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Abstract

Teacher-student knowledge distillation is a
popular technique for compressing today’s pre-
vailing large language models into manage-
able sizes that fit low-latency downstream ap-
plications. Both the teacher and the choice
of transfer set used for distillation are cru-
cial ingredients in creating a high quality stu-
dent. Yet, the generic corpora used to pre-
train the teacher and the corpora associated
with the downstream target domain are often
significantly different, which raises a natural
question: should the student be distilled over
the generic corpora, so as to learn from high-
quality teacher predictions, or over the down-
stream task corpora to align with finetuning?
Our study investigates this trade-off using Do-
main Classification (DC) and Intent Classifi-
cation/Named Entity Recognition (ICNER) as
downstream tasks. We distill several multilin-
gual students from a larger multilingual LM
with varying proportions of generic and task-
specific datasets, and report their performance
after finetuning on DC and ICNER. We ob-
serve significant improvements across tasks
and test sets when only task-specific corpora
is used. We also report on how the impact of
adding task-specific data to the transfer set cor-
relates with the similarity between generic and
task-specific data. Our results clearly indicate
that, while distillation from a generic LM bene-
fits downstream tasks, students learn better us-
ing target domain data even if it comes at the
price of noisier teacher predictions. In other
words, target domain data still trumps teacher
knowledge.

1 Introduction

In the recent past, large language models (LMs;
BERT-Large, Devlin et al., 2019; GPT-2, Radford
et al., 2019; T5, Raffel et al., 2020) pretrained
in a self-supervised manner on massive web cor-
pora have consistently shown state-of-the-art per-
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formance for multiple natural language understand-
ing (NLU) tasks. Therefore, it is no surprise that
these models are of much interest for virtual as-
sistants such as Amazon Alexa, Apple Siri, and
Google Assistant. Some studies have shown that
these large models trained on generic corpora seem
to be more robust to data distributional shifts, rely-
ing less on domain-specific training data to perform
well (Brown et al., 2020).

Since large models cannot be directly used for
low-latency applications on devices with limited
computing capacity, many techniques have been
developed to compress them in size. Knowledge
distillation (referred to simply as distillation here-
after; Hinton et al., 2015), has shown promising
results, especially at the high compression rates
typically required in NLU (Jiao et al., 2020, Soltan
et al., 2021). In this paradigm, lightweight models
referred to as students, are trained to mimic the
teacher predictions over a transfer set (Hinton et al.,
2015). When the pretraining and task-specific cor-
pora have significantly different distributions, as is
often the case, the choice of data for the transfer set
can be ambiguous. On the one hand, using pretrain-
ing corpora in the transfer set ensures high quality
teacher predictions that are important for effective
distillation. On the other, using the downstream
corpora, although it might cause noisier teacher
predictions, ensures the adaptation of the student
to its final use case.

To investigate this trade-off, we present a set
of experiments where we distill several multilin-
gual students from a large multilingual teacher LM
trained using a masked language modeling (MLM)
objective. We perform the distillations using trans-
fer sets that comprise of generic and task-specific
data in varying proportions. The students are then
finetuned and evaluated on two downstream NLU
tasks of interest: a Domain Classification (DC)
task and a joint Intent Classification/Named Entity
Recognition (ICNER) task. For each input utter-
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ance DC predicts the relevant domain (Books, Mu-
sic, Shopping, etc.), IC identifies the user’s intent
(find a book, play a song, buy an item, etc.) and
NER extracts the entities in the utterance (dates,
names, locations, etc.).

Our contributions: (1) We confirm for our
setup that model preparation via distillation from a
larger LM is more beneficial for downstream task
performance when compared to encoder training
from scratch. (2) We show that the largest improve-
ments are seen when using only the downstream
task’s unlabelled data during the distillation pro-
cess. Even though teacher predictions are expected
to be noisy over data that is different from pre-
training corpora, our results clearly indicate that
students learn best in this setting. (3) Because our
ICNER corpora is divided per domain, we are also
able to provide a finer-grained analysis of the im-
pact of corpora similarity on downstream results.
(4) Finally, we also confirm that further adaptation
of the teacher to the target-domain data, results in
improved student performance across tasks.

