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Abstract

Dataset bias has attracted increasing attention
recently for its detrimental effect on the gen-
eralization ability of fine-tuned models. The
current mainstream solution is designing an ad-
ditional shallow model to pre-identify biased
instances. However, such two-stage methods
scale up the computational complexity of train-
ing process and obstruct valid feature informa-
tion while mitigating bias. To address this is-
sue, we utilize the representation normalization
method which aims at disentangling the corre-
lations between features of encoded sentences.
We find it also promising in eliminating the
bias problem by providing isotropic data distri-
bution. We further propose Kernel-Whitening,
a Nystrom kernel approximation method to
achieve more thorough debiasing on nonlin-
ear spurious correlations. Our framework is
end-to-end with similar time consumption to
fine-tuning. Experiments show that Kernel-
Whitening significantly improves the perfor-
mance of BERT on out-of-distribution datasets
while maintaining in-distribution accuracy.

1 Introduction

Despite remarkable performance on NLP tasks, pre-
trained language models, like BERT, suffer sharp
performance degradation in out-of-distribution
(OOD) settings (McCoy et al., 2019). The above de-
fect roots in the excessive reliance on spurious cor-
relations, which is widely found in crowdsourcing-
built datasets (Gururangan et al., 2018). These phe-
nomena are donated as dataset bias problem (He
etal., 2019). A line of works attempts to tackle this
problem by down-weighting bias training exam-
ples to discourage the main model from adopting
recognized biases, including example reweighting
(Schuster et al., 2019), confidence regularization
(Utama et al., 2020a), or model ensembling (Clark
et al., 2019).
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Figure 1: Tllustration of Kernel-Whitening. The vertical
and horizontal axes represent the valid and invalid fea-
tures, respectively. Uneven sample distribution induces
a bias decision boundary, resulting in errors on out-of-
distribution data. The normalization method maps the
data to isotropic latent space, where the new boundary
is uncorrelated to redundant features, providing better
generalization.

However, aforementioned methods over-depend
on researchers’ intuition and task-specific insights
to characterize spurious correlations, causing un-
recognized bias patterns to remain in individual
dataset (Sharma et al., 2018). Such assumption that
dataset biases are known as a prior has been relaxed
by limited capacity models (Utama et al., 2020b)
or early training (Tu et al., 2020) in recent works.
These approaches still rely on extra shallow mod-
els, which are not end-to-end, and weak-weighted
bias samples simultaneously obstruct learning from
their non-bias parts (Wen et al., 2021).

Instead of designing an extra model as previous
attempts did, in this work, we propose a novel end-
to-end framework, Kernel-Whitening, to signifi-
cantly improve OOD performance while maintain-
ing a similar computational cost as conventional
BERT fine-tuning. The BERT-whitening (Su et al.,
2021) and BERT-flow (Li et al., 2020) methods
are effective normalization techniques to obtain
better semantic representation. BERT-whitening
calculates a linear operator' with SVD decompo-

'A positive definite symmetric matrix.
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sition (GOLUB and REINSCH, 1970) to trans-
form the sentence representation to follow a dis-
tribution with respect to the standard normal dis-
tribution. BERT-flow introduces normalized flow
(Rezende and Mohamed, 2015) to perform simi-
lar transformations. Particularly, we find that the
normalization method is also promising in improv-
ing the generalization ability of fine-tuned mod-
els by eliminating spurious correlations in train-
ing datasets. Despite the significant improvement
over the OOD datasets, the linear transformation of
BERT-whitening is not capable of dealing with non-
linear dependencies between features. Meanwhile,
flow-based methods require a complex inference
process, which scales up the training costs.

In an attempt to eliminate nonlinear correlations
while maintaining low training expenditure, we
introduce kernel methods to naturally reconstruct
a set of sentence representations only with linear
correlation (Achlioptas et al., 2001). However, tra-
ditional kernel methods focus only on data simi-
larities without providing explicit mapping opera-
tors, therefore, we use the Nystrom approximation
(Xu et al., 2015) to obtain low-rank kernel estima-
tions. In general, we transform training data to an
isotropic Gaussian distribution without affecting
topological relationships between data points.

