
Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 60 - 71
December 7-11, 2022 c©2022 Association for Computational Linguistics

FairLib : A Unified Framework for Assessing and Improving Fairness

Xudong Han1 Aili Shen1,2∗ Yitong Li3 Lea Frermann1

Timothy Baldwin1,4 Trevor Cohn1

1The University of Melbourne 2Alexa AI, Amazon
3Huawei Technologies Co., Ltd. 4MBZUAI

xudongh1@student.unimelb.edu.au ailishen@amazon.com

liyitong3@huawei.com {lfrermann,tbaldwin,t.cohn}@unimelb.edu.au

Abstract

This paper presents FairLib , an open-source
Python library for assessing and improving
model fairness. It provides a systematic frame-
work for quickly accessing benchmark datasets,
reproducing existing debiasing baseline mod-
els, developing new methods, evaluating mod-
els with different metrics, and visualizing their
results. Its modularity and extensibility enable
the framework to be used for diverse types of
inputs, including natural language, images, and
audio. It incorporates 14 debiasing methods,
including pre-processing, at-training-time, and
post-processing approaches. The built-in met-
rics cover the most commonly acknowledged
fairness criteria, and can be further generalized
and customized for fairness evaluation.1

1 Introduction

While neural methods have achieved great success,
it has been shown that naively-trained models often
learn spurious correlations with protected attributes
like user demographics or socio-economic factors,
leading to allocation harms, stereotyping, and other
representation harms (Badjatiya et al., 2019; Zhao
et al., 2018; Li et al., 2018; Díaz et al., 2018; Wang
et al., 2019). As a result, there is a surge of interest
in assessing and improving fairness.

Various bias evaluation metrics have been in-
troduced in previous studies to gauge different
types of biases. One common family of fairness
assessment is group fairness which measures per-
formance disparities across demographic groups.
Different instantiations of group fairness have been
proposed, including demographic parity (Feldman
et al., 2015), where the positive prediction rate
should be identical across groups (irrespective
of the gold label), or equal opportunity (Hardt
et al., 2016) where all groups should have an equal

∗This work was done when Aili Shen was at The Univer-
sity of Melbourne.

1Please check out the demo notebook and the demo video.

chance of false negative prediction (equalized odds
extends the notion to include equal true positive
rates). More recent work addressed disparities
within classes and demographic groups (Shen et al.,
2022b). While these approaches reflect the nature
of fairness increasingly faithfully, they have been
applied and evaluated inconsistently in previous
work, which impedes systematic analysis and com-
parison of proposed approaches.

In terms of bias mitigation, diverse debias-
ing methods have been proposed, including at-
training-time (Li et al., 2018; Elazar and Goldberg,
2018; Shen et al., 2022a), and pre- (Zhao et al.,
2017; Wang et al., 2019) and post-processing ap-
proaches (Han et al., 2022a; Ravfogel et al., 2020).
Although these methods have been proved effective
for bias mitigation, it is challenging to reproduce
results and compare methods because of inconsis-
tencies in training strategy and model selection
criteria, which demonstrably affect the results.

We present FairLib , a well-documented, open-
source framework for assessing and improving fair-
ness. FairLib implements a number of common
debiasing approaches in a unified framework to
facilitate reproducible and consistent evaluation,
and provides interfaces for developing new debi-
asing methods. Moreover, a dataset interface sup-
ports adoption of both built-in and newly developed
methods for new tasks and corpora. For better pre-
sentation, FairLib also provides utilities for result
summarization and visualization.

FairLib is implemented in Python using PyTorch
and is easy to use: it can be run from the command
line, or imported as a package into other projects.
To demonstrate its utility, we use FairLib to repro-
duce a battery of debiasing results from the recent
NLP literature, and show that improved and system-
atic hyperparameter tuning leads to demonstrable
improvements over the originally reported results.
FairLib is released under Apache License 2.0 and

60

xudongh1@student.unimelb.edu.au
ailishen@amazon.com
liyitong3@huawei.com
{lfrermann,tbaldwin,t.cohn}@unimelb.edu.au
https://colab.research.google.com/github/HanXudong/fairlib/blob/main/tutorial/fairlib_demo.ipynb
https://youtu.be/yGubVfAhpuo

is available on GitHub.2 Detailed documentation
and tutorials are available on FairLib ’s website.3

2 Benchmark Datasets

In addition to evaluating bias wrt. a user group, we
require datasets where each input instance is anno-
tated with protected attributes (e.g., gender) and a
target class label (e.g., sentiment). However, for a
variety of reasons, only a small subset of datasets
contains protected attribute labels, and annotating
protected labels can be difficult.

