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Abstract

Linear transformers aim to reduce the quadratic
space-time complexity of vanilla transformers.
However, they usually suffer from degraded
performances on various tasks and corpora. In
this paper, we examine existing kernel-based
linear transformers and identify two key is-
sues that lead to such performance gaps: 1)
unbounded gradients in the attention computa-
tion adversely impact the convergence of lin-
ear transformer models; 2) attention dilution
which trivially distributes attention scores over
long sequences while neglecting neighbouring
structures. To address these issues, we first
identify that the scaling of attention matrices is
the devil in unbounded gradients, which turns
out unnecessary in linear attention as we show
theoretically and empirically. To this end, we
propose a new linear attention that replaces
the scaling operation with a normalization to
stabilize gradients. For the issue of attention
dilution, we leverage a diagonal attention to
confine attention to only neighbouring tokens
in early layers. Benefiting from the stable gra-
dients and improved attention, our new linear
transformer model, TRANSNORMER, demon-
strates superior performance on text classifica-
tion and language modeling tasks, as well as on
the challenging Long-Range Arena benchmark,
surpassing vanilla transformer and existing lin-
ear variants by a clear margin while being sig-
nificantly more space-time efficient. The code
is available at TRANSNORMER.

1 Introduction

Transformer models show great performance on
a wide range of natural language processing and
computer vision tasks (Qin et al., 2022; Sun et al.,
2022b; Cheng et al., 2022a,b; Zhou et al., 2022).
One issue of the vanilla transformer model lies in
its quadratic space-time complexity with respect
⋆Equal contribution. � The corresponding author (Email:
zhongyiran@gmail.com). This work was done when Weixuan
Sun and Yiran Zhong were in the SenseTime Research.

2 4 6 8 10 12 14 16 18
Speed (steps per sec)

54

56

58

60

62

64

Lo
ng

-R
an

ge
 A

re
na

 S
co

re
Transformer

FLASH_quad

FLASH
LS

Performer

cosFormer

Linformer

Nystorm

Reformer

TransNormer T1
TransNormer T2

a

Figure 1: TRANSNORMER has smaller memory foot-
prints (circle sizes) and produces clearly favorable speed
(x-axis) and overall scores (y-axis), when evaluated on
the challenging Long-Range Arena benchmark than the
vanilla transformer and other competing methods.

to the input length. Various prior works attempt
to alleviate this inefficiency (Zaheer et al., 2020;
Beltagy et al., 2020; Tay et al., 2020a; Kitaev et al.,
2020; Child et al., 2019; Liu et al., 2022; Sun et al.,
2022b). In this work, we focus on a particular sub-
set of these methods, known as kernel-based lin-
ear transformers (Choromanski et al., 2020; Wang
et al., 2020; Katharopoulos et al., 2020; Peng et al.,
2020; Qin et al., 2022) considering their desirable
linear space-time complexity.

Despite their space-time efficiency, linear trans-
formers are not always in favor for practical adop-
tion, largely due to the degraded performance than
the vanilla model. To address this issue, we take
a close look at existing kernel-based linear trans-
formers and identify two deficiencies that lead to
such a performance gap.
Unbounded gradients. Most existing linear trans-
formers inherit attention formulation from the
vanilla transformer, which scales attention scores
to ensure they are bounded within [0, 1]. However,
we theoretically show that such a scaling strategy
renders unbounded gradients for linear transformer
models. As a result, the unbounded gradients em-
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pirically lead to unstable convergence as our pre-
liminary experiments suggest.
Attention dilution. Previous works (Titsias, 2016;
Jang et al., 2016; Gao and Pavel, 2017; Qin et al.,
2022; Sun et al., 2022b,a) suggest that in vanilla
transformer, softmax attention maps tend to be lo-
cal. In contrast, as shown in Fig 2, we observe that
linear transformers often trivially distribute atten-
tion scores over the entire sequence even in early
layers. Due to this issue, which we refer as atten-
tion dilution, important local information is less
well preserved in linear models, resulting in infe-
rior performance. This negative impact of attention
dilution is also evidenced by the performance drop
in our controlled experiments if partly replacing
vanilla attention in transformer layers with linear
attention ones.

To mitigate these issues, we propose a linear
transformer model, called TRANSNORMER, which
shows better performance than vanilla transformer
on a wide range of task while being significantly
faster during runtime, as shown in Fig. 1.

To avoid the unbounded gradients, we introduce
NORMATTENTION, which gets rid of scaling over
attention matrices while appending an additional
normalization only after the attention layer. The
choice of the normalization operator is unrestricted,
for example, LayerNorm (Ba et al., 2016) or RM-
SNorm (Zhang and Sennrich, 2019) both serve the
purpose. We show empirical results demonstrat-
ing that with NORMATTENTION, the gradients are
more stable during training, which in turn leads to
more consistent convergence.

To alleviate the attention dilution issue, we mod-
ify the vanilla attention and allow each token to
only attend to its neighbouring tokens, resulting
in a diagonal attention. To mimic the behaviors
on local semantics of the vanilla transformer, we
employ the diagonal attention on early layers while
using NORMATTENTION for later ones. In this
way, we encourage the model to capture both local
and global language context. Note that our diag-
onal attention can be efficiently computed such
that the overall linear space-time complexity of
TRANSNORMER is preserved.

We perform extensive experiments on standard
tasks, where TRANSNORMER demonstrates lower
language modeling perplexities on WikiText-103
and overall higher text classification accuracy on
GLUE than vanilla model and other competing
methods. In addition, on the challenging Long-

Range Arena benchmark, TRANSNORMER also
shows favorable results while being faster and more
scalable with longer inputs during both training
and inference time.

2 Background and related work

We first briefly review vanilla transformer (Vaswani
et al., 2017) and its efficient variants. The key com-
ponent of transformers is the self-attention, which
operates on query Q, key K and value V matrices;
each of them is the image of a linear projection
taking X ∈ Rn×d as input:

Q = XWQ,K = XWK ,V = XWV ∈ Rn×d, (1)

with n the input length, d the hidden dimension.
The output O ∈ Rn×d is formulated as:

O = Softmax(QKT/
√
d)V, (2)

where the Softmax(·) step renders quadratic space-
time complexity with respect to the input length,
making it prohibitive for vanilla transformer to
scale to long input sequences. To address this
issue, numerous efficient transformers have been
explored in the literature. These methods can be
generally categorized into two families, i.e., pattern
based methods and kernel based methods.