Kernel-Whitening® achieves competitive perfor-
mance on generalization tasks. Experiments on
eight datasets demonstrate that our method can im-
prove the accuracy by 7%-11% on OOD datasets.
In addition, the analysis of sentence representa-
tion proves that our method effectively removes
the spurious correlations between dimensional fea-
tures, which are known to be the direct cause of the
dataset bias problem. Overall, our main contribu-
tions are as follows:

* We propose a novel framework, Kernel-
Whitening, which ameliorates the bias prob-
lem by transforming sentence representation
into isotropic distribution with similar time to
fine-tuning.

* We introduce a kernel estimation algorithm,
i.e., Nystrom approximation, to alleviate nor-
malization methods from the trade between
complex arithmetic and disentangle effects.

* We conduct comprehensive experiments on
debiasing tasks to verify the effectiveness of

20ur code is available at https://github.com/
SleepThroughDifficulties/KernelWhitening.

normalization methods for overcoming spuri-
ous correlations.

2 How Do Normalization Methods
Provide Better Generalization

In this section, we discuss the negative impacts of
dataset bias on the model’s generalization ability,
and subsequently, how normalization methods lead
to better performance in OOD settings.

2.1 Illustrate Dataset Bias from Feature
Perspective

We first interpret dataset bias as triggered by the
imbalance distribution of training data in feature
space. Figure 2 shows an empirical analysis on
MNLI dataset (Williams et al., 2018). Both train
and test sets exhibit a strong positive correlation
between the word overlap ratio and the class por-
tion of the entailment label, which enable models
to achieve high accuracy scores without modelling
semantic information. McCoy et al. (2019) pro-
posed HANS, a label-fair test set (i.e., labels are
proportionally consistent with different degrees of
word overlap) to investigate the generalizability
of models fine-tuned with above-mentioned bias,
the model provides over 20% accuracy degrada-
tion when the specific literal heuristic could not be
utilized for prediction.

Formally, given input data (X,Y’) and bias
dataset D, the training process can be formulated
as follows:

Y| XHP(XP|XL)Y)
P(XP)
= P(Y|x"), Q)

PY|XE xP) = il

where X’ represents the task-related features, and
X 7P represents other irrelevant features. That is, the
model learns X” from the label pair (X,Y). By
modeling the conditional distribution of labels rela-
tive to the input, the model extracts valid features
for specific tasks.

However, previous works argue that construction
process of bias dataset introduces spurious correla-
tions between (X | D) and (X*| D) (Gururangan
et al., 2018):

P(XT Xt|D)
P(XL|D)
> P(XT|D). )

P(XP|xt D)=

Therefore, the actual training objective on
dataset D is the posterior between feature
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Figure 2: Lable probability with increasing lexical over-
lap for entailment label on MNLI dataset.

distribution (X', XP|D) and label Y, i.e.,
P(Y|X%Y, X?,D). By Eq.2, irrelevant features
increase the confidence for specific labels:

L P py - PYVIXE D)P(XTIXE, D)

> P(Y|X* D)
= P(Y|X"). 3

Such overconfidence does not perturb the model
effect on the test set, which has a similar dis-
tribution to the training set. However, out-of-
distribution data follow the correct distribution
P(Y|X¥), and are therefore classified as the bias
label (e.g., "entailment" in MNLI dataset), even if
they have different relations.

2.2 Isotropic Representation Leads to Better
Generalization

According to the definition described in Eq.3,
dataset bias causes deep networks to fit the dataset-
specific distribution, which impairs the generaliza-
tion performance. Normalization methods inter-
vene in the above problem by reconstructing the
feature space. When sentences are encoded by
pre-train model, the embedding representations are
transformed into isotropic distribution, e.g., stan-
dard normal distribution. Suppose data x and prior
u satisfy:

$:f9(U), uNPZ/[(u)v @

where U represents the latent space of isotropic w,
and f is an invertible function. The probabilistic
density function of original data on the transformed
space can be calculated as follows:

-1
Pat) = faet I g (17100) . )

By Eq.5, the distribution of training data is trans-
formed into isotropic ones. Subsequently, suppose
XL and X are the latent representations of X*
and X*, the spurious correlations between valid
features and invalid features are eliminated:

Py(XPYPy(XE|D)
= Pu(Y|X)), ©)

PM(Y|X53X1€7D):

With isotropic data distribution, a decision
boundary independent of the redundant features
is obtained, which provides better generalization
on the OOD samples.