To standardize fairness studies, FairLib provides
APIs to access various publicly available fairness
benchmark datasets, including: (1) text corpora for
occupation classification (BIOS, De-Arteaga et al.
(2019)), sentiment analysis (MOJI, Blodgett et al.
(2016)), and part-of-speech tagging (TRUSTPILOT,
Hovy (2015)); (2) structured data for the tasks
of recidivism prediction (COMPAS, Larson et al.
(2016)), and income prediction (ADULT, Kohavi
et al. (1996)); and (3) image data to address colored
handwritten digit recognition (COLOREDMNIST,
Arjovsky et al. (2019)), objective classification
(COCO, Zhao et al. (2017)), and event classifi-
cation (IMSITU, Zhao et al. (2017)).4

3 Fairness Criteria

FairLib includes a variety of widely-used fairness
evaluation metrics from the literature.

Representational Fairness: To evaluate
whether sensitive information (such as demograph-
ics) is encoded in the representations of a trained
model, previous work has proposed to estimate the
leakage using an attacker (Elazar and Goldberg,
2018; Wang et al., 2019). Specifically, an attacker
is trained to reverse-engineer protected attributes
of inputs based on learned representations or the
original inputs. FairLib provides flexible APIs
to estimate information leakage at any representa-
tional level, based on different attackers (including
linear and neural models).

Group Fairness: To evaluate whether model
predictions are fair towards the protected attributes,
Barocas et al. (2019) present formal definitions of
three types of group fairness criteria, which capture
different levels of (conditional) independence be-
tween the protected attribute g, the target variable

2https://github.com/HanXudong/fairlib
3https://hanxudong.github.io/fairlib
4Check the FairLib website for a full list of built-in

datasets.

y, and the model prediction ŷ. Table 1 summarizes
the statistical fairness criteria and maps them to
confusion-matrix-derived scores. The group fair-
ness criteria evaluate the disparity of these scores
across subgroups and classes.

Aggregation of subset performance metrics to
a single figure of merit typically consists of two
steps: (1) group-wise aggregation within each class,
which reflects performance disparities across pro-
tected groups for each class; and (2) class-wise ag-
gregation, to aggregate group-wise disparities for
all classes (i.e., the vector from step 1) into a single
number. The choice of aggregation function re-
flects different assumptions of fairness, and varies
in previous work. Table 2 lists existing aggregation
approaches which are built in to FairLib .5

4 Bias Mitigation

This section reviews the three primary types of
debiasing methods, followed by Section 4.1, a sum-
mary of bias mitigation methods implemented in
FairLib .

Pre-processing adjusts the training dataset to
be balanced across protected groups before train-
ing, such that the input feature space is expected to
be uncorrelated with the protected attributes. Typ-
ical approaches here adopt long-tail learning ap-
proaches for debiasing, such as resampling the
training set such that the number of instances
within each protected group is identical (Zhao et al.,
2018; Wang et al., 2019; Han et al., 2022a).

At training time introduces constraints into the
optimization process for model training. A pop-
ular method is adversarial training, which jointly
trains: (i) a discriminator to recover protected at-
tribute values; and (ii) the main model to correctly
predict the target classes while at the same time pre-
venting protected attributes from being correctly
predicted (Wadsworth et al., 2018; Elazar and Gold-
berg, 2018; Li et al., 2018; Wang et al., 2019; Zhao
and Gordon, 2019; Han et al., 2021).

Post-processing aims to adjust a trained clas-
sifier according to protected attributes, such that
the final predictions are fair to different protected
groups. For example, Ravfogel et al. (2020) it-
eratively project fixed text representations from a
trained model to a null-space of protected attributes.
Han et al. (2022a) adjust the predictions for each
protected group by searching for the best prior for

5In Section 6.3, we further introduce a framework for
generalized aggregation in FairLib .

61

https://github.com/HanXudong/fairlib
https://hanxudong.github.io/fairlib
https://hanxudong.github.io/fairlib/reference_component_benchmark_datasets.html

Type Main Idea Metric (M)

Independence (ŷ ⊥ g) Positive rate of each protected group is the same TP+FP
TP+FP+TN+FN (Positive Rate)(Demographic Parity; Feldman et al. (2015))

Separation (ŷ ⊥ g|y) Acknowledges correlation between g and y TP
TP+FN (Recall or TPR)

(Equalized Odds; Hardt et al. (2016)) FP
FP+TN (Fall-out or FPR)

Sufficiency (y ⊥ g|ŷ) Predictions are calibrated for all groups TP
TP+FP (Precision)

(Test Fairness; Chouldechova (2017)) TN
TN+FN (NPV)

Table 1: Built-in fairness evaluation metrics in FairLib .

Formulation Reference

βc =
1
G

∑
g |Mc,g −M c| Shen et al. (2022b)

βc =
1

G−1

∑
g |Mc,g −M c|2 Lum et al. (2022)

βc = maxg |Mc,g −M c| Yang et al. (2020)
βc = ming Mc,g Lahoti et al. (2020)
βc = ming

Mc,g

Mc
Zafar et al. (2017)

βc = maxg Mc,g −ming Mc,g Bird et al. (2020)
βc =

maxg Mc,g
ming Mc,g

Feldman et al. (2015)

δ =
√

1
C

∑
c β

2
c Romanov et al. (2019)

δ = 1
C

∑
c βc Li et al. (2018)

Table 2: A subset of aggregation approaches for fairness
evaluation from the literature that have are implemented
in FairLib . C and G refer to the number of distinct
classes and protected groups. Mc,g is the evaluation
results of class c and group g wrt. a particular evaluation
metric M , such as TPR. βc denotes the aggregation
of group-wise disparities within class c, and following
class-wise aggregation results in δ, which is the fairness
score.

each group-specific component.