Pattern based methods (Zaheer et al., 2020; Belt-
agy et al., 2020; Tay et al., 2020a; Kitaev et al.,
2020; Child et al., 2019) sparsify the attention cal-
culation with handcrafted or learnable masking pat-
terns. Kernel-based methods adopt kernel functions
to decompose softmax attention, which reduces the
theoretical space-time complexity to linear. In this
paper, we refer the kernel-based variants as linear
transformers for simplicity.

In the kernel-based methods (Choromanski et al.,
2020; Katharopoulos et al., 2020; Peng et al., 2020;
Qin et al., 2022; Zheng et al., 2022; Wang et al.,
2020), a kernel function ϕ(·) maps queries and keys
to their hidden representations. Then the output of
the linear attention can be rewritten as:

O = ∆−1ϕ(Q)[ϕ(K)TV],

∆ = diag(ϕ(Q)[ϕ(K)T1n]).
(3)

where the product of keys and values are com-
puted to avoid the quadratic n × n matrix. Ex-
isting methods mainly differ in the design of kernel
functions. For example, Choromanski et al. (2020)
and Katharopoulos et al. (2020) adopt activation
function 1 + elu to process query and key. Wang
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et al. (2020) assumes attention matrices are low-
rank. Peng et al. (2020) and Zheng et al. (2022)
approximate softmax under constrained theoretical
bounds. Qin et al. (2022) propose a linear alterna-
tive to the attention based on empirical properties
of the softmax function.

These methods focus on either approximating
or altering the softmax operator while preserving
its properties. Compared with the vanilla trans-
former, these methods often trade performance for
efficiency, usually resulting in worse task perfor-
mance. In this paper, we argue that there are two
essential reasons leading to such a performance
gap, discussed in detail as follows.

3 The devil in linear attention

In this section, we motivate the design principles of
TRANSNORMER by providing theoretical evidence
for the unbounded gradients, and empirical results
showing the adverse influence of attention dilution.

3.1 Unbounded gradients
Few work on linear transformers analyzes their gra-
dients during training. Our first key observation is
that kernel-based linear attention suffer from un-
bounded gradients, causing unstable convergence
during training. In the following, we highlight the
main theoretical results while referring readers to
Appendix D for the full derivation.

Consider a self-attention module, either vanilla
or linear attention. Its attention matrix P ∈ Rn×n

can be represented in the following unified form 1:

pij =
f(sij)∑n

k=1 f(sik)
, f : R → R. (4)

Vanilla and linear attention differ mainly in their
computation of token-wise similarities sij

2. In
vanilla attention, sij is computed as:

sij = qT
ikj/

√
d, f(x) = exp(x), (5)

while for linear attentions, sij can be decomposed
using a kernel function ϕ, such that:

sij = ϕ(qi)
Tϕ(kj), f(x) = x. (6)

Given the above definitions, the gradients of the
attention matrix P is derived as:

∂pij
∂sik

=
f ′(sik)

f(sik)
(1j=kpij − pijpik) (7)

1 Here we assume that f(sij) ≥ 0, the conclusion is satisfied
in most cases.

2 Note that sij is not directly computed in linear attention, but
can still be represented in this unified form, see Appendix D
for more detailed derivation

Therefore, for the vanilla attention, the partial
derivative ∂pij

∂sik
is:

f ′(x) = exp(x) = f(x)

∂pij
∂sik

= 1j=kpij − pijpik

=

{
pik − pikpik ∈ [0, 1/4] j = k

−pijpik ∈ [−1/4, 0] j ̸= k

(8)

and it is bounded as:
∣∣∣∣
∂pij
∂sik

∣∣∣∣ ≤
1

4
. (9)

However, for linear attentions, we have:

f ′(x) = 1

∂pij
∂sik

=
1

sik
(1j=kpij − pijpik)

=

{
1

sik
(pik − pikpik) j = k

1
sik

(−pijpik) j ̸= k

(10)

and3 ∣∣∣∣
∂pij
∂sik

∣∣∣∣ ≤
1

4|sik|
. (11)

Since |sik|−1 = |ϕ(qi)ϕ(kj)
T|−1 can be arbitrar-

ily large, the gradient of linear attention has no
upper bound. On the other hand, we can also show
that the gradient of linear attention has no lower
bound4:

Proposition 3.1. ∀M > 0, there exists qi,kj ∈
Rd, j = 1, . . . , n, such that:

∣∣∣∣
∂pij
∂sik

∣∣∣∣ > M. (12)

The unbounded gradients lead to less stable op-
timization and worse convergence results in our
preliminary studies.

3.2 Attention dilution
It is a known property of vanilla attention to em-
phasize on neighbouring tokens (Titsias, 2016;
Qin et al., 2022). However, this property does not
directly inherit to the linear transformer variants.

To quantify the attention dilution issue, we intro-
duce a metric called locally accumulated attention
score, which measures how much attention scores
are distributed within the local neighbourhood of a
particular token.

For an input sequence of length N , consider
a local neighbourhood {xstart, ..., xi..., xend} cen-
tering around token xi of total length r ·N , with r

3 A detailed proof of the upper bound can be found at Ap-
pendix B.

4 The proof can be found in Appendix C.
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Figure 2: (a): Comparison of locally accumulated attention scores of different transformer variants. The x-axis
denotes ratio of neighbourhood size relative to the input length; the y-axis denotes accumulated attention scores
inside this neighbourhood for the centering token. The curve for the vanilla transformer model increases more
sharply, indicating that the attention scores are more concentrated. Our model greatly alleviates the attention dilution
issue for linear models. (b): Qualitative comparison of attention matrices in early model layers. The proposed
TRANSNORMER produces more similar patterns to the original vanilla transformer, benefiting to better capture
local-global language context, while the linear model suffers clearly from the issue of attention dilution and gets
distracted by distant tokens in early layers.

the ratio relative to the total input, the locally accu-
mulated attention score for token xi is defined as
l(i, r,N) = pi,start + ... + pi,end. A higher score
indicates the particular attention layer concentrates
on the local neighbourhood, while a lower score
tends to indicate the issue of attention dilution,
where scores are distributed more evenly to local
and distant tokens. For example, l(i, 0.4, N) = 0.6
means that that 40% of the neighbors around i’th
token contribute 60% of the attention score.