2.3 Minor Weakness for BERT-flow and
BERT-whitening

The BERT-flow method learns a flow-based gen-
erative model to fit the transform function fy, and
BERT-whitening method computes the inverse lin-
ear operator with SVD decomposition of the co-
variance matrix. Despite the decent effect of rep-
resenting normalization methods, BERT-flow re-
quires multiple convolutional layers to find the ap-
propriate transformation function, which increases
the difficulty and time consumption of the train-
ing process. When fine-tuned on a tiny dataset,
the flow layer encountered obstacles in providing
reasonable transform results. Moreover, the BERT-
whitening method focuses only on eliminating lin-
ear correlations between features, which is ineffec-
tive in alleviating the nonlinear correlation prob-
lem. In an attempt to ease the effort of training
and provide faster but thorough transformation, we
propose a novel normalization framework by ker-
nel approximation, which is detail discussed in the
next section.

3 Distribution Generalization with Kernel
Approximation

In this section, we show our end-to-end frame-
work named Kernel-Whitening. We first introduce
Nystrom kernel estimation algorithm, and subse-
quently how to apply such approximation method
on debiasing tasks.

3.1 Nystrom Kernel Estimation

We first elaborate kernel trick, which constructs
new linearly differentiable properties by mapping
the original feature space onto a high-dimensional
RKHS (Alvarez et al., 2012). Given a set of train-
ing data X = {xl eRei=1,... ,n}, the kernel
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method maps X onto a dot product space H us-
ing ¢ : X — H. Generally, the dimension of H
can be so large that the mapping function cannot
be obtained explicitly. Nevertheless, the dot prod-
uct result can be represented by a positive definite
kernel £, i.e., a function £ satisfies:

k(wg, z5) = (p(zk), p(x5))
N
= Ndi(z)di(zy), (D
i=1

where \; and ¢; denotes the eigenvalues and
eigenfunctions of kernel operator k, and N
denotes their number. With finite dataset
{:L’i eR?i=1,... ,n}, such decomposition can
be replaced with empirical estimation as follows:

n

1
= k(@wk, @) 6i (m5) = Nidi(mr).  (8)
ni

Eq.8 indicates a spectral decomposition of kernel
matrix G, which satisfy G, ; = k(xy, z;). Consid-
ering the SVD decomposition of G as

G=wzwT, )

where W is an orthogonal matrix, and X is a diag-
onal matrix with positive diagonal elements. When
matching Eq.8 with Eq.9, the mapping operator ¢
is therefore denoted as:
é(z;) = G, WS, (10)
However, existing datasets often contain thou-
sands to hundreds of thousands samples, which
makes it impossible to directly calculate the SVD
decomposition. Therefore, we introduce Nystrom
method (Williams and Seeger, 2001) to provide a
low-rank estimation of kernel matrix.
Suppose S to be a sampled subset of X, the
kernel matrix GG can be represented as:

T
-5

G G, 11)

where GG denotes the gram matrix of subset S. The
W and X can subsequently approximated by:
Wa[G G ], S~a, (12)

The reconstructed Nystrom representation of sin-
gle example x is as follows:

=

¢(x) = Gx,sGs 2, 13)

where Gy s = [k(71,X), ..., k(2s,x)]T forz; € S.
By estimating high-dimensional representations of
the training samples we obtain a linearly divisible
distribution, which can be normalized with a linear
transformation.

3.2 Batch Iterate for Global Approximation

In Section 3.1, we elaborate the standard Nystrom
approach to processing input data. The difference
is, the subset S in the traditional approach, i.e., ker-
nel SVM, usually contains hundreds of elements,
while deep networks are trained on smaller batches
(e.g., 32 for Kernel-Whitening) with stochastic gra-
dient descent (SGD) optimizer. The insufficient
samples compromise the information of recon-
structed representations, making the improvement
inconspicuous when directly applying Nystrom
methods to debiasing tasks.