4.1 Implemented Methods

Table 3 lists 14 debiasing methods that are imple-
mented in FairLib . It can be beneficial to employ
different debiasing methods simultaneously (e.g.,
combine pre-processing and training-time meth-
ods (Wang et al., 2019; Han et al., 2022a)), which
FairLib supports, and technically, every combina-
tion of these methods can be directly used without
any further modifications.

5 Model Comparison

Typically, debiasing methods suffer from
performance–fairness trade-offs, and no single
method achieves both the best performance and
fairness, making comparison between fairness
methods difficult. In this section, we first introduce
trade-off plots for model comparison, and then
discuss model selection criteria that can be used

4.0 3.5 3.0 2.5 2.0 1.5 1.0
log10

0.4

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Fa
irn

es
s

Figure 1: Tuning the tradeoff hyperparameter of
FAIRSCL. Similar trade-offs can be obtained for other
debiasing methods.

for reporting numerical results.
Performance–fairness Trade-off is a com-

mon way of comparing different debiasing meth-
ods without the requirement for model selection.
Specifically, there is usually a trade-off hyperpa-
rameter for each debiasing method, which controls
to what extent the model will sacrifice performance
for better fairness, such as the number of iterations
for null-space projection in INLP,6 or the strength
of the additional contrastive losses in FAIRSCL.
Figure 1 shows a trade-off plot over different val-
ues of the trade-off hyperparameter of FAIRSCL
for occupation classification, wherein we evaluate
performance with accuracy, and use equal oppor-
tunity as the fairness criterion (see Section 8.1 for
details).7

Instead of trade-offs wrt. different hyperparame-
ter values, it can be more instructive to compute the
maximum fairness that can be achieved by differ-
ent models at a fixed performance level, and vice
versa. Figure 2 shows an example of comparing the
Pareto frontiers of INLP with FAIRSCL, where
the results are obtained by varying the hyperpa-
rameters as illustrated in Figure 1. For a particular
method, a Pareto optimal point corresponds to a
model (i.e., a particular value of the trade-off hy-

6Cf., Table 3 for explanations of mentioned methods.
7Note that all figures and tables of results in this paper are

direct outputs of FairLib .

62

Type Model Main Idea

Pre-

BD (Zhao et al., 2017) Equalize the size of protected groups.
CB (Wang et al., 2019) Down-sample the majority protected group within each class.
JB (Lahoti et al., 2020) Jointly balance the Protected attributes and classes.
BTEO (Han et al., 2022a) Balance protected attributes within advantage classes.

At-

ADV (Li et al., 2018) Prevent protected attributes from being identified by the discriminator.
EADV (Elazar and Goldberg, 2018) Employ multiple discriminators for adversarial training.
DADV (Han et al., 2021) Employ multiple discriminators with orthogonality regularization.
AADV & ADADV (Han et al., 2022b) Enable discriminators to use target labels as inputs during training.
GATE (Han et al., 2022a) Address protected factors with an augmented representation.
FAIRBATCH (Roh et al., 2021) Minimize CE loss gap though minibatch resampling.
FAIRSCL (Shen et al., 2022a) Adopt supervised contrastive learning for bias mitigation.
EOCLA (Shen et al., 2022b) Minimize the CE loss gap within each target label by adjusting the loss.

Post- INLP (Ravfogel et al., 2020) Remove protected attributes through iterative null-space projection.
GATE soft (Han et al., 2022a) Adjust the prior for each group-specific component in GATE.

Table 3: Built-in methods for bias mitigation, which are grouped into three types: Pre-processing, At training time,
and Post-processing.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

Fa
irn

es
s

Models
FairSCL
INLP

Figure 2: Pareto frontier curves derived from Figure 1.

perparameter) such that performance and fairness
cannot be improved without causing a degradation
in the other criterion.

Model Selection refers to the process of select-
ing the combination of hyperparameters that leads
to best performance. In single-objective learning,
model selection is based on a single metric, such as
the loss on the dev set. In debiasing, however, both
performance and fairness need to be considered for
model selection, and a common method is Con-
strained Selection, which selects the best model
given thresholds of the performance and fairness:

f∗ = argmax
f

q(f) s.t.
Perf(f) > hPerf

Fair(f) > hFair
(1)

where f denotes a candidate model, Perf(f) and
Fair(f) are the performance and fairness evaluation
results for f , respectively, q is a real valued score
function that maps the model f to a number, and
h denotes corresponding thresholds. For instance,
using q(f) = Fair(f) results in the selection of the
fairest candidate model.

