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Abstract

Mixture-of-Experts (MoE) networks have been
proposed as an efficient way to scale up model
capacity and implement conditional comput-
ing. However, the study of MoE components
mostly focused on the feedforward layer in
Transformer architecture. This paper proposes
the Mixture of Attention Heads (MoA), a new
architecture that combines multi-head attention
with the MoE mechanism. MoA includes a set
of attention heads that each has its own set of
parameters. Given an input, a router dynami-
cally selects a subset of k attention heads per
token. This conditional computation schema
allows MoA to achieve stronger performance
than the standard multi-head attention layer.
Furthermore, the sparsely gated MoA can eas-
ily scale up the number of attention heads and
the number of parameters while preserving
computational efficiency. In addition to the per-
formance improvements, MoA also automati-
cally differentiates heads’ utilities, providing
a new perspective to discuss the model’s inter-
pretability. We conducted experiments on sev-
eral important tasks, including Machine Trans-
lation and Masked Language Modeling. Exper-
iments have shown promising results on several
tasks against strong baselines that involve large
and very deep models1.

1 Introduction

In recent years, large models have become a
popular trend in the research of Natural Lan-
guage Processing, especially large-scale Trans-
former (Vaswani et al., 2017). The model’s capac-
ity has increased from millions of parameters (De-
vlin et al., 2019; Liu et al., 2019), to billions of pa-
rameters (Shoeybi et al., 2019; Raffel et al., 2020;
Wang et al., 2022), even to trillions of parame-
ters (Du et al., 2021; Fedus et al., 2021). How-
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1The code can be found at https://github.com/
yikangshen/MoA.
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Figure 1: Simple illustration of MoA. MoA consists of a
set of attention heads named attention experts. For each
token in the input, a Router selects k attention heads
among all attention experts with different confidences.
The output is a weighted sum of the selected attention
heads given the confidence calculated by the Router.

ever, these large-scale models demand substan-
tially more computations than small-scale models.
A popular trend is to utilize conditional computa-
tion with a sparsely activated model to seek greater
computational efficiency. Thus, only a part of the
model’s parameters is used for a specific input dur-
ing the forward computation, which alleviates the
computational load.

Among these attempts, the Mixture of Experts
(MoE) (Jacobs et al., 1991; Jordan and Jacobs,
1994) is an essential technique. Since first ap-
plying the mixture of experts to Transformer ar-
chitecture (Shazeer et al., 2018), researchers have
mainly focused on combining the Feed-Forward
Network layer and the Mixture of Experts. Recent
works have discussed how to get a better routing
strategy (Shazeer et al., 2017; Dua et al., 2021;
Lewis et al., 2021; Nie et al., 2021) or how to scale
up the Mixture of Experts on different nodes of
GPUs (Lepikhin et al., 2021; Fedus et al., 2021).
However, few attempts have explored the possibil-
ity of combining MoE with the Multi-Head Atten-
tion (MHA) mechanism. Since the MHA is another
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compulsory module in the Transformer architec-
ture, combining MoE and the attention mechanism
could also help achieve better performance while
restraining the computational cost.

Besides, previous research has investigated the
utility of different attention heads. Peng et al.
(2020) found that the combination (reallocation)
of a subset of attention heads helps the Translation
task since they prune the useless attention heads. In
the field of dependency parsing, researchers have
unveiled that some attention heads in BERT-like
language models (Devlin et al., 2019; Liu et al.,
2019) model individual dependency types (Htut
et al., 2019) and syntactic functions (Shen et al.,
2022). Voita et al. (2019) claimed that the attention
heads have different functions that could be cate-
gorized into three types. There is no need to pass
through all multiple attention heads for an input to-
ken if we could select some relevant attention heads
whose function is proper. Thus, we conceive an
attention mechanism that selects different attention
heads per token.

Based on the above discussion, we proposed
Mixture of Attention Heads (MoA) (Section 4), an
attention mechanism that selects different attention
heads for different inputs. A simple illustration of
this idea is shown in Figure 1. MoA includes a
set of of attention heads with different parameters.
Given an input, a routing network dynamically se-
lects a subset of k attention heads for each token.
The output is a weighted sum of the selected atten-
tion heads given the confidence calculated by the
routing network.

