM and PR) employed in
this paper. The dataset size of STS is larger than
that of MTM, whereas the total word counts are
comparable between STS and MTM. The sentence
length distribution (the number of of words / {s,s’})
shows that STS has very few words per sentence
compared to the application-oriented tasks. As for
the STS sub-domain sets, the three sets have differ-
ent sentence length distributions. We additionally
describe the histograms of the sentence length dis-
tributions for the three STS sub-domain sets in
Fig. 10. As illustrated here, the average sentence
length of the image-caption domain is particularly
highly biased for shorter sentence lengths.

Statistics of subsets used in the experiment.
Statistics of the subset of sentence length, vocabu-
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Figure 10: Histograms of sentence length in the STS
sub-domain (news, image captions, forum) sets.

lary coverage, and the granularity of similarity are
shown in Table 4, 6, and 7, respectively.

A.3 In-domain vs. Out-of-domain analysis in
sentence length factor

Settings. We create subsets from the MTM
dataset to match the sentence length distribution
for each of three STS sub-domain sets. Notably,
the forum and image caption domains have rela-
tively small sentence length distributions (in Fig. 5,
we thus reduced the range of the subsets from [0,
40) to [20, 60). Statistics of the subset of sentence
length are shown in Table 5.

Results. Fig. 11 shows the correlation with MTM
when sentence length subsets are created separately
for each domain. We observed a similar tendency
for all sub-domain sets that the evaluation gap in-
creases for subsets of longer sentence lengths. This
suggests that the evaluation results differ due to dif-
ferent sentence length distribution even within the
same domain, which is consistent with a previous
study’s report in a different benchmark (Søgaard
et al., 2021).

A.4 Extended Vocabulary analysis

STS has easier vocabulary STS contains more
familiar words than that appear in the application
tasks. As quantitative indicators of word famil-
iarity, word frequency (Yimam et al., 2018) and
word length (Kincaid et al., 1975) are often used
mainly in the text simplification task. Intuitively,
the higher the word frequency or the shorter the
word length, the more familiar the word. In this
case, we use “word frequency (wordfreq)” and
“zipf frequency (zipffreq)” scale in wordfreq mod-
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STS (s1, s2) MTM (hyp, ref) PR (query, passage)

#sentence pairs 8,628 3,793 6,668,967
#sentences ({s, s’}) 15,487 4,261 13,337,934

#words 186,134 170,565 472,778,794
#words / {s, s’} 11.443±6.143 23.381±11.215 35.908±35.266

#words / s 11.450±6.188 23.296±11.290 6.176± 2.642
#words / s’ 11.437±6.099 23.467±11.138 65.640±26.692

STS-news (s1, s2) STS-forum (s1, s2) STS-image-captions (s1, s2)

#sentence pairs 4,299 1,079 3,250
#sentences 8,268 1,913 5,306

#words 107,957 25,456 52,721
#words / {s, s’} 12.927±7.506 12.642±4.978 9.0823±2.910

#words / s 12.949±7.564 12.677±5.007 9.0585±2.906
#words / s’ 12.905±7.448 12.608±4.949 9.1062±2.914

Table 3: Stats. of sentences and words and average of sentence length for STS (all and sub-domain sets) and
application datasets (MT Metrics: MTM, Passage Retrieval: PR).

(a) news (b) image captions (c) forum

Figure 11: Spearman correlations between performance on sentence length subsets of STS-news, image captions,
forum and MT Metrics (MTM) . The darker color indicates the lower correlation (= the larger evaluation gap).

MTM PR
size avg. sent len size avg. sent len

[0, 40) 481 11.610±5.794 - -
[5, 45) 481 11.790±5.979 - -
[10, 50) 1225 16.841±5.747 67 16.045±4.420
[15, 55) 1484 21.086±5.015 119 19.849±3.759
[20, 60) 1112 24.722±4.286 199 23.704±3.285
[25, 65) 715 28.260±3.733 262 28.000±2.980
[30, 70) 465 33.184±4.462 561 34.526±3.855
[35, 75) - - 690 38.323±3.549
[40, 80) - - 932 46.987±1.390

Table 4: Stats. of sentence length subsets for MTM and
PR. The “size” means the number of sentence pairs and
the “avg. sent len” means the average of sentence length
for each subset.

ule (Speer et al., 2018).4 Wordfreq is the normal-
4A tool to obtain word frequencies from 7 different cor-

pora (Wikipedia, Subtitles, News, Books, Web text, Twitter,
Reddit). https://pypi.org/project/wordfreq/

ized frequency in the corpora, and zipffreq is the
logarithmically scale of wordfreq. The word length
is the number of characters in each word. We use
nltk.word_tokenize() as word split and filtered
out URLs and those with more than 50 characters.