2 Relevant Work

Building models with inference speeds that are
suitable for production systems is of utmost impor-
tance in the industrial setting. Therefore techniques
for model compression (quantization Gong et al.,
2014; pruning redundant connections Han et al.,
2015) have been active research topics, with dis-
tillation (Romero et al., 2015, Hinton et al., 2015,
Jiao et al., 2020) showing much promise for NLU
models (Sanh et al., 2019). Distillation processes
and their data have evolved over the past few years.
In the teacher-student framework proposed by Hin-
ton et al. (2015), they recommend using the original
pretraining set as the transfer set. Jiao et al. (2020)
proposes a more complex two-stage process with
generic and task-specific distillation phases, each
with their own data sets, designed to augment the
performance of the final model towards the task at
hand.

Our work is focused on exploring how varying
proportions of generic and task-specific data within
the transfer set of a single distillation process im-
pacts downstream NLU performance. Since our
scope does not include optimizing the distillation
process itself, we use a cheaper alternative to Jiao
et al. (2020), via a single-stage distillation setup
to conduct our exploration (see Section A.3 for
details).

Gururangan et al. (2020) showed for the pretrain-
ing phase, that continued domain-adaptive and task-
adaptive pretraining using the downstream task’s
unlabeled data can improve performance. Our work
presents similar results for the distillation phase.

3 Data

3.1 Distillation data

For distillation, we created the transfer sets by mix-
ing two types of data with different distributions:

• Generic data: This data set consisted of
Wikipedia and Common Crawl processed by
an in-house tokenizer.

• Task-specific data: This in-house data set
comprised of de-identified utterances from a
voice assistant across domains of interest. The
text data collected here was the output of an
Automatic Speech Recognition (ASR) model,
which assigned a confidence score per utter-
ance. In order to retain only the highest quality
data, we filtered it by an ASR score threshold.
The data was de-identified, prior to use.

Our distilled students were trained as part of
a larger program resulting in a collection of nine
European and Indic languages being used for dis-
tillation. The language list and counts are shown in
Table A1.

We built transfer sets that had three ratios of
generic to task-specific data: (1) generic-only (base-
line) (2) 7:3 generic to task-specific, to mimic the
commonly encountered low task-specific data set-
ting and (3) task-specific-only. To have a com-
parable distribution of data from each language,
we created samples of equal size for each language
using either generic only, task-specific only or com-
bining both the generic and the task-specific data
based on the targeted ratio. Upsampling is used
when a source data set contains a number less than
the required number. The 7:3 ratio consisted of
Wikipedia, Common Crawl and task-specific data
upsampled to counts of 35M, 35M and 30M respec-
tively, for each language. For two languages Indian-
English and Marathi, where some data constituents
were unobtainable, available data was used in pro-
portion (see Table A1). Once the data sets were
created with the targeted mixing ratio, they were
split into train and validation sets with a ratio of
0.995:0.005 and then used in the transfer sets.
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3.2 Data for downstream tasks

We evaluated our multilingual distilled students in
the context of two commonly utilized NLU tasks
of interest, DC and ICNER. We limit the scope
of our evaluation to just four languages German,
French, Italian and Spanish. Our finetuning data
consisted of 26 domains (see fractional utterance
counts in Table A4) across each language, with
each domain comprising a set of intents (similar
to Su et al. 2018). As with the task-specific data
used in our transfer sets, this data has also been
de-identified prior to use.

It is important to note that, although collected
over non-overlapping time intervals (and thus con-
sisting of different absolute counts), the finetuning
data was from the same distribution as the task-
specific data described in Section 3.1. We sam-
pled the finetuning data so as to have equal counts
across each domain in all four languages (see Ap-
pendix A.1 for the evaluation data set sampling
strategy). We then combined all languages and
split the data into proportions of 80:10:10 for train,
validation and test, respectively.