In attempt to introduce global information while
processing batch data, we design preservation and
reloading structures to extend the dimension of
low-rank kernel matrix. For each batch, we calcu-
late Nystrom matrix with batch features Z} and
global features Z]tc, which represent the principal
components of data distribution in step ¢. Giving
input data Z! contains L instances, the extended
representation is gived with Eq.13:

$(75) = Go.p..G 7, (14)

where GG denotes the kernel matrix generated by

T
[ZE, Zﬂ , and G, denotes the first L rows of

(. Especially, we select Radial Basis Function
(RBF) kernel in Kernel-Whitening method.

Noticing that the kernel estimation method only
projects the data points into a linearly separable
space, we further normalize the distribution with a
linear transformation. The reconstructed represen-
tation ¢(Z} ) is subsequently weighted under the
supervised signal of Hilbert-Schmidt independence
criterion (HSIC) (Wang et al., 2021), which is an
adequate indicator for estimating the mutual inde-
pendence between features. The optimal weight
W* is calculated by:

W* = arg min (15)

- 2
‘ZG,WH )
WeRL F

where W = {W;}"_, denotes the sample weight
vector, and X w represents the empirical estima-
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tion for covariance between features:

~ 1 T
Sew =7 Z 2y
1<i<j<L

(16)

1 n
Fi=WG.;, ——>» W;G;.. 17
\ n; e (17)

At the end of each iteration, we update the global
features with local information Z} to catch reason-
able basis vectors:

Z}“ =i Zf+ (1 — )2, (18)
where a; denotes the attenuated factor controlling
the importance of local information.

3.3 Training Objective

In Section 3.2, we show how to obtain the recon-
structed feature representation ¢(Z! ) and weight-
ing parameters WW*. Subsequently, we use above
results to train on original BERT models. The final
train loss of Kernel-Whitening is denoted as:

L
Loss = ZWi*f(¢(ZtL)i7yi)a (19)
i=1

where f(-, ) represents the cross-entropy loss with
input #(Z}); and it’s corresponding label y;. Our
detailed algorithm implementation is shown in Al-
gorithm 1.

Algorithm 1 Framework of Kernel-Whitening for
our system.

Input: The set of pooler output for current batch,
Z = {Z;}'_1; The set of global features, Z};
The classifier for specific task, f(-, ).

1: Compute kernel matrix G by [Z, Z;]T

2: Compute W, 3 by SVD(G)

3: Compute representation ¢(Z) by G, W, ¥ with
Eq.10, 14

4: Compute weight W* by HSIC(G,W) with
Eq.15

5: Update global features Z with Z with Eq.18

6: Compute training loss L by classifier f(-, ),
W* and ¢(Z) with Eq.19

Output:
Updated global features, Z}H;
Training loss, L

4 Experiments

In this section, we provide a comprehensive analy-
sis of Kernel-Whitening and the other two normal-
ization methods (7.e., BERT-flow (Li et al., 2020)
3 and BERT-whitening (Su et al., 2021)) through
extensive experiments on three tasks.

4.1 Baseline Methods

Our method is compared with previous works as
follows:

* Clark et al. (2019) (Reweighting and Learned-
Mixin), which predicts confidence for each
sample and down-weights problematic data.

e Sanh et al. (2020) (Product-of-Experts and
POEcross-entropy)’ which trains limited ca-
pacity models as experts to debias without
explicitly identifying dataset bias.

 Utama et al. (2020b) (PoEgg|f.debias @nd
Conf-regalf.debias)> Which uses a shallow
model to identify biased samples and focus
the main model on them.

» Utama et al. (2020a) (Conf-reg), which uses
confidence regularization to discourage mod-
els from exploiting biases.

* Xiong et al. (2021) (MoCaD), which produces
uncertainty estimations to achieve a three-
stage ensemble-based debiasing framework.

4.2 Datasets and Metrics

We conduct experiments on three tasks: natural lan-
guage inference, fact verification, and paraphrase
identification. Each task contains in-distribution
and out-of-distribution datasets.

For the NLI task, we conduct experiments on the
Multi-Genre Natural Language Inference (MNLI)
dataset (Nangia et al., 2017) and HANS (McCoy
et al., 2019). We train the model on MNLI, and
choose MNLI-mismatch and HANS as the ID and
OOD test set.