Table 8 shows the average word frequency with
the wordfreq module and word length for each
dataset. In zipffreq, the average of STS is shorter
than that of both the application tasks. Also in word
length, we could observe that the average of STS
is higher than that of MTM and PR. Thus, in both
the indicators, word familiarity distribution in STS
is higher than in the two application tasks.

Additionally, by comparing between “general”
word frequencies (wordfreq) in the wordfreq mod-
ule and actual word frequencies in the corpus
(corpus-freq), we can identify words that appear
particular high-frequently in the corpus. The words
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MTM

(STS-news-based) (STS-forum-based) (STS-image-captions-based)
size avg. sent len. size avg. sent len. size avg. sent len.

[0, 40) 503 12.898±6.971 400 9.491±3.183 816 12.348±4.347
[5, 45) 506 13.238±7.259 398 9.521±3.162 867 13.106±4.855
[10, 50) 2150 19.356±6.201 676 13.024±2.620 1229 15.444±3.879
[15, 55) 1902 22.082±5.192 778 17.648±2.457 911 18.337±3.013
[20, 60) 1185 24.935±4.332 650 22.185±2.548 658 22.251±2.620
[25, 65) 715 28.260±3.733 - - - -
[30, 70) 465 33.184±4.462 - - - -

Table 5: Stats. of sentence length subsets for MTM according the sentence length distribution of STS sub-domain
sets. The “size” means the number of sentence pairs and the “avg. sent len” means the average of sentence length
(the average of {s, s’}) for each subset.

MTM

(STS-all-based) (STS-news-based) (STS-forum-based) (STS-image-captions-based)
size avg. Recall size avg. Recall size avg. Recall size avg. Recall

(all) 3,793 0.882±0.084 4,299 0.854±0.093 1,079 0.715±0.120 3,250 0.523±0.112
High 100 1.000±0.000 100 1.000±0.000 100 0.980±0.024 100 0.787±0.042
Low 100 0.631±0.060 100 0.588±0.058 100 0.418±0.063 100 0.252±0.062

PR

size avg. Recall

all 6,614 0.835±0.079
High 100 0.988±0.011
Low 100 0.572±0.051

Table 6: Stats. of vocabulary subsets for MTM and PR.

STS

(all) (news) (forum) (image captions)
size avg. similarity size avg. similarity size avg. similarity size avg. similarity

[0, 1] 1182 0.655±0.280 594 0.522±0.393 275 0.472±0.420 931 0.360±0.353
(1, 2] 1348 1.631±0.285 640 1.631±0.283 248 1.687±0.286 460 1.601±0.283
(2, 3] 1672 2.653±0.291 876 2.678±0.291 232 2.656±0.292 564 2.615±0.286
(3, 4] 2317 3.614±0.287 1378 3.599±0.280 189 3.692±0.303 750 3.622±0.292
(4, 5] 1491 4.619±0.304 811 4.613±0.301 135 4.686±0.311 545 4.612±0.306

MTM

size avg. similarity

Sim-Low: [-2, -0.47] 950 -0.820±0.266
Sim-MidLow: (-0.47, -0.03] 948 -0.240±0.126
Sim-MidHigh: (-0.03, 0.42] 943 0.193±0.127
Sim-High: (0.42, 1.5] 952 0.683±0.183

Table 7: Dataset size (#sentence pairs) and average & standard derivation of gold-standard similarity scores on STS
and MTM subsets.

belongs to “corpus-freq − wordfreq > 0.001” for
STS, MTM, and PR were 43, 18, and 26 words,
respectively (if excluding stopwords and punctu-
ation, 28, 3, and 6 words, respectively). Exam-
ples of higher frequent words in each dataset are
shown in Table 9. As shown in this, some domain-
specific words (STS: image captions, MTM: news,
PR: question answering) are particularly frequent

in each corpus. STS seems to be biased toward cer-
tain words (e.g., colors, present progressive forms,
relatively abstract nouns such as man and dog). The
results indicate that the STS has a relatively “easier”
vocabulary (particularly sourced from the image-
caption domain) than the application-oriented task.