For the DC task, we classified the input utter-
ances into one of the 26 domains. Therefore, the
DC model is trained using the combined training
data from the four languages across all domains
and is tested on language-specific test data sets. For
the joint ICNER task, we classified each utterance
within a domain to its corresponding intent and
also recognized its named-entities. For this task,
we trained a model per domain, using the com-
bined training data from the four languages for that
domain. The model was evaluated using language-
specific test data sets for that domain. We present
results on two types of test sets. test comprises of
the full test set obtained from the split above while
tail_test is the subset of data points within test that
have a frequency of occurrence less than or equal to
3. The relative data proportions used can be found
in the Appendix (Table A4).

4 Models

Figure 1 shows a schematic of the models and ex-
perimental setup described in this section.

4.1 Distilled students and baselines

We use a 170 million parameter teacher (170M-
teacher) that was prepared using Wikipedia, Com-
mon Crawl and mC4 (Xue et al., 2021) data.
See Appendix A.2 for details on teacher prepa-

ration. From this teacher, we distilled a total of
five students. We use our three transfer sets de-
scribed in Section 3.1, i.e. (1) generic-only (2) 7:3
(generic:task-specific) and (3) task-specific-only,
to distill the first three students. We refer to the stu-
dent distilled using (1) as the generic-distilled base-
line. The latter two are referred to as experiment-
7:3 and experiment-task-specific-only; the naming
aligned with the transfer set used. In addition to
these, we create another two students where the
teacher was finetuned using an MLM task before
being used for distillation. In each case, the teacher
was finetuned for 15625 steps using the same trans-
fer set that was used for the subsequent distilla-
tion. We refer to these two students as experiment-
7:3-FT and experiment-task-specific-only-FT. The
teacher finetuning was run on a p3.16X instance
with an average run time of approximately 45 hours.
We collectively refer to all distilled students that
are not a baseline as experimental students.

The architectures of our teacher and students are
as follows. As in the paper by Devlin et al. (2019),
we denote the number of layers (i.e., Transformer
blocks) as L, the hidden size as H, and the number
of self-attention heads as A.

• 170M-teacher: L=16, H=1024, A=16,
feed-forward/filter size=3072, total parame-
ters=170M

• Students: L=4, H=768, A=16, feed-
forward/filter size=1200, total parame-
ters=17M

For a description of the distillation setup, see
Appendix A.3. Distillation was run for 1 epoch
with each student extracted at 78125 steps, which
equates to approximately 80M data points seen.
We ran distillation on a single p3.16X instance
utilizing 8 GPUs with batch-size of 2 and gradient
accumulation at every 64 steps. The average run
time was approximately 195 hours. Note that each
distillation run used only a sample of the full data
set mentioned in Section 3.1, determined by the
step count. However, since the data is sampled
uniformly, the language ratios and the generic:task-
specific data ratio stays consistent during training.

In addition to the distilled baseline, we also cre-
ated another baseline (without distillation) that was
directly pretrained using the generic-only data. The
architecture and size of this baseline was identical
to that of the distilled students and it is referred
to, here onward, as the directly-pretrained baseline.
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Figure 1: A schematic of the models that we present in this paper and how they are evaluated.

We used this baseline to observe performance dif-
ferences between models that use students distilled
from the large teacher and those that use a directly
pretrained encoder.

4.2 DC and ICNER models

In order to evaluate the impact of the different trans-
fer sets on our targeted downstream NLU tasks, we
finetune the experimental students and baselines
toward DC and ICNER tasks. Each DC model
consisted of an encoder, embedding and positional
embedding obtained from an experimental student
or baseline combined with a decoder consisting of
an MLP classifier for domain prediction with layer
size 128, dropout set at 0.1 and ReLU activation.
Each ICNER model consisted of the same encoder,
embedding and positional embeddings used for the
corresponding DC model with an MLP classifier
output layer for the IC task with layer size 128,
dropout set at 0.1 and ReLU activation and a CRF
sequence-labeler output layer for the NER task with
layer size 256, dropout set at 0.1 and GeLU activa-
tion. We trained each DC model for 1 epoch and
each ICNER model for 4 epochs.