In Fig. 2 (a), we compare locally accumulated
attention scores (y-axis) for vanilla transformer and
linear transformer, with varying sizes of neighbour-
hood by ratio (x-axis). We show the average score
over each position across the entire sequence. It
can be seen that the area under the vanilla model
curve is significantly larger than that of the lin-
ear model. This provides evidence that the vanilla
attention is more concentrated locally, while the
linear transformer suffers from the issue of atten-
tion dilution. This is further qualitatively supported
by Fig. 2 (b), where the attention maps for vanilla
model are more concentrated than the linear model.

4 Method

Based on the aforementioned observations, we
propose a new linear transformer network called
TRANSNORMER that addresses the above two lim-
itations of current linear transformers. The overall
architecture is shown in Fig. 3.

4.1 The overall architecture

Vanilla attention suffers less in attention dilution
while linear attention is more efficient and scalable

on longer sequences. This motivate us to design a
method that exploits the best of the both worlds by
using these mechanisms in combined.

Specifically, our network consists of two types
of attention: DIAGATTENTION for the early stage
of the model and NORMATTENTION for the later
stage. The former addresses the attention dilution
issue and the later aims to stabilize training gradi-
ents. Note that by properly reshaping the inputs,
the diagonal attention can be efficiently computed
in linear space-time, thus preserving the overall
linear complexity.

4.2 NORMATTENTION

Table 1: Ablation of linear attention with scaling
operation. Directly removing scaling operation i.e., the
denominator in Eq. 4, leads to significant performance
drop. Our normalization strategy achieves better result.

method ppl(val)

1 + elu 4.98
1 + elu w/o scaling 797.08
NORMATTENTION 4.94

As proved in Sec. 3, the scaling operation, i.e.,
the denominator in Eq. 4, in the linear transformers
hinder the optimization due to the unbounded gradi-
ents. To solve this issue, we propose to remove the
scaling operation in the linear transformers. How-
ever, as shown in Table. 1, directly removing the
scaling operation leads to critical performance drop
since the attention map becomes unbounded in the
forward pass. Therefore, an alternative is required
to bound both attention maps during forward and
their gradients during backward passes in linear
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attentions.
Our proposed solution is simple yet effective.

Given a linear attention, the attention without scal-
ing can be formulated as:

O = Q(KTV). (13)

We empirically find that we can apply an arbitrary
normalization on this attention to bound it, which
leads to our NORMATTENTION as:

Onorm = XNorm(Q(KTV)), (14)

where the XNorm can be Layernorm(Ba et al.,
2016) or RMSNorm (Zhang and Sennrich, 2019)
and etc. We use the RMSNorm in our experiments
as it is slightly faster than other options.

It can be proved that the gradients of NORMAT-
TENTION is bounded by5:

∣∣∣∣
∂L
∂sij

∣∣∣∣ ≤
3c1c2d

2
√
ϵ

< ∞, (15)

where L is the loss function, ϵ is the small con-
stant that used in RMSNorm, d is the embedding
dimension and

c1 =
n

max
i=1

∥∇OiL∥2 < ∞

c2 =
n

max
i=1

∥Vi∥2 < ∞
(16)

To demonstrate the gradients stability of the
NORMATTENTION, we compare the relative stan-
dard deviation of gradients during each training
iterations to other linear transformers and vanilla
transformer. Specifically, we train our model for
50k iterations with RoBERTa architecture on the
WikiText103 (Merity et al., 2017) and obtain the
relative standard deviation of all iterations’ gradi-
ents. As shown in Table 2, existing linear methods
(Choromanski et al., 2020; Katharopoulos et al.,
2020) have substantially higher deviations com-
pared to vanilla attention, which leads to inferior
results. The NORMATTENTION produces more sta-
ble gradients, which validates the effectiveness of
our method.

4.3 DIAGATTENTION

To better understand the design principles, we show
in Table 3 that by replacing partial layers of lin-
ear transformers with vanilla attention, the perfor-
mance on language modeling is evidently improved.
The results also suggest that capturing more local
information in early layers are more helpful than
otherwise.
5 The full derivation can be found in Appendix D.

Table 2: Relative standard deviation of training gradi-
ents over 50k iterations. Our proposed NORMATTEN-
TION provides more stable gradients which are closer to
vanilla transformer.

method Relative Standard
Deviation

1 + elu (Katharopoulos et al., 2020) 0.58
Performer(Choromanski et al., 2020) 0.47
Vanilla(Vaswani et al., 2017) 0.25
NORMATTENTION 0.20

Figure 3: Architecture overview of the proposed
TRANSNORMER. In the early stages, we leverage DIA-
GATTENTION, where attention is only calculated inside
the blocks to enforce neighbouring focus. In late stages,
NORMATTENTION assists to obtain a more stable gra-
dients in linear complexity.

To this end, we leverage none-overlapped block-
based strategy to reduce the space-time complexity
of the vanilla attention. Based on the observation in
Fig. 2, we utilize a strict diagonal blocked pattern
to constraint the attention in a certain range. Since
the attentions are calculated inside each block, the
computation complexity of our diagonal attention
is O(nwd), where n is sequence length , w is
the block size and d is feature dimension. When
d ≪ n, the complexity scales linearly respect to the
sequence length n. In subsequent sections, we use
DIAGATTENTION to refer to Diagonal attention.

We empirically find that applying DIAGATTEN-
TION to the later stages of a model hurts the perfor-
mance as shown in Table. 9. It indicates that the
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Table 3: Ablation on attention dilution issue. We
implement all structures under the same setting: Vanilla
(Vaswani et al., 2017), 1 + elu (Katharopoulos et al.,
2020).

Early layers Later layers ppl (val)

1 + elu 1 + elu 4.98
1 + elu Vanilla 3.90
Vanilla 1 + elu 3.76

model requires a global field of view in the later
layers, which also justifies our choices of NOR-
MATTENTION in later layers of TRANSNORMER.

5 Experiments

In this section, we compare our method to other lin-
ear transformers and the vanilla transformer on au-
toregressive language modeling, bidirectional lan-
guage modeling as well as the Long Range Arena
benchmark (Tay et al., 2020b). We also provide an
extensive ablation study to vindicate our choice in
designing the TRANSNORMER.

