CGF: Constrained Generation Framework for Query Rewriting
in Conversational Al

Jie Hao' Yang Liu'
Rakesh Chada'

Xing Fan'
Pradeep Natarajan'

Saleh Soltan'
Gokhan Tur!

Saurabh Gupta®*
Chenlei Guo'

! Amazon Alexa Al
2Linkedin
{jieha,yangliud, fanxing, ssoltan, rakchada,
natarap, guochenl, gokhatur}@amazon.com
saurabh3949@gmail.com

Abstract

In conversational Al agents, Query Rewrit-
ing (QR) plays a crucial role in reducing user
frictions and satisfying their daily demands.
User frictions are caused by various reasons,
such as errors in the conversational Al system,
users’ accent or their abridged language. In this
work, we present a novel Constrained Genera-
tion Framework (CGF) for query rewriting at
both global and personalized levels. It is based
on the encoder-decoder framework, where the
encoder takes the query and its previous di-
alogue turns as the input to form a context-
enhanced representation, and the decoder uses
constrained decoding to generate the rewrites
based on the pre-defined global or personal-
ized constrained decoding space. Extensive of-
fline and online A/B experiments show that the
proposed CGF significantly boosts the query
rewriting performance.

1 Introduction

Large-scale conversational Al agents such as Alexa,
Siri and Google Assistant help millions of users to
perform a lot of tasks, such as playing music, con-
trolling light devices at home, etc. In general, such
conversational Al agents have multiple components
including automatic speech recognition (ASR) and
natural language understanding (NLU). ASR is re-
sponsible for converting the speech signal of the
user’s query (e.g., “play Michael Jackson music")
to a text transcript. Following this, NLU provides
domain/intent classification (e.g., domain: Music,
intent: PlayMusic) and entity labelling (e.g., Artist-
Name: Michael Jackson), which are used to fulfill
the user’s request.

However, sometimes there are frictions due to
speech recognition or NLU errors. For example,
ASR errors may lead to an erroneous transcript
“play alien bridges”, when the user actually meant
“play leon bridges”. Due to such errors, the down-
stream NLU system is affected, capturing a wrong

*Work done when working at Amazon.

entity “alien bridges” for the slot “ArtistName”.
This leads to a bad user experience and the user has
to rephrase their query. Additionally current NLU
technology has limitations and cannot handle all
the user requests. For example, “tv to input three’
cannot be properly handled by NLU (the user’s in-
tended request is “turn tv to h.d.m.i. three”). To re-
duce the friction and make the dialog system more
robust, query rewriting (QR) (Ponnusamy et al.,
2019; Chen et al., 2020) becomes an increasingly
important technique in conversational Al agents. In
production conversational Al agents, the QR com-
ponent is often triggered when the system cannot
process user requests with a good confidence. For
example, if ASR or the named entity recognition
(NER) confidence is low, the QR component can
be triggered to automatically map a user query to
another form, so that the dialog system can success-
fully take the right action.

bl

Many existing QR systems use search-based
pipelines for either global-wise query rewrit-
ing (Fan et al., 2021; Chen et al., 2020) or personal-
ized query rewriting (Cho et al., 2021). These sys-
tems typically have two steps: retrieval and ranking.
Users’ historical defect-free interactions with con-
versational agents are used to construct the global
or personalized index. When a new request ar-
rives, the system compares it to those utterances
in the index using a retrieval model such as a dual
encoder with billion-scale similarity search (e.g.,
FAISS) (Johnson et al., 2017) and retrieves top N
candidates from the index. Then a ranking model
is used to rank these candidates with both neural se-
mantic and IR features as input. The system picks
the top 1 ranked candidate as the final rewrite. Such
a search-based system is widely used in the large
scale conversational Al agents since it can effec-
tively control the output because of the use of the
index and thus reduce the risky rewrites.

However, there are also limitations in such
retrieval-based systems. First, the query and

485

Proceedings of EMNLP 2022 Industry Track, pages 485-493
December 9-11, 2020. ©2022 Association for Computational Linguistics

rewrite candidate affinity is mainly captured
through a vector dot product and lacks token level
modeling. Second, a large memory footprint is
needed to store dense representations when a large
index is used in the retrieval step.