We conducted experiments on two tasks: Ma-
chine Translation and Masked Language Modeling
(Section 5). Experiments shown promising results
against several strong baselines. In all tasks, our
proposed mixture of attention heads outperforms
the original Transformer architecture (Vaswani
et al., 2017). Our model surpasses many large
models or achieves comparable results with only
a half computational cost. Our contributions can
be summarized in three folds: 1) We proposed a
new attention mechanism called Mixture of At-
tention Heads, combining the idea of Mixture of
Experts with the attention mechanism. 2) MoA can
improve the model’s performance without substan-
tially adding parameters and computational cost. 3)
MoA is easy to scale up while maintaining with a
restrained computation complexity, resulting in a
further performance amelioration.

2 Related Work

Mixture of Experts The Mixture of Experts
(MoE) was firstly introduced in the 1990s (Jacobs
et al., 1991; Jordan and Jacobs, 1994). Shazeer
et al. (2017) adopted this method into modern
deep learning architectures (LSTM; Hochreiter
and Schmidhuber 1997) and proved its effective-
ness in Language Modeling and Machine Trans-
lation. The MoE was used to substitute the FFN
layers in Transformer architecture (Vaswani et al.,
2017) by the Mesh Tensorflow library (Shazeer
et al., 2018). Gshard (Lepikhin et al., 2021) is a
lightweight module that helps scale up multilin-
gual neural machine translation Transformer with
a Sparsely-Gated Mixture of Experts beyond 600
billion parameters. In Switch Transformer (Fedus
et al., 2021), the authors scaled the MoE-integrated
Transformer architecture toward trillion parame-
ter models. GLaM (Du et al., 2021) utilized a
decoder-only architecture to do language model
pre-training. Rajbhandari et al. (2022) proposed a
Pyramid-Residual-MoE for smaller model size and
fast inference.

Various routing strategies (Shazeer et al., 2017;
Dua et al., 2021; Lewis et al., 2021; Nie et al.,
2021) have been investigated for stabilizing the
MoE training and balancing the expert loads. Chi
et al. (2022) pointed out the representation collapse
issue in the sparse Mixture of Experts models and
solved by a two-stage routing strategy.

Machine Translation Architectures With origi-
nal Transformer architecture (Vaswani et al., 2017),
Ott et al. (2018) found that training with reduced
precision and large batch could improve the trans-
lation performance. Some models get better perfor-
mance on translation by using larger scale of Trans-
former. Liu et al. (2020a) deepened the encoder
and decoder of the Transformer by adequately ini-
tializing the model. DeepNet (Wang et al., 2022)
scaled Transformers up to 1,000 layers by intro-
ducing a new normalization function. However,
these methods require a great amount of compu-
tational cost. Some models make changes to the
self-attention module. Peng et al. (2020) proposed
MAE model. The reallocation of attention heads
got better performance on Translation, since the
model prune useless multi-head attention heads.
However, their method is difficult to scale up and
get further improvement of the results because it
needs to use all the attention heads in the model
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rather than sparsely activate them. It also requires
the complicated block coordinate descent training
steps. Wu et al. (2019) proposed DynamicConv
and LightConv by replacing self-attention mecha-
nism with a lightweight convolution.

Specialization of Attention Heads Since the
publication of Transformer architecture (Vaswani
et al., 2017), many researchers have been interested
in analyzing how the attention mechanism works.
Voita et al. (2019) systematically analyzed the at-
tention heads in the encoder and categorized them
into three functional subsets: positional, syntactic,
and rare words. When dealing with dependency
parsing, researchers also observed the same phe-
nomenon that different heads could capture dif-
ferent syntactic functions (Htut et al., 2019; Shen
et al., 2022).

3 Preliminaries

3.1 Mixture of Experts
MoE (Shazeer et al., 2017) contains a set of expert
networks E1, E2, . . . , EN and a routing network
G. The output of the MoE is the weighted sum
of the output of each expert. The routing network
calculates the probability for each expert. Formally,
the output of the MoE can be written as:

y =
N∑

i=1

G(x)iEi(x) (1)

The routing network G is a Noisy Top-k Routing
network. Before the softmax function, they add
Gaussian noise to the gated logits, see Equation 3.
Then, they keep only the top k values, setting the
rest gate values to equal 0, see Equation 2.