Evaluation: The DC performance was evalu-
ated using the F1 score while the ICNER perfor-
mance was evaluated using the Semantic Error Rate
(SemER; Su et al., 2018, Varada et al., 2020, Peris
et al., 2020). The definition of SemER is

SemER =
(D + I + S)

(C + D + S)
(1)

where D (deletion), I (insertion), S (substitution),
C (correct slots). The Intent was treated as a slot in
this metric, and the Intent error was considered as
a substitution.

5 Experiments

5.1 Experimental results

In this section, note that model refers a model that
uses an experimental student or baseline encoder
and has been finetuned towards a DC or ICNER
task. Experimental models comprise of experimen-
tal student encoders and baseline models comprise
of baseline encoders (see lower panel in Figure 1).

We used data across 26 domains to train and eval-
uate the DC and ICNER models (see Section 3.2).
We compare the performance of each experimental
model against the two baseline models (see Sec-
tion 4.1). The improvements we quote in this sec-
tion are ∆F1 (↑) (higher is better) and ∆SemER
(↓) (lower is better; we use the weighted average
of SemER across all domains) for DC and ICNER
respectively, measured against the baseline models
(Tables 1, 2, A2, A3).

The results in Tables 1 and 2 show that in general
for both DC and ICNER tasks, all experimental
students distilled with a mix of task-specific data
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Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 generic distilled test 0.19± 0.02 0.19± 0.04 0.21± 0.03 0.24± 0.03
experiment-task-specific-only generic distilled test 0.51± 0.01 0.54± 0.03 0.47± 0.03 0.55± 0.03
experiment-7:3-FT generic distilled test 0.31± 0.03 0.3± 0.02 0.31± 0.03 0.35± 0.03
experiment-task-specific-only-FT generic distilled test 0.69 ± 0.02 0.79 ± 0.03 0.7 ± 0.03 0.79 ± 0.02

experiment-7:3 generic distilled tail test 0.34± 0.05 0.31± 0.09 0.42± 0.05 0.42± 0.05
experiment-task-specific-only generic distilled tail test 1.0± 0.03 1.05± 0.04 1.02± 0.06 1.07± 0.06
experiment-7:3-FT generic distilled tail test 0.56± 0.06 0.61± 0.04 0.65± 0.06 0.6± 0.07
experiment-task-specific-only-FT generic distilled tail test 1.38 ± 0.05 1.51 ± 0.06 1.48 ± 0.06 1.51 ± 0.05

Table 1: Relative DC ∆F1 (↑), measured against the generic distilled baseline for each experimental student
(positive is better). We run three iterations of each experimental student and show the percentage change of their
means and its standard deviation.

Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 generic distilled test −0.55± 0.09 −0.31± 0.07 −0.17± 0.12 −0.17± 0.09
experiment-task-specific-only generic distilled test −1.25± 0.07 −0.81± 0.07 −0.56± 0.08 -1.3 ± 0.09
experiment-7:3-FT generic distilled test −0.83± 0.09 −0.49± 0.13 −0.06± 0.14 −0.58± 0.09
experiment-task-specific-only-FT generic distilled test -1.57 ± 0.15 -1.18 ± 0.07 -0.6 ± 0.25 −1.26± 0.04

experiment-7:3 generic distilled tail test −0.49± 0.07 −0.31± 0.06 −0.16± 0.09 −0.23± 0.11
experiment-task-specific-only generic distilled tail test −1.19± 0.05 −0.86± 0.07 −0.67± 0.08 -1.44 ± 0.09
experiment-7:3-FT generic distilled tail test −0.83± 0.09 −0.52± 0.1 −0.13± 0.09 −0.65± 0.11
experiment-task-specific-only-FT generic distilled tail test -1.53 ± 0.12 -1.26 ± 0.07 -0.79 ± 0.14 −1.32± 0.06

Table 2: Relative ICNER ∆SemER (↓), measured against the generic distilled baseline for each experimental stu-
dent (negative is better). As with DC, we run three iterations of the experimental students and show the percentage
change of their means and its standard deviation. In calculating these percentage changes, we use the weighted
average of the SemER for each domain in a given language, as the overall SemER in that language.

(30% or 100%) perform significantly better than the
generic distilled baseline. We further observe that
models with encoders distilled with task-specific-
only data yields the best overall performance which
means that, in our setup, students learn better using
target-domain data even if it comes at the price of
noisier teacher predictions.