For the fact verification task, we use FEVER*
as the training dataset provided by (Thorne et al.,
2018). We train the model on FEVER, and evaluate
the model performance on ID test set and FEVER
Symmetric (Schuster et al., 2019) (version 1 and 2)
as our OOD test set.

3The code of BERT-flow is available at https://github.

com/bohanli/BERT-f1low.
4https: //github.com/TalSchuster/FeverSymmetric
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| MNLI | FEVER | QQP

Model | ID HANS| ID Symm.vl Symm.v2| ID PAWS dupl - dupl
BERT-base 1843 61.1 [854 552 63.1 | 91 96.9 9.8
Reweighting 83.5 69.2 846 617 66.5 [855 497 51.2
Product-of-Experts 84.1 663 [823  62.0 659 [88.8  50.3 61.2
PoEross-entropy 83.6 673 [857 577 61.4 - - -
POEgglf-debias 80.7 685 [854  59.7 653 |774  44.1 69.4
Learned-Mixin 842 64.0 (833 604 649 (866  69.7 51.7
Conf-reg 843 69.1 |864  60.5 662 [89.1  91.0 19.8
Conf-reggelf-debias 843 67.1 876  59.8 66.0 [850  48.8 28.7
MoCaD 823 707 |87.1 659 69.1 - - -
BERT-flow* 825 69.1 [857 644 67.2 - - -
BERT-whitening-64* | 84.3 699 |86.7  65.7 69.5 [87.5 825 34.7
BERT-whitening-384* |83.7 704 |859 659 683 [873 753 413
Kernel-Whitening-64* |84.4 70.1 |874  65.1 69.8 [90.8  91.2 32.4
Kernel-Whitening-384* | 83.9 70.9 |87.8 66.2 70.3 87.6 72.7 43.2

Table 1: Models evaluation on MNLI, FEVER, QQP, and their respective challenge test sets. The performance of
the three normalized models is shown in cyan, the model name with asterisks represents the experimental results on

our machine. The best results on each dataset are bolded.

Model Requires Prior Extra Model
Knowledge
Reweighting 4 v
Product-of-Experts 4 v
PoE pgss-entropy v v
PoEgelt.debias x v
Learned-Mixin 4 (4
conf-reg 4 v
Conf-reggelt.debias x v
MoCaD v v
Kernel-Whitening X X

Table 2: Details of the state-of-the-art debiasing meth-
ods used to compare with Kernel-Whitening. Our model
is end-to-end while not requiring prior knowledge of
biases or additional shallow models.

For the paraphrase identification task, we per-
form the evaluation using Quora Question Pairs
(QQP) as ID dataset and PAWS (Zhang et al., 2019)
as OOD dataset which consists of two types of data
including duplicate and non-duplicate.

Evaluation Metrics

Following previous works, we measured the ac-
curacy score on the in-distribution and out-of-
distribution test sets to compare the results of dif-
ferent models.

4.3 Implementation Details

Following previous debiasing methods, we apply
our debiasing method on the BERT-base (Devlin
et al., 2019). The hyperparameters of BERT are
consistent with previous research papers. The learn-
ing rate is 2e-5 for MNLI dataset and le-5 for
FEVER and QQP, the batch size is 32 and the opti-
mizer is AdamW with a weight decay of 0.01. Note
that previous methods (Sanh et al., 2020; Xiong
et al., 2021) have shown high variance in experi-
ment results under different settings, we evaluate
the performance of our model by four random seeds
and report the averaged result. We use the [CLS]
vector as sentence embedding for all three meth-
ods. The model is trained in an NVIDIA GeForce
RTX 3090 GPU. All models are trained five epochs,
and checkpoints with top-2 performance are finally
evaluated on the challenge test set.

4.4 Experimental Results

The extensive results of all the above-mentioned
methods are summarized in table 1. Compared
with other baseline methods, Kernel-Whitening
significantly improves the model performance on
challenge sets, and achieves state-of-the-art results
on seven of the eight benchmarks. On the MNLI
and FEVER datasets, our framework achieves the
best performance with about 10 percentage points
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higher than the accuracy of BERT-base, which out-
performs other debiasing methods. This proves that
our framework has the best results and generaliz-
ability among these methods.