G(x) = Softmax(TopK(H(x), k)) (2)

H(x)i =(x ·Wg)i + σ(0, 1)· (3)

Softplus((x ·Wnoise)i)

3.2 Multi-head Attention
Vaswani et al. (2017) proposed an encoder-decoder
architecture Transformer, which contains the multi-
head attention module. Different heads from the
multi-head attention module attend to informa-
tion from different representation subspaces, which
learn the input from various perspectives.

Performing multi-head attention with k heads,
the Q,K, V are linearly projected k times with

different, learned linear projections to subspaces.
On each projected Q and K, the attention scores are
calculated, via Equation 4. Values deriving from
different heads are projected back to the model
dimension size and summed up, with Equation 5.

W att
i = Softmax

(
QW q

i (KW k
i )

T

√
dk

)
(4)

y =
k∑

i=1

(
W att

i VW v
i

)
W o

i (5)

where W q
i ,W

k
i ,W

v
i ∈ Rdm×dh and W o

i ∈
Rdh×dm , dk is the dimension of the key K.

4 Mixture of Attention Heads

In this work, we propose a variant of multi-head at-
tention for Transformer called Mixture of Attention
Heads (MoA), illustrated in Figure 2. MoA con-
sists of two major components, the routing network
G and a group of N attention experts {E1, ..., EN}.
Similar to standard multi-head self-attention, the
input of MoA includes three sequences, query se-
quence Q, key sequence K, and value sequence
V . We note qt as the query vector at time step t.
For each qt, the routing network G selects a subset
of k experts G(qt) ⊆ {Ei} based on qt and assign
a weight wi to each selected expert. Then, these
selected experts take qt, K, and V as inputs and
compute an output Ei(qt,K, V ). The output of the
MoA is the weighted sum of the selected experts’
outputs. Formally, the MoA output at time step t
can be written as:

yt =
∑

i∈G(qt)

wi,t · Ei(qt,K, V ) (6)

4.1 Routing Network
Similar to previous mixture-of-expert methods, the
routing network assigns attention experts to input
query. In order to select k experts for query qt, we
compute a routing probability pi for each expert Ei.
The routing probability is modeled with a linear
layer Wg and a softmax function:

pi,t = Softmaxi(qt ·Wg) (7)

Based on the routing probability p, we select the
top-k attention experts among all N attention ex-
perts with the largest probabilities. Formally, the
routing network is defined as:

G(Q) = TopK(pi,t, k) (8)
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Figure 2: Mixture of Attention Heads (MoA) architecture. MoA contains two mixtures of experts. One is for query
projection, the other is for output projection. These two mixture of experts select the same indices of experts. One
routing network calculates the probabilities for each selected experts. The output of the MoA is the weighted sum
of the outputs of each selected experts.

where Wg ∈ Rdm×N , representing the routing ma-
trix. Then, we renormalize the routing probability
of the selected experts to get normalized expert
weights:

wi,t =
pi

Detach
(∑

j∈G(qt)
pj

) (9)

where Detach(·) is a function that stops the gradi-
ent backpropagation. In other words, the denom-
inator receives zero gradient during the training
process. We empirically find that this trick helps
the routing network learn better routing probability.

4.2 Attention Expert
An attention expert contains four different projec-
tion matrices, W q, W k, W v and W o. The attention
calculation is similar to multi-head attention. We
first compute the attention weight for keys.

W att
i,t = Softmax

(
qtW

q
i (KW k)T√

dh

)
(10)

where W q
i ∈ Rdm×dh is the query projection ma-

trix, W k ∈ Rdm×dh is the key projection matrix,
dm is the hidden state size, dh is named as head
dimension. We then compute the weighted sum of
values:

oi,t = W att
i,t VW v (11)

where W v ∈ Rdm×dh is the value projection ma-
trix. Finally, the attention output is obtained by

projecting oi,t back to the hidden state space:

Ei (qt,K, V ) = oi,tW
o
i (12)

where W o
i ∈ Rdh×dm is the output projection ma-

trix.
In the multi-head attention, the projection matri-

ces W q, W k, W v, and W o are all different across
attention heads. The MoA shares W k and W v

across attention experts to reduce the computa-
tional complexity. Attention experts are only dif-
ferentiated by W q

i and W o
i . Thus, the expensive

matrix projection of key sequence KW k and value
sequence VW v can be pre-computed and shared
for all attention experts. Each expert only need to
compute the vector projection of query qtW

q
i and

output oi,tW o
i . This design can significantly reduce

the computational and space complexity while the
number of experts is large.