Instead of measuring performance and fairness
separately, one can explicitly measure their trade-
off as the distance from a particular model f to the

optimal point8 (DTO, Han et al. (2021)):

DTO(f) =
√

(1− Perf(f))2 + (1− Fair(f))2 ,

which originates from the multi-objective optimiza-
tion literature (Marler and Arora, 2004). Lower is
better, with an optimal value of 0. Note that DTO
should be minimized in Equation (1).

DTO(f) is the default q function in FairLib .
FairLib also supports the definition of customized
cues, such as Perf(f), Fair(f), and DTO(f). Given
the flexibility of FairLib , most selection criteria in
previous work can be reproduced, such as: (1) the
maximum performance (Lahoti et al., 2020; Roh
et al., 2021), which is based on a particular utility
metric, such as accuracy and F-measures; (2) con-
strained selection (Han et al., 2021; Subramanian
et al., 2021); and (3) minimising DTO (Han et al.,
2022b; Shen et al., 2022b).

6 FairLib Design and Architecture

Here, we describe the four modules of FairLib ,
namely data, model, evaluation, and analysis.

6.1 Data Module
The data module manages inputs, target labels, and
protected attributes for model training and evalu-
ation. To enable different pre-processing debias-
ing methods in supporting any types of inputs, the
BaseDataset class is implemented for sampling
and weight calculation based on the distribution of
classes and protected attributes. Dataset classes in-
herit functionality from BaseDataset with an addi-
tional property for loading different types of inputs.

8The optimum point is assumed to be a model that achieves
1 performance and 1 fairness. See Appendix B for details.

63

Specifically, FairLib includes Dataset classes for
vector, matrix, and sequential inputs, to support
structural, image, and text inputs. Once inputs are
loaded by Dataset, pre-processing debiasing meth-
ods are automatically applied.

6.2 Model Module

This is the core module of FairLib , which imple-
ments the At-training-time and Post-processing de-
biasing methods described in Section 4.1 and Ta-
ble 3. The methods can be applied to instances of
the BaseModel class. One built-in child class of
BaseModel is an MLP classifier for structural inputs,
which can be fully integrated with HuggingFace’s
transformers library.9 Specifically, the MLP can
be used as the task-specific output layer, on top of
the backbone networks from transformers (e.g.
BERT (Devlin et al., 2019)), to handle a wide vari-
ety of inputs and tasks.

FairLib supports the combination of different
bias mitigation methods with thousands of pre-
trained models across classification tasks and data
types, including text, image, and audio modalities.

6.3 Evaluation Module

This module implements the fairness metrics de-
scribed in Section 3, and several performance mea-
sures. Performance measures are based on the
classification evaluation metrics implemented in
scikit-learn (Buitinck et al., 2013), including Ac-
curacy, F-score, and ROC AUC. However, no es-
tablished fairness evaluation suite exists. Noting
that the calculation of existing fairness metrics is
always based on confusion matrices, FairLib in-
cludes an Evaluator class which can: (1) calcu-
late any confusion-matrix based fairness metrics;
and (2) conduct group-wise and class-wise aggre-
gations as specified by users.

6.4 Analysis Module

This module provides utilities for model compar-
ison as introduced in Section 5, with the three
main functions of: (1) conducting post-hoc early-
stopping and model selection in parallel as intro-
duced in Section 5;10 (2) organizing the results as
a Pandas DataFrame (pandas development team,
2020), which can be used to create plots and LATEX

9https://github.com/huggingface/trans
formers

10Multi-processing is supported through the joblib li-
brary.

tables;11 and (3) creating interactive plots, cover-
ing different comparison settings such as Figures 2
and 4.12

7 Usage

In this section, we demonstrate the basic use of
FairLib . For further details, see the online inter-
active demos for examples of adding customized
models, datasets, and metrics.

The following command shows an example for
training and evaluating a STANDARD model:

python fairlib --dataset Bios_gender
--emb_size 768 --num_classes 28
--encoder_architecture BERT

↪→
↪→

where the task dataset, the number of distinct
classes, the encoder architecture, and the dimension
of embeddings extracted from the corresponding
encoder need to be specified. The above case trains
a BERT classifer over the BIOS dataset, where
there are 28 professions.

In order to apply built-in debiasing methods, ad-
ditional options for debiasing can be added to the
command-line to realise combinations of methods:

python fairlib --dataset Bios_gender
--emb_size 768 --num_classes 28
--encoder_architecture BERT --BT
Resampling --BTObj EO
--adv_debiasing --INLP

↪→
↪→
↪→
↪→

The above example employs BTEO (Pre-), ADV

(At-), and INLP (Post-) at the same time for a
BERT classifer debiasing over the BIOS dataset.

FairLib can also be imported as a Python library;
see Appendix D for more examples.

8 Benchmark Experiments

To evaluate FairLib , we conduct extensive experi-
ments to compare models implemented in FairLib
with their original reported results over two bench-
mark datasets. In Appendix A, we provide more
experimental details.

