
Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 63 - 67
May 26, 2022 c©2022 Association for Computational Linguistics

Spelling Correction using Phonetics in E-commerce Search

Fan Yang, Alireza Bagheri Garakani, Yifei Teng
Yan Gao, Jia Liu, Jingyuan Deng, Yi Sun

Amazon
Seattle, Washington, USA

{fnam,alirezg,yifeit,yanngao,hliujia,jingyua,yisun}@amazon.com

Abstract

In E-commerce search, spelling correction
plays an important role to find desired products
for customers in processing user-typed search
queries. However, resolving phonetic errors is
a critical but overlooked area. The query with
phonetic spelling errors tends to appear cor-
rect based on pronunciation but is nonetheless
inaccurate in spelling (e.g., "bluetooth sound
system" vs. "blutut sant sistam") with numer-
ous noisy forms and sparse occurrences. In
this work, we propose a generalized spelling
correction system integrating phonetics to ad-
dress phonetic errors in E-commerce search
without additional latency cost. Using India
(IN) E-commerce market for illustration, the
experiment shows that our proposed phonetic
solution significantly improves the F1 score
by 9%+ and recall of phonetic errors by 8%+.
This phonetic spelling correction system has
been deployed to production, currently serving
hundreds of millions of customers.

1 Introduction

Search is critical to provide a great customer shop-
ping experience in E-commerce. Usually, as the
first step of the search workflow, spelling correction
is responsible to reduce the irrelevant and sparse
search results caused by spelling errors in search
keywords. In addition, low latency is required con-
sidering spelling correction is only part of many
modules in the search workflow. Despite the large
amount of research on correcting spelling errors
(Hládek et al., 2020), addressing phonetic errors
is an important, but overlooked area. Phonetic
spelling error typically happens when the query
has similar pronunciation but is nonetheless inaccu-
rate in spelling (e.g., "bluetooth sound system" vs.
"blutut sant sistam" in English). Figure 1 describes
the phonetic error percentage of misspelled queries
based on a human annotated spelling correction
dataset sampled from the Amazon search query

log. We find that this type of spelling error domi-
nates in multiple E-commerce markets with various
languages, existing mostly on generic item terms
(e.g., "nacklesh" vs. "necklace") and brand terms
(e.g., "scalkendy" vs. "skullcandy"). This issue
might damage customer trust and present greater
challenges when E-commerce offers more prod-
ucts (i.e., brand names) with sensational spelling
(e.g., Hasbro’s Playskool [school]) and attracts cus-
tomers with low written proficiency.

Figure 1: Phonetic error ratio on brand terms (blue),
generic item terms (red) or any terms (green) out of all
spelling errors in multiple markets (languages).

However, the traditional spelling correction sys-
tem is not able to address phonetic spelling er-
rors well because it usually searches the correc-
tion of given spelling errors up to a certain edit
distance (Damerau, 1964) apart (Gorin et al., 1971;
Whitelaw et al., 2009), while phonetic spelling
errors could lead to large edit distance with vari-
ously noisy forms (e.g., EditDist("blutut" vs. "blue-
tooth")=4).

There exists multiple attempts to address pho-
netic errors by generating soundslike equivalent
candidates based on phonetic algorithms (Atkin-
son, 2006). Although soundslike equivalent candi-
dates may handle phonetic errors better, they tend
to be too noisy to cover the correct spelling of
non-phonetic errors in a limited size satisfying low
latency requirements (shown in Section 3).

To address these limitations, we propose a gen-
eralized spelling correction system that enables
us to integrate phonetics into E-commerce search
without additional latency cost. It includes a new

63



hybrid candidate generation method with phonetic
mapping as well as an effective candidate rank-
ing method leveraging phonetic signals. In par-
ticular, our major contributions include: (1) we
propose an effective hybrid candidate generation
method, which aims to capture the complemen-
tary candidates across edit distance and soundslike
based methods to address both phonetic and non-
phonetic spelling errors; (2) we propose a flexible
candidate ranking stage by leveraging phonetic sig-
nals, which tends to rank the correct spelling of
phonetic errors to the top; (3) our offline study
shows a 9%+ speller overall improvement with an
8% improvement on phonetic errors without addi-
tional latency cost by incorporating phonetics into
our generalized spelling correction system. To the
best of our knowledge, this work is the first to pro-
pose an efficient and effective phonetic solution
with ablation study in E-commerce search, and this
phonetic solution can be easily applied to any au-
tomatic spelling correction system with candidate
generation or ranking stage.

2 Problem Formulation and Modeling

In this section, we formally define our generalized
spelling correction structure using phonetics. Most
current search engines detect and correct spelling
errors automatically. One of the most popular struc-
tures defined by (Kukich, 1992) includes candidate
generation and candidate ranking steps based on
the noisy channel model (NCM) (Jurafsky and Mar-
tin, 2008). The basic idea of NCM is to find the
spelling correction C∗ given the input query Q and
its spelling correction candidates C = c1 . . . cn via
the Bayes’ Rule:

C∗ = argmax
c

P (Q|C)P (C), (1)

where the language model P (C) represents the
probability of the C to be correct, and the error
model P (Q|C) represents the chance of the trans-
formation from C to Q. We define NCM score as
the logarithm summation of the language and error
model score. On top of this popular noisy channel
structure, we introduce our generalized spelling
correction system using phonetics below.