In this work, we propose to leverage generation-
based models under the Constrained Generation
Framework (CGF) for the query rewriting task.
Since little work has incorporated the previous con-
text information in query rewriting, although its
importance is recognized (Wu et al., 2018), we use
the previous dialog context and the user’s current re-
quest in the encoder. The decoder uses constrained
decoding in inference to force the generated rewrite
to be in a predefined candidate set. The proposed
CGF enables us to mitigate the aforementioned
shortcomings from the search-based system since
the autoregressive formulation allows the model
to directly capture relations between the contex-
tual input and target rewrites and thus effectively
cross encode both. Moreover, the memory footprint
is greatly reduced because the parameters of our
encoder-decoder architecture scale with the vocab-
ulary size, not the index count. Though the neural
language generation approaches are known to hallu-
cinate content, our proposed constrained decoding
approach with a predefined candidate set makes the
generation model faithful to the model input and
avoids the potential hallucinations or bad rewrites.
We conducted extensive offline experiments for
both global and personalized query rewriting to
show the effectiveness of the proposed approach.
Our online experimental results also demonstrate
that the proposed CGF indeed generates rewrites
of better quality.

2 Related Work

2.1 Query Rewriting

In dialogue systems, query rewriting benefits dia-
logue state tracking especially coreference resolu-
tion (Rastogi et al., 2019; Vakulenko et al., 2020;
Hao et al., 2021), and in general can seamlessly
replace the user’s utterance in order to remove fric-
tion and unsatisfactory experience to users (Pon-
nusamy et al., 2019; Wang et al., 2021). To do
this, Ponnusamy et al. (2019) proposed to refor-
mulate the queries with a Markov Chain. Chen
et al. (2020) proposed a retrieval-based model with
a pre-training method. Fan et al. (2021) and Cho
et al. (2021) leveraged multi-stage search-based
systems to perform global and personalized query

rewriting. In this work, we propose CGF based on
Seq2Seq models to generate a rewrite of the initial
user query.

Another thread of work that is related to query
rewriting is the Grammatical Error Correction
(GEC) task. GEC is the task of correcting different
kinds of grammatical errors in text such as spelling,
punctuation, and word choice errors. Recently,
Seq2Seq based models have become the state-of-
the-art approach for GEC (Zhao et al., 2019; Wang
et al., 2019; Kaneko et al., 2020). The main differ-
ence between GEC and our query rewriting is that
GEC is more concerned with grammatical correc-
tions, and we focus on the errors from users, ASR
or NLU systems to reduce the friction.

2.2 Constrained Generation

Constrained generation has been applied in many
tasks such as machine translation and web search.
Hokamp and Liu (2017) introduced grid beam
search to allow the inclusion of pre-specified lexi-
cal constraints. Mohankumar et al. (2021) applied
constrained decoding with a diverse sibling search
algorithm for search advertising. To the best of our
knowledge, ours is the first work that introduces
the constrained decoding into query rewriting for
conversational Al agents. Moreover, we extend
the approach to personalized rewriting to take full
advantage of the constrained generation.

3 CGF for Query Rewriting

As shown in Figure 1, we introduce the sequence-
to-sequence (Seq2Seq) model to generate the
rewrite, where a bidirectional encoder takes the
context and current request as input, and an autore-
gressive decoder relies on the pre-defined index
to perform the constrained decoding in order to
generate the target rewrite.

3.1 Context-enhanced Modeling

We adopt the Seq2Seq pre-trained model
BART (Lewis et al.,, 2020). It has the same
model architecture as the widely-used Transformer
model (Vaswani et al., 2017) and is pre-trained
with a denoising way (Devlin et al., 2019). In
this work, we flatten the previous dialogue turns
(including both user requests and agent responses)
and the current user request into a single sequence
for the encoder input, as shown in Figure 1, and
fine-tune BART.

486

Bidirectional Encoder ‘

= Autoregressive Decoder

Model output nBest:

what time is sunset tonight in willimantic
connecticut

Constrained
decoding

_|what time is sunset tonight in wesley
chapel

|

[USER] what time is sunset tonight [AGENT] Sunset, in
Greenacres, Florida, on Thursday, October 21 will be
6:48pm [USER] what kind of sunset tonight in willimantic

connecticut
Previous
dialog context

<«— Current turn

Flatten contextual input I

User: what time is sunset tonight

Agent: Sunset, in Greenacres, Florida, on
Thursday, October 21 will be 6:48pm

User: what kind of sunset tonight in willimantic
connecticut

|

Prefix Tree

what time is sunset today in williamstown
new jersey

O

Historical user
interactions

Figure 1: Illustration of the Constrained Generation Framework (CGF) for query rewriting. When a new utterance
arrives, the model performs the contextual encoding and constrained decoding and outputs the final rewrites. “Model
output nBest” denotes multiple candidates generated using beam search.