8.1 Settings
We conduct experiments over two NLP classifica-
tion tasks — sentiment analysis (MOJI) and biogra-
phy classification (BIOS) — using the same dataset
splits as previous work (Elazar and Goldberg, 2018;
Ravfogel et al., 2020; Han et al., 2021; Shen et al.,
2022a; Han et al., 2022a).

11All results are stored for later analysis, and are publicly
available here.

12See here for more examples.

64

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://joblib.readthedocs.io/en/latest/
https://hanxudong.github.io/fairlib/tutorial_interactive_demos.html
https://hanxudong.github.io/fairlib/tutorial_interactive_demos.html
https://github.com/HanXudong/Fair_NLP_Classification/tree/main/analysis/results
https://hanxudong.github.io/fairlib/tutorial_notebooks/tutorial_interactive_plots.html

MOJI BIOS

Method Performance↑ Fairness↑ DTO ↓ ∆ ↑ Performance↑ Fairness↑ DTO ↓ ∆ ↑
STANDARD 72.30± 0.46 61.19± 0.44 47.68 0.56 82.25± 0.24 85.11± 0.81 23.17 0.69
BTEO 75.39± 0.14 87.75± 0.38 27.49 6.25 83.83± 0.25 90.54± 0.91 18.73 4.04
ADV 75.64± 0.73 89.33± 0.56 26.59 7.37 81.66± 0.22 90.74± 0.77 20.54 2.23
DADV 75.55± 0.41 90.40± 0.12 26.27 5.23 81.85± 0.19 90.64± 0.48 20.42 2.29
ADADV 75.02± 0.69 90.87± 0.17 26.60 0.00 81.91± 0.34 88.96± 0.59 21.19 0.00
FAIRBATCH 75.06± 0.60 90.55± 0.50 26.67 1.99 82.24± 0.13 89.50± 1.25 20.63 0.51
FAIRSCL 75.73± 0.34 87.82± 0.43 27.15 0.73 82.06± 0.16 84.27± 0.83 23.86 1.01
EOCLA 75.28± 0.50 89.23± 0.79 26.97 0.25 81.78± 0.27 88.87± 0.94 21.35 1.13
INLP 73.34 85.60 30.30 15.90 82.30 88.62 21.04 9.21

Table 4: Evaluation results ± standard deviation (%) on the test set of MOJI and BIOS tasks, averaged over 5 runs
with different random seeds. ∆: the DTO improvement of FairLib to the reported results in previous work. See
Appendix A.2 for dataset statistics.

Following Han et al. (2022a), we report the over-
all Accuracy as the performance, and the Equal Op-
portunity as the fairness criterion, calculated based
on the Recall gap across all protected groups.

8.2 Experimental Results

Table 4 summarizes the results produced by Fair-
Lib . Compared with previous work, STANDARD,
ADADV, FAIRSCL and EOCLA achieve similar
results to the original paper. In contrast, the re-
implemented BTEO, ADV, DADV, FAIRBATCH,
and INLP outperform the results reported in their
original paper due to the better-designed hyperpa-
rameter tuning and model selection.13

9 Related Work

Several toolkits have been developed for learning
fair AI models (Bellamy et al., 2018; Saleiro et al.,
2018; Bird et al., 2020). We discuss the two most
closely-related frameworks.

The most related work to FairLib is AI Fairness
360 (AIF360), which is the first toolkit to bring to-
gether bias detection and mitigation (Bellamy et al.,
2018). Like FairLib , AIF360 supports a variety of
fairness criteria and debiasing methods, and is de-
signed to be extensible. The biggest difference over
FairLib is that AIF360 is closely tied to scikit-learn,
and does not support other ML frameworks such as
PyTorch. This not only limits the applicability of
AIF360 to NLP and CV tasks where neural model
architectures are now de rigeur, but also implies
a lack of GPU support. Moreover, AIF360 only
provides fundamental analysis features, such as
comparing debiasing wrt. a single evaluation met-
ric, while the analysis module of FairLib has richer

13We provide further details of hyperparameter tuning in an
online document.

features for model comparison, for example, select-
ing Pareto-models and interactive visualization.

The second closely-related library is Fair-
Learn (Bird et al., 2020), which is also targeted
at assessing and improving fairness for both classi-
fication and regression tasks. However, similar to
AIF360, FairLearn is mainly developed for scikit-
learn, meaning complex CV and NLP tasks are not
supported. Additionally, FairLearn currently only
supports four debiasing algorithms,14 as opposed
to the 14 methods supported in FairLib , providing
fuller coverage of different debiasing methods.

In summary, FairLib complements existing fair-
ness libraries by: (1) implementing a broad range
of competitive debiasing approaches, with a spe-
cific focus on debiasing neural architectures which
underlie many CV and NLP tasks; and (2) compre-
hensive tools for interactive model comparison to
help users explore the effects of different debiasing
approaches.