For all four languages across DC and for three
out of four languages across ICNER, the best per-
formances are observed with student models that
were distilled from the finetuned teacher. This
confirms that the additional step of finetuning the
teacher and adapting it to the task-specific dataset,
results in students that perform better on the in-
tended downstream tasks.

We also note that across all task, language
and test set combinations, the improvements seen
against the directly pretrained baseline (see Ta-
bles A2 and A3) are larger than the improvements
seen against the generic distilled baseline. For our
setup, this shows that distilling from a large LM
can benefit downstream tasks as opposed to using
a similar-sized encoder pretrained from scratch; in
other words our findings suggest that it is better to
distill than to directly pretrain. However, we note

that additional resources (in our case approximately
45 p3.16X hours) are required for this.

The tail_test, comprising of low frequency utter-
ances within test, provides insights on the ability
of the model to generalize to rarely seen utterances.
For DC, we note that the improvements on tail_test
are significantly larger (∼2X) than the improve-
ments seen on the test set. This indicates that pre-
diction on examples that appear infrequently in the
task-specific data benefits more, from task-specific
data being included in the distillation process.

5.2 Dataset similarity and its correlation to
SemER improvements for ICNER

To further explore our conclusion that students
learn better using target-domain data we explore
how ∆SemER for each domain, correlate to the
similarity of the domain’s data to the generic data.
Note that, here, negative ∆SemER represents im-
provements of the experimental students against
the generic distilled baseline while the opposite is
true for positive ∆SemER. SemER results are from
the test set.

The hypothesis here is that the more distant a
domain is from the generic data, the more value we
should see in adding this domain’s data to the distil-
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Figure 2: Cosine similarity of tf-idf vectors vs. change in SemER for each domain for languages German, French,
Italian and Spanish. We represent only domains with >1000 test utterances to avoid noise added by smaller domains
which have higher variability.

lation transfer set, even though teacher predictions
might be noisy. We note here that we calculate co-
sine similarity on a very rudimentary corpus-level
embedding (i.e. tf-idf) for measuring similarity,
as explained below. We leave more sophisticated
similarity measurements for later work.

To calculate similarity between domain-level
and generic data, we use the following process.
For each domain in each of the four languages,
we sample up to 100K utterances. All available
data is considered for domains with <100K utter-
ances. We then sample 50K utterances each, from
the Wikipedia and Common Crawl data sets of the
corresponding language. We create a tf-idf vector
for each sampled dataset and calculate their co-
sine similarity as a measure of dataset similarity.
In order to account for any variability associated
with the sampling, we repeat the process 3 times
and obtain the mean similarity and the standard
deviation per domain. We plot dataset similarity
against ∆SemER (a single point represents one do-
main and a panel represents a language as seen in
Figure 2). We neglect domains with lower data
and thus high variability and fit a line to show how
∆SemER correlates to dataset similarity.

In Figure 2, we observe that a majority of cases
(all except German) show a positive correlation.
A positive correlation shows that domains that
are less similar to Wikipedia/CommonCrawl have
relatively larger improvement in SemER, when

compared to domains that are more similar to
Wikipedia/CommonCrawl. This suggests that the
addition of task-specific data in the distillation
transfer sets helps domains that are less similar
to the generic data available for distillation, even
though teacher predictions on them will be more
noisy.

It should be noted that the domains of the one
exception, German, display low similarity values
across the board unlike the other languages which
show a wider spread (German has 65% of domains
< 0.2 whereas French, Italian and Spanish has 23%,
31% and 12% < 0.2 respectively). The lack of
domains with high similarity might explain the
failure for a stable correlation to be observed in
German.

6 Conclusions

We have explored how the use of transfer sets that
comprise different ratios of generic to task-specific
data, impacts downstream results. Encoders dis-
tilled from a large teacher perform better than ones
trained from scratch, showing that it is better to
distill than to directly pretrain, when possible. The
largest benefits are shown when using the down-
stream task’s unlabelled data to distill, a student
despite noisier teacher predictions. We also find
that domains with data that are dissimilar to the
generic data show greater performance improve-
ments against a generic baseline when using a stu-
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dent distilled using task-specific data. These im-
provements further confirm that distilling using
target-domain data can be helpful for downstream
performance. Finally, we show that if costs permit,
teacher-adaptation to the target-domain data via
finetuning can result in improved student perfor-
mance across downstream tasks.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural networks.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li,
Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2019. Improved knowledge distilla-
tion via teacher assistant.