We validate our method on two variants of the
TRANSNORMER. The TRANSNORMER T1 uses
the ReLA attention (Zhang et al., 2021) in the DIA-
GATTENTION and the elu as the activation function
in the NORMATTENTION. The TRANSNORMER

T2 uses the Softmax attention (Vaswani et al.,
2017) in the DIAGATTENTION and the 1+elu as
the activation function in the NORMATTENTION.

For experiments, we first study the autoregres-
sive language modeling on WikiText-103 (Merity
et al., 2017) in section 5.2. Then in section 5.2 we
test our method on bidirectional language model-
ing, which is pre-trained on WikiText-103 (Merity
et al., 2017) and then fine-tuned on several down-
stream tasks from the GLUE benchmark (Wang
et al., 2018). Finally, we test TRANSNORMER

on the Long-Range Arena benchmark (Tay et al.,
2020b) to evaluate its ability in modeling long-
range dependencies and efficiencies in section 5.2.

5.1 Settings
We implement our models in the Fairseq frame-
work (Ott et al., 2019) and train them on 8 V100
GPUS. We use the same training configuration
for all competitors and we list detailed hyper-
parameters in Appendix F. We choose the FLASH-
quad, FLASH (Hua et al., 2022), Transformer-LS
(Zhu et al., 2021), Performer (Choromanski et al.,
2020), 1+elu (Katharopoulos et al., 2020) as our
main competing methods.

For the autoregressive language modeling,
we use 6 decoder layers (10 layers for the
FlASH/FLASH-quad) as our base model and all
models are trained on the WikiText-103 dataset
(Merity et al., 2017) for 100K steps with a learning
rate of 0.005. We use the perplexity (PPL) as the
evaluation metric.

For the bidirectional language modeling, we
choose the RoBERTa base (Liu et al., 2019) for
all methods. It consists of 12 encoder layers (24
layers for the FLASH and FLASH-quad to match
the number of parameters). All models are pre-
trained on the WikiText-103 (Merity et al., 2017)
for 50K steps with lr=0.005 and fine-tuned on the
GLUE dataset (Wang et al., 2018). We use dif-
ferent learning rates among 1e-5, 3e-5, 6e-5, 1e-4
and choosing the best result after fine-tuning for 3
epochs.

For the Long-Range Arena benchmark, to make
sure it reflect the practical speed in Pytorch plat-
form, we re-implement the benchmark in Pytorch.
We adopt the same configuration from the Sky-
former (Chen et al., 2021) and make sure all mod-
els have a similar parameter size. We use the same
training hyper parameters for all models as well.

Table 4: Quantitative results in autoregressive lan-
guage modeling. The best result is highlighted with
bold and the second with underlined. The smaller the
better for the PPL metric. LS stands for transformer-LS.

Method PPL (val) PPL (test) Params (m)
Vanilla 29.63 31.01 156.00
LS 32.37 32.59 159.46
FLASH-quad 31.88 33.50 153.51
FLASH 33.18 34.63 153.52
1+elu 32.63 34.25 156.00
Performer 75.29 77.65 156.00
TRANSNORMER T1 29.89 31.35 155.99
TRANSNORMER T2 29.57 31.01 155.99

5.2 Results

Autoregressive language modeling We report
the results in Table 4. It can be found that both
TRANSNORMER variants get comparable or better
perplexity to the vanilla attention and outperform
all existing linear models with a clear margin. For
example, compared to previous state-of-the-art lin-
ear methods on validation set(Hua et al., 2022)
and test set(Zhu et al., 2021), TRANSNORMER T2
achieves substantially lower perplexity by 2.31 and
1.58 respectively. It demonstrates the effectiveness
of our method in causal models.
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Table 5: Quantitative results of the GLUE benchmark. MNLI is reported by the match/mismatch splits. MRPC
is reported by F1 score. CoLA is reported by Matthews correlation coefficient. All the other tasks are measured by
the accuracy. LS stands for transformer-LS. The best result is highlighted with bold and the second with underlined.
The larger the better for all metrics. "-" means unconverged.

Method MNLI QNLI QQP SST-2 MRPC CoLA AVG Params (m)
Vanilla 79.37/79.07 87.79 88.04 90.25 88.35 38.63 78.79 124.70
FLASH-quad 78.71/79.43 86.36 88.95 90.94 81.73 41.28 78.20 127.11
FLASH 79.45/80.08 87.10 88.83 90.71 82.50 29.40 76.87 127.12
LS 77.01/76.78 84.86 86.85 90.25 82.65 40.65 77.01 128.28
Performer 58.85/59.52 63.44 79.10 81.42 82.11 19.41 63.41 124.70
1+elu 74.87/75.37 82.59 86.9 87.27 83.03 - 70.00 124.0
TRANSNORMER T1 79.06/79.93 87.00 88.61 91.17 84.50 45.38 79.38 124.67
TRANSNORMER T2 77.28/78.53 85.39 88.56 90.71 85.06 45.90 78.78 124.67

Table 6: Quantitative results on the Long-Range Arena benchmark. The best result is highlighted with bold and
the second with underlined. The larger the better for all metrics.

Model Text ListOps Retrieval Pathfinder Image AVG.
Transformer 61.95 38.37 80.69 65.26 40.57 57.37
Kernelized Attention 60.22 38.78 81.77 70.73 41.29 58.56
Nystromformer 64.83 38.51 80.52 69.48 41.30 58.93
Linformer 58.93 37.45 78.19 60.93 37.96 54.69
Informer 62.64 32.53 77.57 57.83 38.10 53.73
Performer 64.19 38.02 80.04 66.30 41.43 58.00
Reformer 62.93 37.68 78.99 66.49 48.87 58.99
BigBird 63.86 39.25 80.28 68.72 43.16 59.05
Skyformer 64.70 38.69 82.06 70.73 40.77 59.39
LS 66.62 40.30 81.68 69.98 47.60 61.24
cosFormer 67.70 36.50 83.15 71.96 51.23 62.11
FLASH-quad 64.10 42.20 83.00 63.28 48.30 60.18
FLASH 64.10 38.70 86.10 70.25 47.40 61.31
TRANSNORMER T1 66.90 41.03 83.11 75.92 51.60 63.71
TRANSNORMER T2 72.20 41.60 83.82 76.80 49.60 64.80

Table 7: Speed comparison on Long-Range Arena benchmark. We mark it with a dash if a method exhausts
GPU memory. The higher the better for all metrics. The 1K,...,5K represent the input sequence length.