10 Conclusion

In this paper, we present FairLib , a new open-
source Python library and framework for measur-
ing and improving fairness, which implements a
wide range of fairness metrics and 14 debiasing
approaches. With better-designed hyperparameter
tuning and model selection, the reproduced mod-
els in FairLib outperform the results reported in
the original work. FairLib also has remarkable
flexibility and extensibility, such that new models,
debiasing methods, and datasets can be easily de-
veloped and evaluated.

14https://fairlearn.org/main/user_guide
/mitigation.html

65

https://github.com/HanXudong/fairlib/blob/main/docs/hyperparameter_tuning.md
https://github.com/HanXudong/fairlib/blob/main/docs/hyperparameter_tuning.md
https://fairlearn.org/main/user_guide/mitigation.html
https://fairlearn.org/main/user_guide/mitigation.html

Acknowledgements

We thank the anonymous reviewers for their help-
ful feedback and suggestions. This work was
funded by the Australian Research Council, Dis-
covery grant DP200102519. This research was
undertaken using the LIEF HPC-GPGPU Facility
hosted at the University of Melbourne. This Fa-
cility was established with the assistance of LIEF
Grant LE170100200.

Ethical Considerations

This work provides an unified framework for mea-
suring and improving fairness. Although FairLib
assumes access to training datasets with protected
attributes, this is the same data assumption made
by all debiasing methods. To avoid harm and be
trustworthy, we only use attributes that have been
publicly disclosed or the user has self-identified,
or toy datasets. All data in this study is publicly
available and used under strict ethical guidelines.

References

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

Pinkesh Badjatiya, Manish Gupta, and Vasudeva Varma.
2019. Stereotypical bias removal for hate speech de-
tection task using knowledge-based generalizations.
In The World Wide Web Conference, pages 49–59.

Solon Barocas, Moritz Hardt, and Arvind Narayanan.
2019. Fairness and Machine Learning. http://ww
w.fairmlbook.org.

Rachel KE Bellamy, Kuntal Dey, Michael Hind,
Samuel C Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep
Mehta, Aleksandra Mojsilovic, et al. 2018. Ai fair-
ness 360: An extensible toolkit for detecting, under-
standing, and mitigating unwanted algorithmic bias.
arXiv preprint arXiv:1810.01943.

Sarah Bird, Miro Dudík, Richard Edgar, Brandon Horn,
Roman Lutz, Vanessa Milan, Mehrnoosh Sameki,
Hanna Wallach, and Kathleen Walker. 2020. Fair-
learn: A toolkit for assessing and improving fairness
in ai. Microsoft, Tech. Rep. MSR-TR-2020-32.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social
media: A case study of African-American English.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1119–1130.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gaël Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning, pages 108–122.

Alexandra Chouldechova. 2017. Fair prediction with
disparate impact: A study of bias in recidivism pre-
diction instruments. Big data, 5(2):153–163.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A
case study of semantic representation bias in a high-
stakes setting. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, pages
120–128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Mark Díaz, Isaac Johnson, Amanda Lazar, Anne Marie
Piper, and Darren Gergle. 2018. Addressing age-
related bias in sentiment analysis. In Proceedings
of the 2018 CHI Conference on Human Factors in
Computing Systems, pages 1–14.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 11–
21.

Michael Feldman, Sorelle A Friedler, John Moeller,
Carlos Scheidegger, and Suresh Venkatasubramanian.
2015. Certifying and removing disparate impact. In
proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining,
pages 259–268.

Xudong Han, Timothy Baldwin, and Trevor Cohn. 2021.
Diverse adversaries for mitigating bias in training.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 2760–2765.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2022a. Balancing out bias: Achieving fairness
through training reweighting. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2022). To appear.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2022b. Towards equal opportunity fairness

66

http://www.fairmlbook.org
http://www.fairmlbook.org
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://www.aclweb.org/anthology/2021.eacl-main.239

through adversarial learning. arXiv preprint
arXiv:2203.06317.

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal-
ity of opportunity in supervised learning. Advances
in Neural Information Processing Systems, 29:3315–
3323.

Dirk Hovy. 2015. Demographic factors improve clas-
sification performance. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 752–762.

Ron Kohavi et al. 1996. Scaling up the accuracy of
naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pages 202–207.

Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee,
Flavien Prost, Nithum Thain, Xuezhi Wang, and
Ed Chi. 2020. Fairness without demographics
through adversarially reweighted learning. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 728–740.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia
Angwin. 2016. How we analyzed the compas recidi-
vism algorithm.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 25–30.

Kristian Lum, Yunfeng Zhang, and Amanda Bower.
2022. De-biasing "bias" measurement. In 2022
ACM Conference on Fairness, Accountability, and
Transparency (FAccT ’22), Seoul, Republic of Korea.
ACM.

R Timothy Marler and Jasbir S Arora. 2004. Survey of
multi-objective optimization methods for engineer-
ing. Structural and multidisciplinary optimization,
26(6):369–395.

The pandas development team. 2020. pandas-
dev/pandas: Pandas. Zenodo.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256.

Yuji Roh, Kangwook Lee, Steven Euijong Whang, and
Changho Suh. 2021. Fairbatch: Batch selection for
model fairness. In Proceedings of the 9th Interna-
tional Conference on Learning Representations.