Charith Peris, Gokmen Oz, Khadige Abboud, Venkata
sai Varada Varada, Prashan Wanigasekara, and
Haidar Khan. 2020. Using multiple ASR hypothe-
ses to boost i18n NLU performance. In Proceed-
ings of the 17th International Conference on Natural
Language Processing (ICON), pages 30–39, Indian
Institute of Technology Patna, Patna, India. NLP As-
sociation of India (NLPAI).

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Saleh Soltan, Haidar Khan, and Wael Hamza. 2021.
Limitations of knowledge distillation for zero-shot
transfer learning. In Proceedings of the Second
Workshop on Simple and Efficient Natural Language
Processing, pages 22–31, Virtual. Association for
Computational Linguistics.

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
http://arxiv.org/abs/1902.03393
http://arxiv.org/abs/1902.03393
https://aclanthology.org/2020.icon-main.5
https://aclanthology.org/2020.icon-main.5
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1412.6550
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.18653/v1/2021.sustainlp-1.3
https://doi.org/10.18653/v1/2021.sustainlp-1.3


145

Chengwei Su, Rahul Gupta, Shankar Ananthakrish-
nan, and Spyridon Matsoukas. 2018. A re-ranker
scheme for integrating large scale nlu models.
2018 IEEE Spoken Language Technology Workshop
(SLT), pages 670–676.

Venkat Varada, Charith Peris, Yangsook Park, and
Christopher Dipersio. 2020. Using alternate repre-
sentations of text for natural language understanding.
In Proceedings of the 2nd Workshop on Natural Lan-
guage Processing for Conversational AI, pages 1–
10, Online. Association for Computational Linguis-
tics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online. Association for Computa-
tional Linguistics.

A Appendix

A.1 Data for finetuning DC and ICNER
models

For finetuning our distilled students for DC and IC-
NER, we use labelled datasets from four languages
(German, French, Italian and Spanish) each con-
sisting the same 26 domains (Table A4) and each
domain supporting a set of intents (similar to Su
et al. 2018). In order to have equivalent utterance
counts across domains for each language, we used
a stratified sampling strategy as follows. First, we
ranked each language per domain based on its utter-
ance counts. In order to prevent heavy upsampling
or downsampling in any single language when cre-
ating equivalently sampled domains, we picked
the language that had the second highest utterance
counts in most domains (in our case French). We
sampled utterances from the domains of other lan-
guages to match the domain-level utterance fre-
quency distribution of French (i.e. random sample
utterances with replacement, from each domain in
each language until that number matches the ut-
terance count of the respective domain in French).
We then combined all languages and split the data
into proportions of 80:10:10 for train, validation
and test, respectively.

A.2 Teacher model
The 170M-teacher used in this work was, itself, a
student that was distilled from a larger model with 2
billion parameters (see Stage 1 pretraining section
in FitzGerald et al. (2022) for details on creation

and architecture). The 170M-teacher was distilled
using a transfer set that comprised Wikipedia, Com-
mon Crawl and mC4 (Xue et al., 2021) data. Pick-
ing this intermediate-sized model helped us avoid
potential performance degradation due to having
too large a size gap between teacher and student
(Mirzadeh et al., 2019).