4.3 Training Losses

Previous work (Shazeer et al., 2017) has observed
that the routing network tends to converge to a state
where it always produces large weights for the same
few experts, which indicates the insufficient utility
of all the experts. Following Shazeer et al. (2017)
and Fedus et al. (2021), we add an auxiliary loss to
balance the loads of different experts.

Given N experts and a sequence with T queries
Q = {q1, q2, . . . , qT }, the auxiliary loss La can be
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computed as:

La(Q) = N ·
N∑

i=1

fi · Pi (13)

where fi is the number of tokens attributed to the
i-th expert,

fi =
T∑

t=1

δi∈G(qt) (14)

where δ represents the Kronecker-Symbol. Pi is
the sum of router probability allocated for the i-th
expert,

Pi =
T∑

t=1

pi,t (15)

They are then normalized with norm 1 according
to the expert column. Mathematically, fi is indif-
ferentiable while Pi is. Thus, larger fi will result
in a larger derivative. This penalizes the Pi making
larger Pi smaller. What’s more, Pi is calculated by
softmax. Thus smaller Pi will become bigger.

Zoph et al. (2022) introduced a router z-loss
(Equation 16) to penalize large logits into the gating
network, which could stabilize the training and
improve the performance.

Lz(x) =
1

T

T∑

j=1

(
log

N∑

t=1

exi,t

)2

(16)

where xi,t is the pre-softmax logit computed by
router for i-th expert and input query qt. Each
mixture of attention heads module has an auxiliary
loss and a router z-loss. We sum them up together
and added with a multiplicative coefficient α and β
respectively to the total model loss during training.
Throughout this work, we use α = 0.01 and β =
0.001 to ensure the efficiency of the two added
losses and not to disturb the primary cross-entropy
model loss.

L = Lmodel +
∑

∀ MoA module

(αLa + βLz) (17)

To validate the utility of these auxiliary losses,
we conducted ablation tests and the results are
shown in Appendix D.

4.4 Computational Complexity and Number
of Parameters

On the one hand, given a sequence with T tokens,
the amount of computation required by an MoA
layer that selects top-k experts is

CMoA = kT 2dh + 2(k + 1)Tdhdm (18)

where kdh is the sum of head dimension of se-
lected experts. It represents the maximum amount
of information that can be collected by an MoA
layer for a token. On the other hand, the amount
of computation required by a standard Multi-Head
Attention (MHA) is

CMHA = T 2dm + 4Td2m (19)

where dm is the sum of head dimension. If
kdh ≃ dm, the computational complexity of MoA
is smaller than that of MHA. In other words, the
MoA could collect more information for each token
while maintaining a similar level of computational
complexity as the MHA.

As for the number of parameters, given a Mix-
ture of Attention Heads with E attention experts,
the number of parameters in MoA and MHA are:

MMoA = (2E + 2)dhdm, MMHA = 4d2m
(20)

When k = E and Edh ≃ dm, the number of pa-
rameters in MoA is smaller than MHA. In other
words, MoA could collect more information for
each token while maintaining a similar number of
parameters as MHA. More details of the calculation
are in Appendix B.

The above discussion suggests that, from an in-
formation collection point of view, the MoA is
more computational and parameter efficient than
the standard MHA. Our experimental results in
Section 5 also empirically support the hypothesis.
Additionally, the time complexity of MoA is de-
cided by the number of attention heads k and the
attention head dimension dh, not the model’s to-
tal parameters. One could arbitrarily increase the
amount of parameters in MoA, without increasing
its computational complexity.