Alexey Romanov, Maria De-Arteaga, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
Anna Rumshisky, and Adam Kalai. 2019. What’s

in a name? reducing bias in bios without access
to protected attributes. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4187–4195.

Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse
London, Abby Stevens, Ari Anisfeld, Kit T Rodolfa,
and Rayid Ghani. 2018. Aequitas: A bias and fair-
ness audit toolkit. arXiv preprint arXiv:1811.05577.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022a. Does representational
fairness imply empirical fairness? In Proceedings
of the 2nd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 12th International Joint Conference on Natural
Language Processing. Association for Computational
Linguistics. To appear.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022b. Optimising equal oppor-
tunity fairness in model training. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4073–4084,
Seattle, United States. Association for Computational
Linguistics.

Shivashankar Subramanian, Xudong Han, Timothy
Baldwin, Trevor Cohn, and Lea Frermann. 2021.
Evaluating debiasing techniques for intersectional
biases. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 2492–2498, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Christina Wadsworth, Francesca Vera, and Chris Piech.
2018. Achieving fairness through adversarial learn-
ing: an application to recidivism prediction. FAT/ML
Workshop.

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei
Chang, and Vicente Ordonez. 2019. Balanced
datasets are not enough: Estimating and mitigating
gender bias in deep image representations. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 5310–5319.

Forest Yang, Mouhamadou Cisse, and Sanmi Koyejo.
2020. Fairness with overlapping groups; a proba-
bilistic perspective. Advances in neural information
processing systems, 33:4067–4078.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez
Rogriguez, and Krishna P Gummadi. 2017. Fairness
constraints: Mechanisms for fair classification. In
Artificial Intelligence and Statistics, pages 962–970.
PMLR.

Han Zhao and Geoff Gordon. 2019. Inherent trade-
offs in learning fair representations. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

67

https://doi.org/10.3115/v1/P15-1073
https://doi.org/10.3115/v1/P15-1073
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.1145/3531146.3533105
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2022.naacl-main.299
https://doi.org/10.18653/v1/2022.naacl-main.299
https://aclanthology.org/2021.emnlp-main.193
https://aclanthology.org/2021.emnlp-main.193
https://proceedings.neurips.cc/paper/2019/file/b4189d9de0fb2b9cce090bd1a15e3420-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b4189d9de0fb2b9cce090bd1a15e3420-Paper.pdf

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification us-
ing corpus-level constraints. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2979–2989.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20.

68

A Experimental Details

A.1 Datasets

MOJI: This sentiment analysis dataset was col-
lected by Blodgett et al. (2016), and contains tweets
that are either African American English (AAE)-
like or Standard American English (SAE)-like.
Each tweet is annotated with a binary ‘race’ label
(based on language use: either AAE or SAE), and
a binary sentiment score determined by (redacted)
emoji contained in it.

BIOS: The second task is biography classifica-
tion (De-Arteaga et al., 2019), where biographies
were scraped from the web, and annotated for bi-
nary gender and 28 classes of profession.

A.2 Results Statistics

For each hyperparameter combination, we repeat
experiments 5 time with different random seeds
drawn from a discrete uniform distribution. The
mean values and standard deviation are calculated
based on the 5 runs. Due to the fact that INLP
is a post-processing approach and its results with
respect a given number of iterations are highly af-
fected by the random seed, we only report results
for 1 run. One way of getting statistics of INLP is
selecting the trade-off hyperparameter of INLP for
each random seed, however, this may not be a fair
comparison with other methods as fixed hyperpa-
rameters have been used.

B Model Comparison

Figure 3 illustrates the key ideas of model compar-
ison.

C Experimental Results

Trade-off plots for the selected methods are shown
in Figure 4. Over the MOJI dataset (Figure 4a), it
can be seen that almost all methods lead to similar
results, with a fairness score less than 0.9, except
for INLP, which is substantially worse than the
other methods. As increasing the values of each
model’s trade-off hyperparameter (i.e., achieving
better fairness at the cost of performance), ADADV

outperforms other methods.
The trade-off plot for BIOS is quite different to

MOJI: (1) INLP becomes a reasonable choice; (2)
FAIRSCL does not work well over this dataset,
consistent with the original paper; (3) BTEO is the
only method that achieves better performance than
the STANDARD model while increasing fairness;

(4) EOCLA could be the best choice as it achieves
much better fairness than others at a comparable
performance level.

D Further Usage

In this section, we demonstrate how to use FairLib .
Users can run existing models or add their own
models, datasets, and metrics as needed.

D.1 Basics

FairLib also support YAML configuration files with
training options:

python fairlib --conf_file opt.yaml

which is useful for reproducing experimental re-
sults, as FairLib saves the YAML file for each run.

from fairlib.base_options import options

from fairlib import networks

config_file = 'opt.yaml'

Get options

state =

options.get_state(conf_file=config_file)↪→

Init the model

model = networks.get_main_model(state)

Training with debiasing

model.train_self()

Checkpoints, evaluation results, outputs, and the
configuration file are saved to the default or a spec-
ified directory.