A.3 Student setup
For our single-stage distillation setup, we skip
the generic distillation phase done by Jiao et al.
(2020) and use a non-finetuned teacher model to
directly distill our students. In addition, as a sanity
check, we also explore distillation from a finetuned
teacher model to verify improved student perfor-
mance across tasks. Similar to the hidden states
based distillation followed in TinyBERT (Jiao et al.,
2020), we mapped the student layers [0, 1, 2, 3]
to learn from the teachers hidden layers [3, 7, 11,
15], respectively. We ignored attention based distil-
lation (Jiao et al., 2020) since we did not observe
significant improvements by using it. We also pe-
nalized the soft cross-entropy loss between the stu-
dent network’s logits against the teacher’s logits, to
fit the students predictions to those of the teacher
as in Hinton et al. (2015). We use a MLM objective
for the distillation process. In our loss, we weight
the hidden layer matching, the logit matching and
the MLM at a 1:2:1 ratio.
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Common Crawl
(cc100) Wikipedia Task Specific Data

German 12,045,483 2,731,840 32,081,929
French 13,323,804 2,174,531 21,278,820
Italian 7,131,950 1,278,255 31,013,233
Spanish 11,690,123 1,825,389 22,054,722
English 14,330,660 6,360,372 19,576,081
English (IN) - - 27,406,082
Hindi 2,538,698 94,891 21,315,004
Tamil 919,763 66,190 -
Tamil (MT) - - 18,414,285
Telugu 378,812 77,179 -
Telugu (MT) - - 18,895,352
Marathi 263,189 21,705 -

Table A1: Raw data counts used for transfer set creation. Counts represent the number of sentences for generic
data and the number of de-identified utterances for task-specific data. For task-specific data for Telugu and Tamil,
machine-translated (MT) data from Indian English was used. Only task-specific data was used for Indian English
because Wikipedia and Common Crawl data were not available. Only generic data was used for Marathi as the
translation system used for this work did not support the language as yet.

Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 directly pretrained test 0.31± 0.02 0.19± 0.04 0.32± 0.01 0.28± 0.03
experiment-task-specific-only directly pretrained test 0.63± 0.01 0.54± 0.02 0.57± 0.01 0.6± 0.02
experiment-7:3-FT directly pretrained test 0.42± 0.03 0.3± 0.02 0.41± 0.01 0.4± 0.02
experiment-task-specific-only-FT directly pretrained test 0.81 ± 0.01 0.79 ± 0.03 0.8 ± 0.02 0.83 ± 0.01

experiment-7:3 directly pretrained tail test 0.57± 0.04 0.36± 0.08 0.57± 0.01 0.45± 0.03
experiment-task-specific-only directly pretrained tail test 1.23± 0.02 1.1± 0.02 1.17± 0.03 1.09± 0.04
experiment-7:3-FT directly pretrained tail test 0.78± 0.05 0.66± 0.02 0.8± 0.03 0.62± 0.06
experiment-task-specific-only-FT directly pretrained tail test 1.61 ± 0.04 1.56 ± 0.05 1.63 ± 0.03 1.54 ± 0.04

Table A2: Relative DC ∆F1 (↑) measured against the directly pretrained baseline for each experimental student
(positive is better)

Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 directly pretrained test −1.73± 0.06 −0.7± 0.04 −2.3± 0.11 −2.44± 0.09
experiment-task-specific-only directly pretrained test −2.42± 0.02 −1.19± 0.04 −2.69± 0.07 -3.54 ± 0.08
experiment-7:3-FT directly pretrained test −2.01± 0.06 −0.88± 0.12 −2.2± 0.13 −2.84± 0.09
experiment-task-specific-only-FT directly pretrained test -2.74 ± 0.13 -1.57 ± 0.05 -2.73 ± 0.24 −3.5± 0.04

experiment-7:3 directly pretrained tail test −1.72± 0.05 −0.7± 0.05 −2.62± 0.09 −2.62± 0.09
experiment-task-specific-only directly pretrained tail test −2.41± 0.02 −1.24± 0.05 −3.11± 0.07 -3.8 ± 0.07
experiment-7:3-FT directly pretrained tail test −2.05± 0.08 −0.9± 0.09 −2.59± 0.08 −3.03± 0.09
experiment-task-specific-only-FT directly pretrained tail test -2.74 ± 0.11 -1.64 ± 0.05 -3.23 ± 0.13 −3.68± 0.03

Table A3: Relative ICNER ∆SemER (↓) measured against the directly pretrained baseline for each experimental
student (negative is better). In calculating these percentage changes, we use the weighted average of the SemER
for each domain in a given language, as the overall SemER in that language.
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