Inference Speed(steps per sec) Train Speed(steps per sec)
model 1K 2K 3K 4K 5K 1K 2K 3K 4K 5K
Transformer 39.06 10.05 - - - 15.34 3.05 - - -
FLASH-quad 44.64 16.45 9.40 6.54 5.39 19.84 8.47 5.19 3.59 2.92
FLASH 40.32 23.15 16.89 14.04 13.16 20.49 11.06 8.47 7.23 6.93
LS 32.05 17.36 12.14 10.16 9.06 15.43 8.68 6.28 5.24 4.76
Performer 104.17 56.82 42.37 33.78 31.25 28.41 16.23 12.02 10.04 9.06
cosFormer 86.21 46.30 32.47 27.47 25.00 22.94 12.82 9.19 7.79 7.14
Linformer 104.17 58.14 40.32 31.25 26.32 27.17 15.63 11.26 8.77 7.42
Reformer 78.13 38.46 26.04 19.84 16.23 20.16 10.87 7.46 5.69 4.70
Nystorm 58.14 38.46 29.07 23.81 20.33 14.12 9.62 7.46 6.11 5.26
TRANSNORMER T1 113.64 65.79 46.30 39.06 35.71 28.41 17.12 12.76 10.87 10.12
TRANSNORMER T2 119.05 65.79 47.17 39.68 36.23 29.41 17.24 12.95 10.96 10.16

Bidirectional language modeling We show our
bidirectional results on the GLUE benchmark in
Table. 5. Our method achieves superior per-
formance to all the competing methods in aver-
age. On three tasks, i.e., SST-2, MRPC, CoLA,
TRANSNORMER reports comprehensively better
results than all competing linear methods, such as
4.62 higher on CoLA. Further, one of our variants
i.e., TRANSNORMER T1, even outperforms the
vanilla attention with a notable margin. It proves

the effectiveness of our method in bidirectional
language modeling.

Long Range Arena Benchmark The results be-
fore the transformer Long-short (abbr. LS) are
taken from the Skyformer (Chen et al., 2021). As
shown in Table. 6, we achieve either first or sec-
ond places across all five tasks. In terms of over-
all results, both TRANSNORMER variants (T1,T2)
outperform all other competing methods including
vanilla transformer (Vaswani et al., 2017), which
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validates our capability to encode long sequences.

5.3 Speed comparison
We compare the training and inference speed of the
TRANSNORMER with other methods. For a fair
and comprehensive comparison, we follow exactly
the same configurations of the Skyformer(Chen
et al., 2021) and report step per second under dif-
ferent sequence lengths. Timing is conducted on a
Nvidia A6000 GPU with 48G GPU memory. Ta-
ble. 7 suggests that the vanilla transformer is sub-
stantially slow and exhausts GPU memory with
sequence longer than 3k. Compared to other effi-
cient transformers, our TRANSNORMER achieves
faster speed with comparable GPU memory foot-
prints, while competing efficient methods all report
worse results compared to our TRANSNORMER.
For instance, compared to FLASH-quad (Hua et al.,
2022) that achieves previous best linear results on
both autoregressive and bidirectional benchmarks,
our model performs over 300% faster during train-
ing and 150% faster during inference.

5.4 Ablation study
In this section, we justify our design choice of the
TRANSNORMER, including , the selection of the
FFN module, and the size of the attention block
in DIAGATTENTION. We use the PPL from the
Roberta pre-training stage as our evaluation metric.

Table 8: Ablation of the proportion of the attentions.
We empirically find that the balanced structure achieves
the best result. We abbreviate the DIAGATTENTION as
BlockAtt and NORMATTENTION as NormAtt.

Early stage
BlockAtt

Later stage
NormAtt T1 ppl(val) T2 ppl(val)

0 12 4.23 4.48
3 9 4.13 3.83
6 6 3.82 3.81
9 3 3.87 3.86
12 0 4.75 4.66

Table 9: Ablation of the order of two proposed at-
tention. Using DIAGATTENTION in the early stage
achieves better results than using it on later stage.

Early stage Later stage T1 ppl(val) T2 ppl(val)
NormAtt BlockAtt 4.13 4.21
BlockAtt NormAtt 3.82 3.81

Structure design As aforementioned, we empiri-
cally choose the first 6 layers as the early stage of
the model and the rest as the later stage. We provide
the designing ground for this choice in Table. 8. It

can be also observed that either choosing the DIA-
GATTENTION or NORMATTENTION for the entire
model will lead to inferior performance. We also
provide the ablation results of swapping the order
of the DIAGATTENTION and the NORMATTEN-
TION in Table. 9. Using DIAGATTENTION in the
early stage achieves significantly better results than
using it on later stage. It further proves our claim
that the early stage focuses on neighbouring tokens
while the later stage needs long-range attentions.

Table 10: Ablation of the selection of the FFN mod-
ules. The GLU leads to better results.

FFN type T1 ppl(val) T2 ppl(val)
FFN 3.93 3.93
GLU(ours) 3.82 3.81

FFN module We ablate the selection of the
FFN modules in Table. 10. Compared with
the traditional FFN (Vaswani et al., 2017), the
GLU (Shazeer, 2020) achieves better results.

Table 11: Ablation of on block sizes in the DIAGAT-
TENTION. The larger block size the better results.

Block size T1 ppl(val) T2 ppl(val)
32 3.92 3.90
64 3.82 3.81
128 3.72 3.69

Block size From the Table. 11, we observe clear
performance improvements with increased block
sizes. However, since the complexity of the DIA-
GATTENTION is O(nwd), larger block size w leads
to heavier computational overhead. We choose a
block size as 64 as a trade-off between performance
and computational cost.

Combination of attentions Finally, we study the
effect that whether we should use both attentions
in one layer. In particular, we compare either to
1) use DIAGATTENTION and NORMATTENTION

sequentially in a layer with different orders; or to
2) use them in parallel in each attention layer and
then concatenate their embedding output. Table. 12
shows that we should not use these attentions se-
quentially within a layer and apply them in parallel
will double the computation complexities without
improving the performance.