Moreover, our approach can effectively elim-
inate the dataset bias while mitigating the dam-
age to generalizable features. The vast majority
of debiasing methods improve the performance of
out-of-distribution datasets by sacrificing the per-
formance of in-distribution datasets, which means
that current debiasing methods attempt to achieve
a trade-off between ID performance and OOD per-
formance. However, our approach achieves the
best performance on OOD datasets for natural lan-
guage inference and fact verification tasks with
better results on ID datasets. For QQP dataset, our
proposed approach also achieves decent general-
ization in PAWS without excessive performance
degradation on ID datasets.

In general, the normalization methods perform
well on both in-distribution and out-of-distribution
datasets for all tasks. All five models of three meth-
ods are end-to-end approaches and do not rely on
any prior knowledge of the dataset. That is to say,
they achieve better utility and scalability while
providing more effective debiasing. For BERT-
whitening and Kernel-Whitening, a larger hidden
dimension indicates better performance on OOD
datasets, and Kernel-whitening performs better
when parameters are constant to BERT-whitening,
which strongly supports our analysis of normal-
ization methods. BERT-flow shows an acceptable
performance on OOD datasets, but is inferior to
the whitening-based approach. We argue that flow
model requires more samples as reference, and the
original hyperparameters are not capable for the
additional network layers.

5 Analysis and Discussion

In this section, we construct supplementary ex-
periments to further analyze the effectiveness of
normalization methods, especially our Kernel-
Whitening framework.

5.1 Effect of Latent Dimension L

The dimensionality of reconstructed features is a
key feature. The reduction of vector size brings
smaller memory occupation and faster inference
downstream layers, while the missing information
may impair the ability of the model. To further
illustrate the effect of low-rank kernel approxima-
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: —— FEVER
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! —— BERT-whitening
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Figure 3: Effect of different dimensionality L with
whitening methods on each aforementioned tasks. The
x axis is the latent dimension of sentence embeddings.
The two images are model performance on out-of-
distribution and in-distribution test sets, respectively.

tion, we conduct a sensitivity analysis of latent
dimension L. Figure 3 shows the variation curve of
performance change for two whitening-based meth-
ods. For both in-distribution and out-of-distribution
tasks. A latent dimension of double the batch size
provides promising performance. As the dimen-
sionality rises, Kernel-Whitening maintains a sta-
ble debiasing effect, while BERT-whitening fluc-
tuates on FEVER and Symm. v2 dataset. We
argue that this phenomenon is due to that high-
dimensional features are more prone to nonlin-
ear correlations, where Kernel-Whitening is de-
signed to show better results. Moreover, Kernel-
Whitening always performs better when the dimen-
sionality is greater than 300, which illustrates the
stability and generality of our method.

5.2 Independence Study

In Section 2 we analyse how isotropic data dis-
tribution leads to better generalization. To check
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whether normalization methods remove the depen-
dencies between features, we conduct experiments
on the covariance between features during training
process. As shown in Figure 4, All three normaliza-
tion methods exhibit a suppression effect on feature
correlation, while our method achieves the optimal
performance at the end of training. As the itera-
tions increase, the covariance first decreases rapidly
and converges to a low point. All method’s perfor-
mance fluctuations around certain steps, we believe
such fluctuations are related to biased samples in
the data.

Overall, Kernel-Whitening largely remits depen-
dencies between features, and such independence
effectively contributes to the generalization ability
of deep network models.

5.3 Time Consumption

Besides outstanding debiasing performance, we
compute the time consumption with baseline meth-
ods to further demonstrate the strength of Kernel-
Whitening. We train each model equally on an
NVIDIA RTX 2080Ti GPU with the same batch
size. We compare three normalization methods
with the best baseline work, MoCaD (Xiong et al.,
2021), which trains a bias model to produce model
calibrating. To give a horizontal comparison be-
tween different datasets, we set the time consump-
tion of fine-tune 100 as a baseline. As shown in Ta-
ble 3, the time consumption of Kernel-Whitening is
nearly the same as fine-tuning and costs 6 times less
extra time than MoCad. Although BERT-whitening
only uses a linear transformation to obtain recon-
struction representations, our method is still faster.
Because our method performs SVD decomposition
on a matrix of Lx L while BERT-whitening handles
the same operations on a matrix of L * [N, where
L is the hidden dimension and NN is the output
dimension of BERT (e.g., 768).