5 Experiments

5.1 Machine Translation
Dataset We train our Mixture of Attention model
on WMT 2014 English-German and English-
French datasets (Bojar et al., 2014). Following
the experimental settings used in Liu et al. (2020b),
all sentences were encoded using byte-pair encod-
ing (Sennrich et al., 2016). For both tasks, we use a
joined dictionary and share all word embeddings of
the encoder and the decoder. For English-German,
their shared vocabulary size is set to be 32k. For
English-French, their shared vocabulary size is set
to be 40k.
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Model WMT14 EnDe WMT14 EnFr
MACs3

#Params BLEU #Params BLEU

Transformer base (Vaswani et al., 2017) 65M 27.3 62M 38.1 604M
Admin 6L-6L (Liu et al., 2020b) 61M 27.7 67M 41.5 604M

MAE-7 (Peng et al., 2020) 63M 28.4 - - -

MoA Base (8K8E128D) 65M 28.4 69M 42.5 628M

Transformer big (Vaswani et al., 2017) 213M 28.4 210M 41.8 2090M
Transformer big (Ott et al., 2018) 210M 29.3 222M 43.2 2090M

LightConv (Wu et al., 2019) 202M 28.9 - 43.1 1750M4

DynamicConv (Wu et al., 2019) 213M 29.7 - 43.2 1790M4

Admin 18L-18L (Liu et al., 2020b) 151M 29.0 - - 1490M
Admin 60L-12L (Liu et al., 2020b) 256M 30.1 262M 43.8 2550M

MoA Big (16K32E256D) 200M 29.4 204M 43.7 1220M

Table 1: BLEU score on WMT14 translation datasets. MACs (Multiply–Accumulate Operations)3 measures the
computational complexity of each model. For different models, their MACs are computed on a source sentence of
length Tsrc = 10 and a target sentence of length Ttgt = 10.

Training and Evaluation Details We use the
Adam Optimizer (Kingma and Ba, 2015) with a
learning rate of 7e−4 and the inverse square root
learning rate scheduler. During training, we em-
ployed label smoothing (Szegedy et al., 2016) of
value 0.1. More training details can be found in
Appendix C.

For the evaluation, we average the last 10 epochs’
checkpoints. We list BLEU score (Papineni et al.,
2002) computed with MULTI-BLEU.PERL, and ap-
ply the compound split post-processing2 introduced
in Vaswani et al. (2017). We use MACs (Multi-
ply–Accumulate Operations)3 to evaluate the com-
putational complexity of different models on a fixed
input. Details of the MACs calculation are in Ap-
pendix E.

Baselines We compare with several strong base-
lines: Transformer base and big (Vaswani et al.,
2017), Transformer big (Ott et al., 2018) with re-
duced precision and large batch training, Dynamic-
Conv (Wu et al., 2019) by replacing self-attention
mechanism with a lightweight convolution, MAE-7
with reallocation of attention heads proposed by
Peng et al. (2020), Admin (Liu et al., 2020a) which
deepens the Transformer architecture.

For our model, three parameters are used to dif-
ferentiate its variants, one is number of the acti-
vated attention heads (K) per token, one is total

2https://github.com/tensorflow/tensor2tensor/
blob/master/tensor2tensor/utils/get_ende_bleu.sh

3We adopt the open-source tool PTFLOPS (https://
github.com/sovrasov/flops-counter.pytorch) to calcu-
late the MACs.

4These MACs values are underestimated. Because the
PTFLOPS does not support the customized convolution layers
in DynamicConv and LightConv.

number of the experts (E), another is the attention
expert dimension (D). For example, our MoA base
model is noted as 8K8E128D, because it has 8
attention experts, 128 dimension per expert, and all
8 experts are activated for each token. Our MoA
big model is 16K32E256D as it has 32 attention
experts and sparsely activates the top 16 experts for
each token.

Results The results on the test set of WMT14
EnDe and WMT14 EnFr datasets are shown in Ta-
ble 1. The table is split into 2 parts, the upper part
is for base models and the lower part is for large
models. On all datasets, MoA base outperforms
Transformer base and Admin 6L-6L by at least 0.6
BLEU. On the WMT14 EnFr dataset, MoA base
also outperforms Transformer big. On the WMT14
EnDe dataset, MoA base reaches comparable re-
sults with the Mixture of Attention Experts model
(MAE-7), which is the state-of-the-art performance
for base-level models. MACs of MAE-7 and our
model are comparable in the setting of 8 attention
heads. While both models leverage the idea of
weighting the attention heads, MoA is easier to
implement and does not require the complicated
block coordinate descent training steps. Compared
to standard multi-head self-attention, the routing
mechanism pays more attention to the more infor-
mative attention heads for each token, thus enabling
the MoA base model to achieve better computation
and parameter efficiency.