Formally, given a context-enhanced request se-
quence Q = {q1,...,qn }, Where ¢; denotes a to-
ken in the sequence, and the corresponding rewrite
R = {r1,...,7n}. The encoder is responsible for
reading the input request and its previous dialogue
turns, and the decoder autoregressively generates
the rewrites. Given the hidden representations of
the context-enhanced request and the rewrite, the
conditional probability of the n-th target word ry,
is calculated as following:

Hp,. = ENCparr(QY), (1)
Hpee = DECpART(RY, HEpne) (2)
P(rn|R<n, Q;0) = Softmax(Proj(hn)) (3)

where h,, is the n-th hidden representation of
Hpe.. Proj() and Softmaz() are two transfor-
mation functions in the output layer of the de-
coder (Vaswani et al., 2017).

3.2 Constrained Decoding

Neural language generation approaches are known
to hallucinate content, resulting in generated text
that conveys information that does not appear in
the input. For example, if a user has a request “play
broadway girls”, the model with free-style gener-
ation can generate a rewrite “play broadway girls
by morgan wade”. This is factually wrong since
“morgan wade” never sings the song “broadway
girls”. This is because general generative models
leverage the beam search over the entire vocabulary
and thus there is a chance of generating fluent but

factually incorrect sentences. Thus, the inability to
effectively control the generated text has become
one of the biggest obstacles for adopting generative
models for query rewriting in conversational Al In
this work, we propose to use constrained decoding
in the generative models to reduce the potential bad
rewrites.

Beam search has been widely used in Seq2Seq
models during inference to improve the search qual-
ity. The standard beam search consists of selecting
the top B hypotheses with the highest log proba-
bility S(7, 7<;|Q) = S(F<t|Q) +1ogP ([P <, Q)
at each time step t, where 7; denotes the token in
the generated hypothesis. Allowing to generate any
token from the vocabulary at every decoding step
might lead the model to generate output strings
that are not valid (i.e., bad rewrite). Hence, we
resort to constrained beam search, forcing to only
decode valid rewrites from a predefined candidate
set. We define our constraint in terms of a prefix
tree 1, where nodes are tokens from the vocabu-
lary. For each node ¢ € T, its children indicate all
the allowed continuations from the prefix, which
is defined as traversing the trie from the root to t.
More formally, when decoding the token r; at time
step t, the constrained probability distribution is
calculated as:

= PP =7, Q),
0,

if r € suffixp (7<)

otherwise

BOS

e
turn play
stare staring
/ \ N
the it e
NN
sun moon sky EOS
| | |
EOS EOS EOS

Figure 2: A snapshot of the utterance trie we construct
based on the global index. When the model has gen-
erated a sequence “[BOS] play staring at” during the
decoding process, in the next step, using the pre-defined
trie, the model is only allowed to generate either “the”
or “it”. Then, if the model generates “the” next, it is
only allowed to generate one of the three words “sun”,
“moon” or “sky” in the step after it.

where we remove all the tokens r that are not a
suffix of the already generated sequence 7, in the
trie. In this way, we can ensure that the model
is only allowed to generate the rewrites from the
predefined candidates set.

In the trie shown in Figure 2, each path from the
root node to the leaf node (e.g., [BOS] — play —
staring — at — it — [EOS]) represents an utter-
ance that we allow the model to generate. “[BOS]”
is the special token indicating the beginning of a
sequence. Similarly, “[EOS]” denotes the end of a
sequence.

3.3 Global and Personalized Query Rewriting

Constrained generation with the predefined decod-
ing space can not only reduce the risks, but also
offer flexibility to conduct rewrite with utterance
sets predefined at different granularities. In this
section, we introduce how to conduct the global
and personalized query rewriting with CGF.

Global Query Rewriting Global query rewriting
means that the rewrite for a request is applicable
for all the users. For example, for a query “tv to
input three”, the ideal rewrite for this query is “turn
tvto h. d. m. i. three”, which is applicable to all the
users who might say this request. In the proposed

"Note that we mask the probabilities of the invalid tokens
and do not re-normalize the probability over the vocabulary.
We found it is more effective this way.