Method | MNLI | FEVER
BERT-base | 100 | 100
MoCad 264 227
BERT-flow 198 190
BERT-whitening 146 139
Kernel-Whitening 138 134

Table 3: Time consumption (percentages) of training
one epoch on the whole dataset. Whitening-based meth-
ods cost much less time than previous works.

—— BERT-Whitening

Kernel-Whitening
—— BERT-flow
—— BERT-base

0.6
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Figure 4: The independence study on covariance be-
tween reconstructed features. The hidden dimension of
BERT-whitening and Kernel-Whitening are set to 64.
All models are trained 50000 steps with batch 32.

6 Related Work

6.1 Dataset Bias

Recent observations (McCoy et al., 2019; Naik
et al., 2018) show that, natural language under-
standing models tend to over-rely on specific shal-
low heuristics, resulting in inadequate generaliza-
tion capability in out-of-distribution (OOD) set-
tings (Schuster et al., 2019). Sinha et al. (2021);
Pham et al. (2021) have reported the insensitivity to
word-order permutations among transformer-based
models. The original and out-of-order examples
elicit the same classification label When permuted
randomly, which contradicts the conventional un-
derstanding of semantics. Such phenomena are
studied as dataset bias problems.

Existing methods train additional models to iden-
tify biased training data (Clark et al., 2019; Utama
et al., 2020a; Schuster et al., 2019) or use the above
bias model to calibrate the classification results of
test data (Utama et al., 2020b; Sanh et al., 2020;
Xiong et al., 2021). The so-called bias model refers
to classifiers who use only a portion of input data
for prediction, e.g., hypothesis-only model in NLI
task which only predict from specific linguistic
phenomena in hypothesis sentences such as nega-
tion. These methods are not end-to-end and face
difficulty in fully identifying all bias patterns.

Recently, another line of works notice the con-
nection between dataset bias and feature distribu-
tion, and try to tackle the dataset bias problem
by identifying features with better generalizabil-
ity. Dou et al. (2022) use an loss function based
on information bottleneck (IB) to focus the model
on task-relevant features, and Wu and Gui (2022)
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similarly achieve such feature filtering by mapping
sentence embedding into a specific low-dimension
subspace.

6.2 Unsupervised Semantic of Sentence
Embedding

Previous works suggest that the word representa-
tions of pre-train language model are not isotropic
(Gao et al., 2018; Ethayarajh, 2019), leading model
to poorly capture the underlying semantic of sen-
tences (Li et al., 2020). Such anisotropic causes
the difficulty of using sentence embedding directly
through simple similarity metrics. Gao et al. (2018)
propose word embedding matrix regularization
methods to mitigate the degeneration problem. Re-
cently, researchers attempt to transform BERT sen-
tence embedding into an isotropic Gaussian distri-
bution through normalizing flow (Li et al., 2020)
or whitening methods (Su et al., 2021). As su-
pervised learning also suffers from uneven data
distribution of train sets, we are the first to normal-
ize the data distribution on supervised training to
eliminate dataset bias problem.

7 Conclusion

In this work, we propose a novel framework,
Kernel-Whitening, to tackle the spurious correla-
tion from a feature perspective. We analyze how to
introduce isotropic sentence embedding for elim-
inating dataset bias and propose a promising and
computationally kernel estimation, to obtain an ap-
proximation of disentangled sentence embedding.
Experiments on various datasets demonstrate that
Kernel-Whitening achieves better performance on
both ID and OOD datasets than comparative works.
This implies that a shallow model, or prior knowl-
edge of dataset bias, is not must for the improve-
ment of generalization.

8 Limitations

In this section, we discuss the potential limitations
of our work. The analysis of model effects in
this paper is focusing on commonly used bench-
marks for natural language understanding debias-
ing works, and they may carry confounding factors
that affect the performance of our model. There-
fore, it is worth further exploring the performance
of our model on more tasks, e.g., the WikiGender-
Bias dataset for gender bias on relation extraction
task. In addition, this presented work is inspired by
unsupervised semantic learning methods, such as

BERT-whitening, and it will be better to test the per-
formance of our approach on unsupervised tasks.
We leave these two problems to further work.
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