In the big-scale setting, MoA big consistently
outperforms standard transformer big models,
despite requiring significantly less computation.
Compared to the models with more parameters,
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Model #Params PPL MACs

Transformer 51.34M 4.95 6.55G

MoA

8K8E128D 52.45M 4.82 7.27G
8K8E256D 61.89M 4.64 8.97G
8K16E256D 78.75M 4.48 8.97G
8K32E256D 112.47M 4.25 8.98G
8K64E256D 179.91M 4.21 8.98G

Table 2: Perplexity on wikitext-103 corpus test data for
masked language modeling. MACs are computed on a
input sequence of length T = 128.

MoA is still very competitive. Only Admin 60L-
12L outperforms MoA big on both datasets. How-
ever, the model has more parameters and requires
about two times of MACs. The MACs of MoA big
is 1220M, which is the lowest amount among big-
scale models. This result shows that our proposed
method could easily scale up to a large amount of
parameters and achieve good results without sub-
stantially burdening the computation system.

5.2 Masked Language Modeling

Masked Language Modeling is the standard train-
ing objective for many Pretrained Language Mod-
els (PLMs), including BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019). The task re-
places a random sample of tokens in the input se-
quence with a special token [MASK]. The training
objective is a cross-entropy loss on predicting the
masked tokens. To better mimic the procedure of
training PLMs, we adopt the setting introduced in
RoBERTa (Liu et al., 2019) to conduct the masked
language modeling experiment.

Dataset We conducted the masked language
modeling on the wikitext-103 dataset (Merity et al.,
2016). The corpus includes over 100 million tokens
collected from verified Good and Featured articles
on English Wikipedia. Following the settings in
Merity et al. (2016), the training/validation/test set
has 103M/218K/246K words. The corpus is tok-
enized with the 50K subword vocabulary used in
RoBERTa and initially introduced in GPT (Radford
et al., 2019).

Settings Then we train the model with the dy-
namic masking strategy and full-sentences input
format. To avoid overfitting on the training corpus,
we adopt a medium-size RoBERTa model as the
base model, with 512-dim word embedding, 2048-
dim feed-forward network, 8 heads, and 8 layers.
Training details can be found in Appendix C. The

perplexity is used as the evaluation metric.

Results Table 2 shows the perplexity on
WikiText-103 test data. While using a similar
amount of parameters, MoA outperforms the stan-
dard transformer model by 0.13 perplexity. Further-
more, the performance simultaneously improves
with the increase of number of experts E and head
size D, while the number of selected heads K and
the computational complexity remains the same.
The observation shows that our model has the abil-
ity of increasing the model’s performance while
maintaining the computation complexity.

5.3 Model Analysis

MoA parameter influence We study the influ-
ence of three parameters, K, E, and D, on the
WMT14 En-De Dataset. The results are shown in
Table 3. For the expert dimension D, we control
K = 8 and E = 32, vary the expert dimension D
with 64, 128, and 256. As the expert dimension
size D increases (rows C, D, E in Table 3), the PPL
on the validation set and the BLEU score on the
test set both improve. This amelioration is due to
the increase in parameters. With a larger expert
dimension size, each expert has more parameters,
and the computational costs increase. We believe
the increase in computational cost is acceptable. As
in Table 1, Transformer big model has a MACs of
2090M, reaching BLEU of 28.4. However, by en-
larging hidden size of expert, we could get BLEU
of 28.8 while MACs at 841M («2090M).

For the number of attention experts E, we con-
trol K = 8 and D = 256, select three different
values of E, 8, 16, and 32. When adding the num-
ber of experts, the PPL on the valid set goes down,
indicating our model’s continuous scaling up abil-
ity. The BLEU score on the test set does not change
with that of PPL, and this may be because the train-
ing objective is not directly linked to the BLEU
score calculation. However, we still observe that 32
experts can achieve better BLEU than the other two
settings. As the number of selected attention heads
K remains unchanged, the MACs for these three
settings are the same. Thus, MoA allows us to im-
prove the model ability by adding more parameters
without changing the computational complexity.