D.2 Performing Analysis

As introduced in Section 6.4, the first step to an-
alyze a trained model is selecting the best epoch.
Here we provide an example for retrieving experi-
mental results for FAIRSCL, and selecting the best
epoch-checkpoint:

from fairlib.load_results import
model_selection_parallel↪→

FairSCL_df = model_selection(

model_id= "FSCL",

GAP_metric_name = "TPR_GAP",

Performance_metric_name = "accuracy",

selection_criterion = "DTO",

n_jobs=20,

index_column_names = ["fcl_lambda_y",

"fcl_lambda_g"],↪→

save_path = "FairSCL_df.pkl",)

69

(a) Trade-off (b) Pareto Trade-off

Figure 3: performance–fairness trade-offs of FAIRSCL (blue points) and INLP (orange crosses) over the BIOS
dataset. The vertical and horizontal red dashed line in Figure 3b are examples of constrained model selection
wrt. a performance threshold of 0.7 and fairness threshold of 0.96. Figure 3a also provides an example for DTO.
The green dashed vertical and horizontal lines denote the best performance and fairness, respectively, and their
intersection point is the Utopia point. The length of green dotted lines from A and B to the Utopia point are the
DTO for candidate models A and B, respectively.

(a) MOJI (b) BIOS

Figure 4: Performance–fairness trade-offs of selected models over the MOJI and BIOS datasets.

where the fairness metric is TPR GAP (corre-
sponding to Equal Opportunity fairness); the per-
formance is measured with Accuracy score; the
best epoch is selected based on DTO; and the
tuned trade-off hyperparameters are used as the
index. n_jobs is an optional argument for multi-
processing, and the resulting DataFrame will be
saved to the specified directory.

Assuming Bios_gender_results is a Python
dictionary of retrieved experimental results from
the first step, indexed by the corresponding method
name, we provide the following function for model

comparison:

from fairlib.tables_and_figures import
final_results_df↪→

Bios_results = {

"INLP":INLP_df,

"FairSCL":FairSCL_df,}

Bios_gender_main_results =

final_results_df(↪→

results_dict = Bios_results,

pareto = True,
selection_criterion = "DTO",

70

return_dev = True,)

where model selection is performed based on DTO.
Each method has one selected model in the result-
ing DataFrame, which can then be used to create
tables.

If visualization is desired, users can disable
model selection by setting selection_criterion

= None, in which case all Pareto frontier points
will be returned.

D.3 Customized Datasets
A custom dataset class must implement the
load_data function. Take a look at this sam-
ple implementation; the split is stored in a direc-
tory self.data_dir. The args.data_dir is ei-
ther loaded from the arguments -data_dir or from
the default value. split has three possible string
values, "train", "dev", "test", indicating the
split that will be loaded.

Then the load_data function must assign the
value of self.X as inputs, self.y as target labels,
and self.protected_label as information for de-
biasing, such as gender, age, and race.

from fairlib.dataloaders.utils import
BaseDataset↪→

class SampleDataset(BaseDataset):
def load_data(self):

Load data from pickle file

filename = self.split+"df.pkl"

_Path = self.args.data_dir /

filename↪→

data = pd.read_pickle(_Path)

Save loaded data

self.X = data["X"]

self.y = data["y"]

self.protected_label =

data["protected_label"]↪→

As a child class of BaseDataset, Pre-processing
related operations will be automatically applied to
the SampleDataset.

D.4 Customized Models
Recall that our current MLP implementation (Sec-
tion 6.2) can be used as a classification head for
different backbone models, and the new model will
support all built-in debiasing methods.

Take a look at the following example: we use
BERT as the feature extractor, and then use the
extracted features as the input to the MLP classifier
to make predictions.

We only need to define three functions: (1)
__init__, which is used to initialize the model
with pretrained BERT parameters, MLP classifier,
and optimizer; (2) forward, which is the same as
before, where we extract sentence representations
then use the MLP to make predictions; and (3)
hidden, which is used to get hidden representa-
tions for adversarial training.

from transformers import BertModel

from fairlib.networks.utils import
BaseModel↪→

class BERTClassifier(BaseModel):
model_name = 'bert-base-cased'

def __init__(self, args):

super(BERTClassifier,

self).__init__()↪→

self.args = args

Load pretrained model parameters.

self.bert =

BertModel.from_pretrained(

self.model_name)

Init the classification head

self.classifier = MLP(args)

Init optimizer, criterion, etc.

self.init_for_training()

def forward(self, input_data,

group_label = None):↪→

Extract representations

bert_output =

self.bert(input_data)[1]↪→

Make predictions

return self.classifier(bert_output,

group_label)↪→

def hidden(self, input_data,

group_label = None):↪→

Extract representations

bert_output =

self.bert(input_data)[1]↪→

return self.classifier.hidden(

bert_output, group_label)

71