CGF, we pre-define the global constrained decod-
ing space to include all the rewrite candidates that
the model is allowed to generate. To achieve this,
inspired by the approach to construct the global
index in Fan et al. (2021), we build the global trie
that provides rewrite candidates extracted from all
the users’ interactions. The global trie is generated
from the aggregated, anonymized historical inter-
actions between the users and the agent within a
period of time (e.g., 30 days). In addition, after col-
lecting all the user historical interactions, we rely
on a defect detection model (Gupta et al., 2021) to
filter out the defective utterances. Note that since
constrained decoding with the trie doesn’t need to
store dense vectors of the index, we can reduce
the memory footprint greatly and thus potentially
enlarge the trie comparing to the index of search-
based models in real online systems.

Personalized Query Rewriting A crucial nature
of query rewriting is that often it needs to reflect
personal preference or personalized error types to
recover from the defect (Cho et al., 2021). For
example, for the same defective request “furn on
the moon”, the intended request for user A may
be “turn on the moonlight sonata”, whereas user
B might want to “turn on the moon lamp”. Thus,
the global query rewriting described above can not
handle such cases. It is necessary to have a per-
sonalized query rewriting system to fill this gap.
The vanilla Seq2Seq models are not able to per-
form personalized generation naturally. In contrast,
our proposed CGF can allow the generation-based
models to perform personalized query rewriting by
using a personalized constrained decoding space
for each user. For a request coming from a spe-
cific user, the model is only allowed to generate a
rewrite from the pre-defined personalized decoding
space. We follow Cho et al. (2021) to build the
constrained decoding space for each user, leverag-
ing their individual interaction history. The utter-
ances included in the constrained decoding space
(i.e., trie) reflect satisfied experiences for each user
within the past 30 days. In this work, we utilize
the model trained with the global training data and
apply the personalized trie on it for personalized
rewriting.

488

4 Offline Experiments

4.1 Data

We train our proposed method with weak-labeled
data annotated by a model (Machine-Annotated).
Specifically, we first leverage a defect detection
model (Gupta et al., 2021) to find two consecu-
tive deidentified user utterances, where the first
turn was defect, but the second turn was success-
ful. Then, we further filter out consecutive ut-
terances with a time gap larger than 35 seconds
and edit distance larger than 5. For evaluation,
we curated human-annotated test data (Human-
Annotated). For both global and personalized test
sets, we make sure the target rewrites are in the
global/personalized constrained decoding space.
Table 1 gives the statistics of the data set. Note
that all the data has been de-identified.

Data Type Machine Human
Train Valid Test
Global QR 6.5m 0.4m 6k
Personalized QR 6.5m 0.4m 5k

Table 1: Statistics of the query rewriting data sets. “Ma-
chine” denotes the Machine-Annotated data. “Human”
denotes the Human-Annotated data.

4.2 Model Setup

In this work, we fine-tune the pre-trained BART
model (Lewis et al., 2020). We compare our pro-
posed model with several baselines. For global
query rewriting task, we have two baselines: 1)
DPR (Karpukhin et al., 2020): we follow a re-
cent retrieval model DPR to train a dual BERT
model. 2) UFS-QR (Fan et al., 2021): we im-
plement the search-based approach UFS-QR that
contains a retrieval layer and ranking layer. For per-
sonalized query rewriting, we have Personalized
UFS-QR (Cho et al., 2021) and DPR as the base-
lines. Personalized UFS-QR extends the UFS-QR
by incorporating the personalized features into the
ranking model and index construction. In addition,
we also compare with the CGF model that uses
the global trie. More details of model training fro
the CGF and baselines training can be found in
Appendix A.1. We follow Fan et al. (2021) to
build the global trie, which contains 27M unique
utterances, and Cho et al. (2021) to build the per-
sonalized trie. On memory (disk space) footprint,
the global trie we built is 856M, in contrast, the

System | Precision | Trigger Rate
DPR 0.0 0.0
UFS-QR +10.59% -13.22%
CGF | +36.62% | +275.23%
Ablations
CGF w/o CE +34.43% +272.34%
CGF w/o CD +34.97% +274.02%
CGF w/o both | +32.74% +266.17%

Table 2: Global query rewriting evaluation. We compare
our proposed CGF with the existing search-based query
rewriting systems on human annotated test sets. “CE”
denotes context-enhanced encoding. “CD” denotes the
constrained decoding. All the numbers are relative dif-
ferences with respect to the baseline: “DPR”.

built FAISS index is 36G for UFS-QR and 89G for
DPR with the same utterances.