6 Conclusion

In this paper, we identified two key issues that
cause the inferior performance of existing linear
transformer models: 1) unbounded gradients; 2)
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Table 12: Ablation of the combination of two pro-
posed attention. In first two rows, the two attention
layers appear in an interleaved manner. D for the DIA-
GATTENTION and N for the NORMATTENTION.

approach T1 ppl(val) T2 ppl(val)
altering D→N 4.19 4.23
altering N→D 4.11 4.21
parallel 3.77 3.82
TRANSNORMER 3.82 3.81

attention dilution. For the former issue, we pro-
posed a new NORMATTENTION to stabilize the
training gradients. For the latter, we develop DIA-
GATTENTION to force the model concentrate atten-
tion in neighbouring tokens. The resultant model
TRANSNORMER marries the strength of the vanilla
transformers and the linear transformers, outper-
forming competing linear transformers on both au-
toregressive and bidirectional language modeling,
text classification tasks and the challenging Long-
range arena benchmark.

Limitations

In this paper, we identified two main issues of cur-
rent linear transformers and provided a comprehen-
sive analysis in natural language processing tasks.
However, with the booming development of vision
transformers, whether they share the same issues
of linear NLP transformers is yet to be discovered.
We will validate our method on the linear vision
transformers in our future work.

Ethics Statement

The proposed technique is beneficial to develop
large-scale environment-friendly language models
by reducing computing resource demand. Corpus
used to train the model is from public web sources,
which may contain biased, explicit or improper
content. Further assessment and regulation have to
be in-place before deploying the model in practice.
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Appendix

A Mathematical Notations

We use bold uppercase letters for matrices(M),
bold lowercase letters for vectors(m), and low-
ercase letters for scalars(mij). We represent all
vectors as column vectors and denote the ith
row of matrix M by m⊤

i or Mi. We use ∥.∥2
to denote the l2 norm and ∥.∥F to denote the
Frobenius norm of the matrix and the vector.

The main mathematical symbols are input
X ∈ Rn×d, Q (Query), K (Key) and V
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(Value), which has the following form:

X =



xT1
...
xTn


 ∈ Rn×d,

Q =



qT1
...
qTn


 = XWQ =



xT1WQ

...
xTnWQ


 ∈ Rn×d,

K =



kT1
...
kTn


 = XWK =



xT1WK

...
xTnWK


 ∈ Rn×d,

V =



vT
1
...
vT
n


 = XWV =



xT1WV

...
xTnWV


 ∈ Rn×d,

(17)
where WQ,WK ,WV ∈ Rd×d.

B Proof of gradients’ upper bound

In this part, we will proof the bound in (8) and
(10), all we need to prove is:

0 ≤ pik(1− pik) ≤
1

4
, 0 ≤ pijpik ≤

1

4
. (18)

We adopt the theorem that geometric mean is
bounded by arithmetic mean, i.e.,
√
ab ≤ a+ b

2
⇐⇒ ab ≤

(
a+ b

2

)2

, ∀a, b ≥ 0.

(19)
We take a = pik, b = 1 − pik to complete the
proof. The first bound can be proven by:

0 ≤ pik(1− pik) ≤
(
pik + 1− pik

2

)2

=
1

4
.

(20)
For the second bound, we first use the fact that:

0 ≤ pij + pik ≤ 1 ⇒ pij ≤ 1− pik. (21)

So we have:

0 ≤ pijpik ≤ (1− pik)pik ≤
1

4
. (22)

C Proof of Proposition 3.1

Proof of Proposition 3.1. ∀ϵ > 0 and kernel
function ϕ, let6:

qi = kj = ϕ−1(x0),

0 < ∥x0∥2 ≤
√
ϵ, i, j = 1, . . . , n.

(23)

6 We assume that the image of ϕ contains vectors arbitrary
close to 0, which is a common case in kernel function.

Then

ϕ(qi) = ϕ(kj) = x0, i, j = 1, ..., n. (24)

So

sij = ϕ(qi)
Tϕ(kj) = x0

Tx0 ∈ (0, ϵ], (25)

and

pij =
sij∑n
k=1 sik

=
x0

Tx0∑n
k=1 x0

Tx0

=
1

n
. (26)

According to (10), we have:

∂pij
∂sik

=

{
1

x0
Tx0

1
n
(1− 1

n
) j = k

− 1
x0

Tx0

1
n2 j ̸= k

,

∣∣∣∣
∂pij
∂sik

∣∣∣∣ =
{

1
x0

Tx0

1
n
(1− 1

n
) j = k

1
x0

Tx0

1
n2 j ̸= k

≥
{

1
ϵn
(1− 1

n
) j = k

1
ϵn2 j ̸= k

.

(27)

Let ϵ → 0+, then 1
ϵn2 ,

1
ϵn
(1 − 1

n
) → ∞, so∣∣∣ ∂pij∂sik

∣∣∣ → ∞.

D Analyze the gradient of each method

In this section, let’s consider a one-layer Trans-
former, for a multi-layer Transformer, we can
prove our conclusion using induction.

We begin this section by introducing some
mathematical notations.

D.1 Notations

In vanilla attention, we have:

S = QKT ∈ Rn×n,

P = Softmax(S) ∈ Rn×n,

O = PV ∈ Rn×d.

(28)

In linear attention, we have:

S = ϕ(Q)ϕ(K)T ∈ Rn×n,

∆ = diag(S1n) ∈ Rn×n,

P = ∆−1S ∈ Rn×n,

O = PV ∈ Rn×d.

(29)

Although this term is not calculated in linear
attention, we discuss it conceptually. Note that

7035



the above formulations can be unified into the
following form 7:

S = f(ψ(Q)ψ(K)T) ∈ Rn×n,

∆ = diag(S1n) ∈ Rn×n,

P = ∆−1S ∈ Rn×n,

O = PV ∈ Rn×d,

(30)

where in vanilla attention, we have:

ψ(x) = x, f(x) = exp(x), (31)

and in linear attention, we have:

ψ(x) = ϕ(x), f(x) = x. (32)

In NORMATTENTION, we have:

S = ϕ(Q)ϕ(K)T ∈ Rn×n,

T = SV ∈ Rn×d,

O = RMSNorm(T)

≜



RMSNorm(t1)

T

...
RMSNorm(tn)

T


 ∈ Rn×d,

(33)

where RMSNorm is defined as follows:
Definition D.1.