Gap of proper noun in word representation dis-
tribution In actual semantic similarity predic-
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STS MTM PR

zipffreq (↑) 3.59±1.24 3.45±1.54 1.29±1.74
length (↓) 6.97±2.76 7.34±2.83 10.1±4.83

Table 8: Average of word frequency and word length
in STS, MT Metrics: MTM, Passage Retrieval: PR.
The higher (↑) the average for zipffreq (zipf scale of
normalized word frequency) or the lower (↓) the average
for word length, the higher the word familiarity can be
considered.

tion models, words are embedded into a multi-
dimensional space and treated as a soft distributed
representation. Does the STS vocabulary still
diverge from the vocabulary of the application-
oriented tasks in the soft representations? To obtain
an intuition for this, we plot word distribution in
each dataset by t-SNE using the fasttext model.
In the t-SNE setting, we use random initialization
and set learning rate to 200 (scikit-learn), random
state to 0. Fig. 12 shows the results of t-SNE
plotting the top-frequency 5,000 words in each
dataset. The areas surrounded with red lines are
non-overlapping clusters between STS (blue) and
the application tasks (MTM: orange, PR: green).
Additionally, we enlarge some non-overlapping
clusters in Fig. 13. These clusters mostly includes
several proper nouns such as Columbus, Carolina,
and Robin in all the datasets. In addition, to cap-
ture the quantitative distance between word dis-
tributions, we measured the Word Mover’s Dis-
tance (WMD) (Kusner et al., 2015) with the above
t-SNE representations. We use uniform distribu-
tion as the WMD weight and sqeuqlidian distance
as the distance metric. The larger the value, the
less STS covers the vocabulary of each applica-
tion task. The distance between STS and MTM
was 189.44 and the distance between STS and PR
was 89.893. Thus, The vocabulary distribution gap
between STS and the application-oriented tasks is
caused by mainly the distribution of proper nouns.

A.5 NLI analysis

Various studies have found that pre-trained models
of NLI dataset lead to improved performance on
STS (Conneau et al., 2017; Reimers and Gurevych,
2019; Gao et al., 2021b). Gao et al. (2021b) tried
several NLI and paraphrase identification datasets
for model pre-training, indicating that NLI exam-
ples with the lowest lexical overlap have been the
most effective. In this section, we show that the
sentence length and soft lexical distribution of the

NLI dataset are nearly STS-like. We suspect that
the coincidence of these distributions is respon-
sible for the improved performance of the NLI-
supervised model on STS.

Sentence length analysis. Fig. 15 shows his-
tograms of sentence length distribution for each
dataset including NLI. As shown in this, NLI
datasets have a relatively shorter sentence length
distribution, similar to that of STS. Although MNLI
contains relatively longer sentences than SNLI,
there are still fewer examples of longer sentences
compared to the application-oriented datasets such
as MTM and PR.

Vocaburaly coverage analysis. In following, we
see the vocabulary distribution on the NLI datasets.
The statistics on NLI’s vocabulary distribution are
shown in Table 10. The Herdan’s C of NLI is lower
than that of STS; however, TTR of NLI close to
that of MT Metrics. As the word familiarity distri-
bution of NLI, the average of zipffreq shows that
more high-frequency words appear in both SNLI
and MNLI than in STS. However, the average of
word length of NLI is close to that of MT Metrics.
These results indicate that the words which appear
in NLI are a fairly high frequent but those lengths
are longer compared to STS. The visualization of
the soft word distribution including NLI is shown
in Fig. 14. As illustrated in this, the word distri-
bution of NLI is similar for STS compared to the
other datasets. This trend might contribute to the
improvement of performances of NLI-supervised
models such as SentenceBERT on STS.

A.6 Model description
Table 11 shows the descriptions of the models used
in this paper.
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STS man, woman, playing, running, sitting, standing, guitar, white, black, red, dog, cat, horse, grass…
MTM said, police, olympic(, was, will, which, who,…)
PR name, definition, meaning, number, average(, what, your,…)

Table 9: Examples of higher frequency words for STS, MT Metrics: MTM, Passage Retrieval: PR (stopwords in
parentheses).

Figure 12: Word distribution of fasttext model in three datasets, STS (blue), MT Metrics (orange) and Passage
Retrieval (green).

(a1) STS (a2) STS

(b) Metrics (c) Passage Retrieval

Figure 13: Expanded areas in the visualization of word distribution (Fig. 12).
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Figure 14: Word distribution of fasttext model in three datasets, STS (blue), MT Metrics (MTM: orange), Passage
Retrieval (PR: green) and NLI (purple).

0 25 50 75 100 125 150
0.00

0.02

0.04

0.06

0.08

0.10

0.12 STS
MTM
PR (query)
PR (passage)
SNLI
MNLI

Figure 15: Histgrams of sentence length in the datasets
includes NLI.

SNLI MNLI

#sentence pairs 570,152 402,703
#words 11,731,474 12,864,145
#types of words 37,179 85,789
TTR 0.0032 0.0067
Herdan’s C 0.6465 0.6939

avg. zipffreq 2.871±1.488 2.685±1.448
avg. word len 7.544±2.613 8.206±3.313

Table 10: Statistics of vocabulary distribution on NLI
datasets.
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