4.3 Evaluation Metrics

For evaluation, we use utterance level precision
and trigger rate. Precision denotes how often the
triggered rewrite matches the correct rewrite. The
trigger rate is the fraction of instances for which
the model makes a prediction with the final beam
score above a predefined threshold?. We set the
threshold to -0.2 for our proposed CGF models.

4.4 Global Query Rewriting Results

Table 2 shows the CGF main results with ablations
on the two human-annotated test sets. CGF with
context-enhanced encoding and constrained decod-
ing achieves the best performance on precision and
trigger rate on the two test sets. Our approach out-
performs the search-based UFS-QR system and
retrieval system DPR by more than 14% and 21%
on precision respectively. Moreover, the proposed
approach can confidently trigger more cases.
Table 2 also lists the ablation study results for
the global query rewriting task using CGF. “w/o
both” denotes the CGF without context-enhanced
encoding and constrained decoding, in which the
model takes only the query as the encoder input and
conduct the unconstrained generation. In particular,
although we see that the overall performance of the
“w/o CD” model is not bad, it still suffers from
hallucinations. Examples with factually incorrect
generation can be found in Appendix A.3 Table 5.
It is clear that using context-enhanced encoding and

*The final beam score is formalized as log(Ps(y|z)) =
Y 1 po(yi|y<i,), where @ is the model parameters and is
the model input.

489

System | Precision | Trigger Rate
CGF (Global trie) 0.0 0.0
DPR (Personalized index) | +16.03% -51.85%
Personalized UFS-QR +16.61% +15.69%
CGF (Personalized trie) | +19.33% | +17.68%

Table 3: Personalized query rewriting evaluation. All
the numbers are relative differences with respect to the
baseline: “CGF (Global trie)”.

constrained decoding proved useful. Combining
them together is better, resulting in higher precision
and at the same time higher trigger rate.

4.5 Personalized Query Rewriting Results

Results for the personalized query rewriting on the
Human-Annotated test set using our proposed CGF
are in Table 3. We use the same trained model as
the global query rewriting task. The only difference
is that during inference, the constrained decoding
space is changed to the personalized one based on
each user’s historical interactions and thus varies
across users. As can be seen, CGF outperforms the
CGF global model (i.e., Global trie). Also, it out-
performs search-based Personalized UFS-QR and
DPR respectively by 2.7% and 3.3% on precision,
with a higher trigger rate.

5 Online Experiments

5.1 Deployment

In the online system, we run the global and per-
sonalized CGF models in parallel. When both
the global and personalized components return a
rewrite candidate, we prioritize the results from the
personalized model over the global one to support
any possible personalization of QR. No rewrite will
be output from the system if neither model man-
ages to generate a rewrite.

5.2 Online Results

To investigate the effectiveness of the introduced
techniques, we leverage the proposed model CGF
to generate the rewrites and deploy them into the
online environment. We compare it with the no-
CGF rewrites within the English speaking users
environment. The data was collected for more than
one week over a significant percentage of traffic via
the A/B testing framework. We use one primary
metric to evaluate the performance of our proposed
CGF approach during A/B: Defect Rate. It denotes
the total number of rewritten utterances that are

defective divided by the total number of rewritten
utterances. We leverage the defect detection model
proposed by Gupta et al. (2021) to measure if an
utterance is defective.

From A/B results, we observed significant® rel-
ative reduction of defect rate: 28.97% and 1 mil-
lion of new rewrites generated by the proposed
approach per week. Table 4 shows the cases where
the original requests had unsatisfying responses
from the agent and after the rewrite, the friction
was removed with satisfying responses. For exam-
ple, due to an ASR error, the agent response to the
original request “how old is tommy in it” cannot
fulfill the user’s need. Even without context infor-
mation, i.e., when the request is the first turn, the
CGeF can successfully rewrite it, yielding the right
response from the agent. More online examples
can be found in Table 4.

5.3 Limitations

Trie Coverage Although we have used 27M
unique utterances in the global trie and 30 day’s
non-defective turns for each user for constrained
decoding, the proposed system cannot handle the
cold start (e.g., a recent released song) or out-of-
trie rewrite cases (the rewrite for the request is not
in the trie). To mitigate this, we plan to update
the global trie weekly and personalized trie daily.
Also we will work on constraining a part of utter-
ance generation (i.e., entity) instead of the entire
utterance to enlarge the decoding space.