RMSNorm(x) =
x√
σ2 + ϵ

,

σ2 =

∑d
i=1 x

2
i

d
,

ϵ > 0,

x ∈ Rd.

(34)

In the subsequent discussion, we define gra-
dient ∇ML as:
Definition D.2.

[∇ML]ij =
∂L
∂mij

, (35)

where L stands for loss function, M is a pa-
rameter matrix.

Then we define the mapping h as:
Definition D.3.

h : Rn×m → R, h(X) =
n

max
i=1

∥Xi∥2,
X ∈ Rn×m.

(36)

7 Here, the function f(X) is applied element-wise to the ma-
trix X ∈ Rn×m, that is, [f(X)]ij = [f(xij)]

The mapping h has the following property:

Proposition D.4. ∀X ∈ Rn×m,Y ∈ Rr×m,
we have:

h(XY⊤) ≤ √
rh(X)h(Y). (37)

Proof. Since

[XY⊤]ij = Xi[Yj]
⊤

≤ ∥Xi∥2∥Yj∥2
≤ h(X)h(Y),

(38)

so

∥[XY⊤]i∥2 =

√√√√
r∑

j=1

([XY⊤]ij)2

≤
√
r(h(X)h(Y))2

=
√
rh(X)h(Y),

h(XY⊤) =
r

max
i=1

∥∥[XY⊤]i
∥∥
2

≤ √
rh(X)h(Y).

(39)

D.2 Gradient analysis

D.2.1 Preliminary
Given gradient ∇OL ∈ Rn×d, let’s compute
∇SL in every situation.

We first define:

c1 = h(∇OL)
=

n
max
i=1

∥∇Oi
L∥2,

c2 = h(V)

=
n

max
i=1

∥Vi∥2 <∞,

c3 = min
i,j

|sij| ≥ 0.

(40)

Before we get started, we have the following
propositions. The proof can be found in Ap-
pendix D.3.
Proposition D.5. c1 <∞.
Proposition D.6. ∀X ∈ Rn×m, we have:

∥X∥2 ≤
√
nh(X). (41)

Take X = V, we get:

∥V∥2 ≤
√
nh(V) =

√
nc2. (42)
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D.2.2 Vanilla/Linear attention

According to (30), we can discuss vanilla and
linear attention under one formula:

∇PL = [∇OL]VT ∈ Rn×n. (43)

Then define matrix U(i) ∈ Rn×n:

[U(i)]jk =
∂pik
∂sij

. (44)

According to (9), in vanilla attention, we have:

∣∣[U(i)]jk
∣∣ ≤ 1

4
, (45)

while in linear attention, we have:

∣∣[U(i)]jk
∣∣ ≤ 1

4|sij|
≤ 1

4c3
. (46)

Since:

∂L
∂sij

=
n∑

k=1

∂L
∂pik

∂pik
∂sij

= (∇Pi
L)(U(i)

j )⊤

= (∇Oi
L)VT(U

(i)
j )⊤.

(47)

So we have:
∣∣∣∣
∂L
∂sij

∣∣∣∣ ≤ ∥(∇Oi
L)VT∥2

∥∥∥U(i)
j

T
∥∥∥
2

≤ ∥∇Oi
L∥2∥VT∥2∥U(i)

j ∥2
≤ c1 ×

√
nc2 ×

1

4t

=

√
nc1c2
4t

,

(48)

where t = 1 in vanilla attention and t = c3 in
linear attention.

On the other hand, according to Appendix
C, in linear attention, there exist qi,kj , such
that:

∂pik
∂sij

=
1

∥x0
Tx0∥

tijk,

tijk =

{
1
n
(1− 1

n
) j = k

− 1
n2 j ̸= k

.

(49)

Then
∣∣∣∣
∂L
∂sij

∣∣∣∣ =
∣∣∣∣∣

n∑

k=1

∂L
∂pik

∂pik
∂sij

∣∣∣∣∣

=
1

∥x0
Tx0∥

∣∣∣∣∣
n∑

k=1

∂L
∂pik

tijk

∣∣∣∣∣

≥ 1

ϵ

∣∣∣∣∣
n∑

k=1

∂L
∂pik

tijk

∣∣∣∣∣ .

(50)

Let ϵ→ 0+, then
∣∣∣ ∂L
∂sik

∣∣∣ → ∞. This means that
the gradient in linear attention is unbounded.

D.2.3 NORMATTENTION

We first define the second-moment of i’th row
of T:

σ2
i =

∑d
j=1 t

2
ij

d
. (51)

Then ∂oij
∂tik

is as follows:

∂oij
∂tik

=
1√
σ2
i + ϵ

[
1{j = k} − 1

d

tijtik
σ2
i + ϵ

]
.

(52)
Notice that we have the following upper bound:

∣∣∣∣
∂oij
∂tik

∣∣∣∣

=
1√
σ2
i + ϵ

[
1{j = k} − 1

d

tijtik
∑d

s=1 t
2
is

d
+ ϵ

]

=
1√
σ2
i + ϵ

[
1{j = k}+ tijtik∑d

s=1 t
2
is + dϵ

]

≤ 1√
σ2
i + ϵ

[
1{j = k}+ 1

2

t2ij + t2ik∑d
s=1 t

2
is

]

≤ 1√
σ2
i + ϵ

[
1 +

1

2

]

≤ 3

2
√
σ2
i + ϵ

.

(53)
Let’s define matrix R(i) ∈ Rd×d as follows:

[R(i)]jk =
∂oik
∂tij

. (54)

Since
∂L
∂tij

=
n∑

k=1

∂L
∂oik

∂oik
∂tij

= (∇Oi
L)(R(i)

j )⊤.

(55)
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Then we can get:

∇Ti
L = (∇Oi

L)(R(i))T ∈ R1×d. (56)

According to (53), we have:

∥R(i)∥2 ≤ ∥R(i)∥F

≤

√√√√
d∑

j=1

d∑

k=1

[
∂oij
∂tik

]2

≤ 3d

2
√
σ2
i + ϵ

≤ 3d

2
√
ϵ
.