For the number of selected attention heads K,
we test three numbers of selected attention heads K,
4, 8, and 16, freezing E = 32 and D = 256. With
the increase in the number of selected attention
heads, we observe that the PPL on the valid set de-
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MoA Model K E D #Params PPL(Valid) BLEU(Test) MACs

Base 8 8 128 65M 4.68 28.4 628M

(A) 8 8 256 87M 4.51 28.7 841M
(B) 8 16 256 125M 4.45 28.4 841M
(C) 8 32 64 83M 4.79 27.9 524M
(D) 8 32 128 123M 4.55 28.4 631M
(E) 8 32 256 200M 4.44 28.8 841M
(F) 4 32 256 200M 4.65 27.5 654M

Big 16 32 256 200M 4.35 29.4 1220M

Table 3: BLEU score of different MoA models on the WMT14 EnDe Dataset.
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Figure 3: Experts’ load percentages for encoder layer 4.
Experts are indexed by their order of percentages.

creases and the BLEU score on the test set goes up.
Since the number of attention experts remains the
same, the model’s total parameters stay at 200M.
This result shows the trade-off between computa-
tion efficiency and performance. The model needs
more computations for better performance as the
MACs vary from 654M to 1220M.

MoA Expert loads Load balancing is a long-
standing problem of MoE models (Fedus et al.,
2021). Figure 3 shows the experts’ load of the
fourth layer of the MoA big model. It plots the per-
centage of each expert used in the development set
of WMT14 EN-DE. For each input token and MoA
big, 16 attention heads are selected among 32 atten-
tion experts. This figure shows a relatively based
load, where the most used expert is selected by 5%
of the tokens and the least used expert is selected
by 1%, and most experts’ loads are between 2-4%.
This observation suggests that the input tokens are
attributed equally among attention experts. Experts
are assigned to different roles with substantially
different groups of input tokens. The load for every
expert of different layers is shown in Appendix A.

MoA Interpretability: Specialize the Experts
We study in this section whether the different ex-
perts possess different “expertises”. We try to find
the most likely tokens to co-occur with each ex-

Expert 5 Expert 29 Expert 10

Tech. adv. Location

DSL likely Costasur
JPEG tastefully Kaliningrad

Module environmentally Freiburg
DSLR heavily Brava
screen certainly Jesolo

Expert 7 Expert 24 Expert 23

Computer Reaction Name

Outlook supportive Marx
Excel misunderstanding Jarzembowski

IO advocating Reding
emails confirming Donald

monitors excitement Socrates

Table 4: Indicative tokens of each expert for the first
encoder layer of MoA

pert. We compute the pointwise mutual informa-
tion (PMI; Church and Hanks 1990) between to-
kens and experts:

PMI(tokeni, expertj) =
p(tokeni, expertj)

p(tokeni) · p(expertj)
.

For each expert, the bigger the PMI, the more rel-
evant the token with this expert. Table 4 lists the
most indicative tokens of each expert for the first
encoder layer of 16K32E512D. Many experts are
associated with nouns in the same topic, e.g., Lo-
cation, Name, Tech, etc. We also found that some
other experts are associated with adjectives and ad-
verbs. For example, Expert 29 is related to adverbs,
and Expert 24 is connected to people’s reactions,
where some tokens are adjectives. We also study
the relation between expert and input tokens for
other layers of the encoder, but it is hard to find
clear patterns in other layers.

6 Conclusion

This work introduces the Mixture of Attention
Heads (MoA). MoA contains a set of attention ex-
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perts and a routing network. Given an input, the
MoA attributes a probability to each expert by the
routing network and selects the top-K experts. The
output of MoA is a weighted sum of the selected
attention experts. The weighting mechanism al-
lows different tokens to focus on different experts,
thus improving the model’s parameter and compu-
tation efficiency. Experimental results show that a
base-scale MoA model could achieve comparable
or better performance than a transformer big model.
Furthermore, MoA could improve its performance
by adding more attention experts while maintaining
a relatively small computational complexity. In this
way, MoA can achieve comparable performance
with deeper and computationally more expensive
models. The interpretability analysis shows that
different attention experts tend to specialize in a
specific type of input tokens.

Limitations

In this work, we scale up MoA to at most 64 experts.
However, regarding the works combining mixture
of experts with FFN layer, they could expand the
expert number to thousands. In the future, we will
explore the limit of the scale up ability of MoA.