Latency Generation-based models always suffer
from the latency issue due to its autoregressive
generation process. In the CGF deployment, we
changed the model to ONNX* version and speed
up the inference by 30.6%. However, CGF is still
1.5 times slower than the search-based system (Fan
et al., 2021). Considering this, we will explore
the non-autoregressive approach and related model
optimization approaches like distillation, pruning,
etc.

6 Conclusion

In this work, we propose CGF, a novel paradigm for
query rewriting: generate target rewrite autoregres-
sively with context-enhanced encoding and con-
strained decoding. CGF is a general framework for
different query rewriting purposes where one can

3p-value<0.0001
*https://github.com/onnx/onnx

490

Original request (w/o context): Agent response (before rewrite):
USER: how old is tommy in it Here’s what I found from the web: Defect Reduction:
A 24-year-old man whose... 50.20%
CGF rewrite: Agent response (after rewrite):
how old is tommyinnit TommylInnit is 17 years old.
Original request (w/o context): Agent response (before rewrite):
USER: play night talk by drake I couldn’t find night talk Defect Reduction:
CGF rewrite: Agent response (after rewrite):
play knife talk by drake Here’s Knife Talk , by Drake (feat. 41.52%
21 Savage, Project Pat) , on Amazon Music.
Original request (w/ context): Agent response (before rewrite):
USER: play little yancy
Lil’ Fancy from Apple Music.y | Sorry, I'm having trouble finding the song. Defect Reduction:
USER: play little yankees praise part 22.71%
CGF rewrite: Agent response (after rewrite):
play little yancy praise party Here is little yancy praise party.

Table 4: Online Performance of CGF with Qualitative Examples

freely define the decoding space (e.g., global, per-
sonalized or domain-specific space). Both offline
and online experiments show that our approach con-
sistently and significantly improves query rewriting
performance.

References

Zheng Chen, Xing Fan, and Yuan Ling. 2020. Pre-
training for query rewriting in a spoken language un-
derstanding system. In ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 7969-7973. IEEE.

Eunah Cho, Ziyan Jiang, Jie Hao, Zheng Chen, Saurabh
Gupta, Xing Fan, and Chenlei Guo. 2021. Personal-
ized search-based query rewrite system for conver-
sational ai. In Proceedings of the 3rd Workshop on
Natural Language Processing for Conversational Al,
pages 179-188.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Xing Fan, Eunah Cho, Xiaojiang Huang, and Chenlei
Guo. 2021. Search based self-learning query rewrite
system in conversational ai. In 2nd International
Workshop on Data-Efficient Machine Learning (De-
Mal).

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung Pham, and Chen-
lei Guo. 2021. Robertaiq: An efficient framework
for automatic interaction quality estimation of dia-
logue systems. In 2nd International Workshop on
Data-Efficient Machine Learning (DeMal).

Jie Hao, Linfeng Song, Liwei Wang, Kun Xu, Zhaopeng
Tu, and Dong Yu. 2021. RAST: Domain-robust dia-
logue rewriting as sequence tagging. In EMNLP.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. ACL.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. [EEE
Transactions on Big Data.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In ACL.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In EMNLP.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2020. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
In ACL.

Akash Kumar Mohankumar, Nikit Begwani, and Amit
Singh. 2021. Diversity driven query rewriting in
search advertising. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 3423-3431.

Pragaash Ponnusamy, Alireza Roshan Ghias, Chenlei
Guo, and Ruhi Sarikaya. 2019. Feedback-based
self-learning in large-scale conversational ai agents.
arXiv preprint arXiv:1911.02557.

491

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and
Lambert Mathias. 2019. Scaling multi-domain di-
alogue state tracking via query reformulation. In
NAACL.

Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu,
and Raviteja Anantha. 2020. Question rewriting for
conversational question answering. arXiv preprint
arXiv:2004.14652.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In NIPS.

Liang Wang, Wei Zhao, Ruoyu Jia, Sujian Li, and
Jingming Liu. 2019. Denoising based sequence-
to-sequence pre-training for text generation. arXiv
preprint arXiv:1908.08206.

Zhuoyi Wang, Saurabh Gupta, Jie Hao, Xing Fan,
Dingcheng Li, Alexander Hanbo Li, and Chenlei
Guo. 2021. Contextual rephrase detection for reduc-
ing friction in dialogue systems. In EMNLP.