(57)

Finally, we get:

∇Si
L = (∇Ti

L)VT

= (∇Oi
L)(R(i))TVT ∈ R1×n,

∂L
∂sij

= (∇Oi
L)(R(i))TVj,

∣∣∣∣
∂L
∂sij

∣∣∣∣ =
∣∣(∇Oi

L)(R(i))TVj

∣∣

≤ ∥∇Oi
L∥2∥R(i)Vj∥2

≤ ∥∇Oi
L∥2∥R(i)∥2∥Vj∥2

≤ c1 ×
3d

2
√
ϵ
× c2

=
3c1c2d

2
√
ϵ
.

(58)

Let’s summarize the previous results.
In vanilla attention, we have:

∣∣∣∣
∂L
∂sij

∣∣∣∣ ≤
√
nc1c2
4

<∞. (59)

In linear attention, there exist qi,kj , such that:
∣∣∣∣
∂L
∂sij

∣∣∣∣ → ∞. (60)

In NORMATTENTION, we have:
∣∣∣∣
∂L
∂sij

∣∣∣∣ ≤
3c1c2d

2
√
ϵ
<∞. (61)

So ∂L
∂sij

is bounded in vanilla attention and
NORMATTENTION, while it’s unbounded in
linear attention. This makes the training of
linear transformer unstable.

D.3 Proof of the proposition

Proof of Proposition D.5. Let’s consider a
one layer Transformer for classification tasks.
The input is X ∈ Rn×d, the label is Y ∈
Rn×m, where m is the number of categories
and Yi is one-hot vector,. f1, f2 are the activa-
tion functions, here we take f1 = f2 = ReLU
as an example. The parameters of the model
are:

W1 ∈ Rd×d1 ,W2 ∈ Rd1×d,

W3 ∈ Rd×m.
(62)

The forward pass of the model is8:

• X1 = XAttention(X) ∈ Rn×d.

• X2 = f1(X1W1) ∈ Rn×d1 .

• X3 = f2(X2W2) ∈ Rn×d.

• O = TW3 ∈ Rn×m.

• P = Softmax(O) ∈ Rn×m.

• L = corss_entropy(P,Y) ∈ R.

The backward pass of the model is:

1. ∇OL = P−Y ∈ Rn×m.

(a) The upper bound is:

h (∇OL)

=max{
m∑

i=1

p2i − 2p1 + 1,

pi ≥ 0,
m∑

i=1

pi = 1}

≜a0
<∞.

(63)

2. ∇X3L = (∇OL)W⊤
3 ∈ Rn×d.

(a) The upper bound is:

h (∇X3L)
≤
√
dh (∇OL)h (W3)

≤
√
da0h (W3)

≜a1 <∞.

(64)

8 XAttention stands for vanilla/norm attention.
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3. ∇X2L = (f ′
2(X2W2)⊙∇X3L)W⊤

2 ∈
Rn×d.

(a) The upper bound is:

h (∇X2L)
≤
√
d1h (f

′
2(X2W2)⊙∇X3L)h (W2)

≤
√
d1a1h(W2)

≜a2
<∞.

(65)

4. ∇X1L = (f ′
1(X1W1)⊙∇X2L)W⊤

1 ∈
Rn×d1 .

(a) The upper bound is:

h (∇X1L)
≤
√
dh (f ′

1(X1W1)⊙∇X2L)h (W1)

≤
√
da2h(W2)

≜a3
<∞.

(66)

So the gradient passed to XAttention module
is bounded, i.e., c1 = a3 <∞.

Proof of Proposition D.6.

∥X∥2 ≤ ∥X∥F

=

√√√√
n∑

i=1

∥Xi∥22

≤

√√√√
n∑

i=1

[h(X)]2

=
√
nh(X).

(67)

E Experiment configs

In this section, we will introduce detailed train-
ing hyperparameters. We introduce the con-
figurations for autoregressive/bidirectional lan-
guage model in table F. For LRA benchmark,
we use the same configuration as Skyformer,
which use 2-layer transformer model with 64
hidden dimensions, 2 attention heads, 85 GLU
dimensions, Swish as GLU activation function.

For batch size and learning rate , we use 16,1e-
4 for Text Classification, 32,1e-4 for ListOps,
16,2e-4 for Document Retrieval, 128,2e-4 for
Pathfinder, 256,1e-4 for Image Classification,
the same as Skyformer.
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F Pseudocode for visualization.

In this section, we provide pseudo codes for
the 4th column of Figure 2 in Python:

import torch

def get_curve(w):
n, m = w.shape
num = 100
P = torch.linspace(0, 1, num)
cnts = torch.zeros(num)
for i in range(n):

cnt = torch.zeros(num)
w1 = w[i].clone()
center = i % m
s = w1[center].item()
L = 1
l = center - 1
r = center + 1
j = 1
l_thre = 0
r_thre = m
flag = 0

while L < m and j < num:
if (s >= P[j].item()):

cnt[j] = L
j += 1
continue

if flag == 1:
if r != r_thre:

s += w1[r].item()
r = min(r_thre, r + 1)
flag = 0

else:
if l != l_thre:

s += w1[l].item()
l = max(l_thre, l - 1)
flag = 1

L = min(r - l + 1, m)

if L >= m:
for u in range(j, num):

cnt[u] = min(L, m)

cnt[0] = 0
cnts += cnt

cnts = cnts / n / m

plt.plot(cnts, P)

return cnts
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Table 13: Detailed configurations used in our experiments. “Total batch size” means batch_per_gpu ×
update_freq×num_gpus. “Attention dropout” is only used for vanilla attention. “ALM”: autoregressive Language
Model. “BLM”: bidirectional Language Model.

AML BLM
Data WikiText-103 WikiText-103
Tokenizer method BPE BPE
Src Vocab size 267744 50265
Encoder layers 0 12
Decoder layers 6 0
Hidden dimensions 512 768
Number of heads 8 12
GLU dimensions 2048 1365
GLU activation function Swish Swish
Sequence length 512 512
Total batch size 128 512
Number of updates 100k 50k
Warmup steps 8k 3k
Peak learning rate 5e-4 5e-4
Learning rate scheduler Inverse sqrt Polynomial decay
Optimizer Adam Adam
Adam ϵ 1e-8 1e-6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Weight decay 0.01 0.01
Gradient clipping 0.0 0
Hidden dropout 0.1 0.1
Attention dropout 0 0.1
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