Our implementation of MoA is not optimistic.
Our code could not fully explore the parallel com-
puting capability of GPUs. Our current implemen-
tation spends some extra time on memory copy
operations. Although the computational complex-
ity (MACs) of MoA is relatively low compared to
other baselines, the running time of our implemen-
tation is not optimal. In the future, if we could
optimize the implementation at the cuda kernel
level to remove the memory copy ops, we expect
at least half the wall-clock time. This will make an
MoA block as fast as a standard attention block.

Similar to Transformer architecture, MoA needs
a careful hyperparameter search to reach satisfying
results.
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A Experts’ load percentages
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Figure 4: Experts’ load percentages for different encoder layers

We compare the attribute distribution of tokens on different experts for different encoder layers of
16K32E512D. The results are shown in Figure 4. The load percentages for each expert in different
layers are relatively balanced.

B Computational Complexity Proof

Given a Mixture of Attention Heads with E attention experts, a MoA layer has (2E + 2)dheaddmodel

parameters. A multi-head attention layer has 4d2model parameters. To compare these two complexities, we
conduct the fraction of them.

2(E + 1)dheaddmodel

4d2model

=
(E + 1)

2K

Edhead
dmodel

We note q = Edhead
dmodel

, then we get

(
1

2
+

1

2E

)
q

When Edhead ≃ dmodel, we have q ≃ 1, and

1

2
+

1

2E

which is a hyperbolic-like curve, with value equals to 1 when E = 1. Therefore, if E > 1, we have the
proportion between the parameters of MoA and that of multi-head attention inferior to 1. Thus, the MoA
layer contains fewer parameters than multi-head attention layer.

C Traning Details

All of our models are trained on 32 V100 GPUs. We use the Adam Optimizer (Kingma and Ba, 2015)
with β1 = 0.9, β2 = 0.98 and ϵ = 1e − 9. We use a inverse square root learning rate scheduler for
the translation tasks and a linear scheduler for the masked language model task. During training, we
employed label smoothing (Szegedy et al., 2016) of value 0.1. More training hyperparameters can be
found in Table 6.
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Dataset Model Emb Size FFD Size Encoder Layers Decoder Layers

WMT14 MoA base 512 2048 6 6
MoA big 512 2048 6 6

Wikitext-103 MoA 512 2048 8 -

Table 5: Hyperparameters for different models.

Dataset Model BSZ LR warmup Dropout DropATT DropFFD Epochs

WMT14 EN-DE MoA base 8092 × 32 7e-4 4000 0.2 0.2 0.1 100
MoA big 4096 × 64 7e-4 4000 0.2 0.2 0.1 100

WMT14 EN-FR MoA base 8092 × 32 7e-4 8000 0.1 0 0.1 50
MoA big 4096 × 64 7e-4 8000 0.1 0.1 0.1 100

Wikitext-103 MoA 16384 × 32 6e-4 2000 0.1 0 0 60

Table 6: Training Hyperparameters for different models. The BSZ represent the maximum number of tokens in each
batch.

D Utility of different auxiliary losses

We adopted two different auxiliary losses to balance the experts’ loads, one is La proposed by Fedus et al.
(2021), the other is Lz proposed by Zoph et al. (2022). To validate the utility of these two auxiliary losses,
we conducted several ablation tests. The results are shown in Table 7. With different combinations of
auxiliary losses and different coefficients, we found that 0.01La + 0.001Lz achieved the best BLEU score
on WMT14 EnDe test set.

MoA 0.01La 0.01Lz 0.001Lz 0.01La+0.001Lz 0.01La+0.01Lz

8K8E128D 28.95 28.73 28.78 28.94 28.73
8K16E128D 28.53 28.68 28.61 28.77 28.62
8K32E128D 28.45 28.31 28.38 28.32 28.4

Table 7: Ablation test for different auxiliary losses

E MACs calculation

PTFLOPS launches a given model on a random tensor (with pre-defined input shapes) and estimates amount
of computations (multiply-add operations) during inference. We need to define the shapes of inputs when
using PTFLOPS to calculate MACs. For translation models, we set encoder sequence length and decoder
sequence length to be 10. We set the batch size to be 1. For language modeling models, we set the
sequence length to be 128 and the batch size to be 1. With the pre-defined input shapes, PTFLOPS will
conduct the forward process of the given model and feed back the MACs.
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