Xianchao Wu, Ander Martinez, and Momo Klyen. 2018.
Dialog generation using multi-turn reasoning neural
networks. In NAACL.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In NAACL.

A Appendix

A.1 Model Set up

For CGF, we use a batch size of 2048 tokens,
dropout rate of 0.1 and adam optimizer. The learn-
ing rate is 3E-5 and linearly warms up over the
first 5% steps, then decreases proportionally to the
inverse square root of the step number. All the
models are trained on eight NVIDIA Tesla V100
GPU.

For the DPR baseline on global rewriting task,
we follow Karpukhin et al. (2020) to train the
dual BERT model with machine-annotated train-
ing set and in-batch negatives. During the infer-
ence, for each user request, we use FAISS (Johnson
et al., 2019) search and return top K (K=1 in this
work) relevant rewrites from a global index, which
contains 27M unique requests as same as global
trie. For the persoanlized rewriting task, similarly,
the DPR will return a rewrite from the user’s in-
dex, which contains 30 day’s non-defective user
histroical utterances as same as personalized trie.

M First tun M First turn
Not first turn Not first turn

715 513
75.0 475
725 438
70.0 40.0

CGF CGF w/o context CGF CGF w/o context

(a) Precision (b) Trigger Rate

Figure 3: Global query rewriting evaluation on the first
turn and not first turn subsets. “CGF w/o context” de-
notes the CGF without context-enhanced encoding.

A.2 Effect of Context-enhanced Modeling

We study the effect of the context-enhanced mod-
eling in this subsection. As in some of test cases,
there are not previous context available and the
model will rewrite the first turn of the multi-turn
dialogue session. We investigate if the proposed
model is robust and effective for both of such cases.
Thus, we split the global test set into the with pre-
vious context (“First turn”) and without previous
context cases (“Not first turn”).

As shown in the Figure 3, the CGF gets sig-
nificant improvement for both precision and trig-
ger rate on the “Not first turn” test set compar-
ing to CGF without context-enhanced encoding,
which demonstrates the effect of the context infor-
mation during the model training. Moreover, on
the “First turn” test set, surprisingly, when there is
no previous context for the CGF model, the perfor-
mance only decreases slightly. This suggests that
the model is good at generalization and robust for
various test cases in the actual scenario.

A.3 Case Study

We present several representative cases so that we
can further understand the effect of the context-
enhanced encoding and constrained decoding in
CGEF. As shown in Table 35, the first example illus-
trates the cases when CGF w/o context-enhanced
encoding gives a rewrite that changes the semantic
meanings of the source request (“what kind of” ->
“what is”) and is not faithful. However, with consid-
eration of previous context information, the CGF
is able to understand the user intent and provide
the accurate rewrite. The second case corresponds
to the situation of carrying over an correct entity
from context and replacing the wrong entity in
the current utterance, while as shown in the table,
this is not hard for our context-enhanced encoding

492

Dialog & Reference

CGF

CGF w/o CD

CGF w/o CE

USER: what time is sunset tonight
sunset, in greenacres, florida,

on thursday, october 21 will be 6:48pm

USER: what kind of sunset tonight

what time is sunset
tonight in willimantic

what time is sunset
tonight in willimantic

what is sunset tonight
in willimantic

in willimantic connecticut connecticut connecticut connecticut
777777 . what time is sunset |
tonight in willimantic connecticut
USER: play little yancy
Lil’ Fancy from Apple Music.y play little yancy play little yancy play little yankees
USER: play little yankees praise part praise party praise party praise party music

: play little yancy praise party

USER: play in jesus name by katie nicole

: play in jesus name by katy nichole

play in jesus name
by katy nichole

play in jesus name
by kayla nicole

play in jesus name
by katy nichole

Table 5: Rewrite examples from offline experiments. In the dialog session, the last turn from the user is the current
request which is needed to be rewritten by the model. “CGF w/o CD” denotes the model CGF without constrained
decoding, “CGF w/o CE” denotes the CGF without context-enhanced encoding.

models. However, without considering the con-
text information, the model sometimes fails. The
third case shows that without constrained decod-
ing, the CGF has a factual inconsistency generation
(“kayla nicole” is an artist but never sung “in jesus
name”). This is a common situation for generation-
based models, especially on unseen data samples.
Conversely, this situation rarely happens with con-
strained decoding, as the generation is based on the
predefined constrained decoding space and we will
never have such factual inconsistency generation.

493