Hybrid candidate generation: The candidate
generation step is to generate the correction candi-
dates given an input query. In our proposed hybrid
candidate generation stage, the first step is to lever-
age an auto-split-combine module tokenizing an
input query into tokens and split (combine) tokens

when the resulting bigram has a higher probability
in the search query log. Second, each token’s candi-
dates are generated from the vocabulary dictionary
(built from the search query log) up to a certain edit
distance. Similar to (Sun et al., 2010; Whitelaw
et al., 2009), a trie-based data structure is leveraged
that allows to efficiently search within a maximum
edit distance (e.g., a common setting is 2 to avoid
high latency). Token candidates are sorted based
on NCM score built on the search query log limited
by a certain size. Caching is applied to avoid dupli-
cated efforts. Considering the potentially large dis-
tance introduced by phonetic spelling errors (e.g.,
EditDist["blutut", "bluetooth"]=4), we design the
hybrid candidate generation stage. It additionally
includes a phonetic mapping with the key represent-
ing the pronunciation and its value being a list of
token soundslike candidates, complementing edit-
distance based token candidates. Specifically, we
leverage phonetic algorithms’ encoding (Vykho-
vanets et al., 2020) to convert the token to the key
of the phonetic mapping. The token candidates in
the phonetic mapping are extracted from tokenized
Amazon product titles sorted by its frequency be-
cause Amazon product titles contain rich product
information (brands, generic items, etc.), which
commonly suffers from phonetic errors. In addi-
tion, the top candidates are required to have the
same phonetic key, while the remaining candidates
can allow a small edit distance of the phonetic key,
which introduces noise, but with higher coverage.

Table 1 shows an example of the phonetic map-
ping in English leveraging Double Metaphone
(DM) (Philips, 2000) phonetic algorithm with the
phonetic encoding key: "PLTR". Top 10 candidates
have the same DM phonetic key "PLTR" and the re-
maining 30 candidates allow one edit distance. For
the given token "blutur" with DM key "PLTR", the
correct candidate "bluetooth" is the 13th candidate
with phonetic key "PLTT".

Top-K Token Candidates

1-10 "platter","builder","boulder",. . .

11-40 "leather","holder","bluetooth",. . .

Table 1: The phonetic mapping of DM phonetic key:
"PLTR"

Token candidates compose both edit-distance
and phonetic mapping based candidates. Following
Eq. (1) to approximately find the top-K query-level

64



Figure 2: General workflow of spelling correction sys-
tem. "E": edit distance of the token candidates. "P":
edit distance based on phonetic encoding key.

candidates, we leverage the beam search algorithm
with the beam search size K, tunable to balance
the system latency and its performance. Figure 2
shows the general workflow of the spelling correc-
tion system including the hybrid candidate gener-
ation stage based on the input query "blutut sant
sistam". Take the input token "sant" as an example,
"sound" is generated from phonetic mapping, while
"sand" is from both edit-distance and phonetic map-
ping based candidates with maximum edit-distance
setting being 2.

Candidate ranking: Although the hybrid can-
didate generation stage can return candidates with
sorted NCM score, we add this candidate rank-
ing stage to flexibly leverage phonetic features and
powerful ranking algorithms. Typical ranking fea-
tures could be candidates’ language scores from
different sources (e.g., search query log, product
titles, etc.) and different types of error scores char-
acterized by the probability of each edit in different
edit levels (e.g.,character-level (Mays et al., 1991;
Church and Gale, 1991), subword-level (Brill and
Moore, 2000) ,phrase-level (Sun et al., 2010)). We
specifically add the phonetic distance feature: the
edit distance of the phonetic encoding key between
the input query and its candidate. The goal of
adding this feature is to allow the model to rank
the correct candidate of a phonetically misspelled
query higher. For the ranking algorithm, the system
is flexible to support linear models (e.g., logistic
regression (Cox, 1958)), tree based model (e.g.,
XGBoost (Chen and Guestrin, 2016)) and deep
learning models in point-wise and pairwise level.
In addition, a classification module can be option-
ally added after the ranking stage (e.g., (Whitelaw

et al., 2009)) to balance between auto-correction
and no-correction speller actions. Figure 2 includes
the workflow of the candidate ranking stage.

3 Experiments

In this section, we formally evaluate our proposed
spelling correction system integrating phonetics.
We use IN E-commerce market for illustration. We
train and evaluate the candidate ranker based on
the human annotated dataset with 30000 query-
correction pairs from the search query log. We split
33.33% for training, validating, and testing. The
evaluation metric is the F1 score, which is a har-
monic mean of the precision and recall. Precision
represents the speller’s accuracy rate when its ac-
tion is auto-correction, while recall is defined as the
speller’s accuracy rate for misspelled queries. We
also report the recall of queries with phonetic errors
and top percentile (TP) 99 latency of the spelling
correction system in milliseconds. We treat the top
1 candidate as the correction of a given input query
with auto-correction action when the top 1 candi-
date is different from the input query, although the
system supports more complicated classifiers after
the ranking stage. Relative impacts (instead of ab-
solute values) are reported for legal requirements.

We first conduct an ablation study for the can-
didate ranking module. We apply a standard set-
ting in the candidate generation step that allows 20
edit distance based token candidates with allowed
maximum edit distance 2 and beam search size 12.
Typical ranking features based on different types
of language and error models are included, and we
focus on the impact of the phonetic distance fea-
ture. Table 2 shows F1 score, recall of phonetic
errors (column name: "ph-recall"), and TP99 la-
tency evaluated in the test dataset. Column name
"ph-dist" indicates if the phonetic distance feature
is added in the ranking model. Row [i] leverages
pair-wised logistic regression algorithm, while row
[ii, iii] leverage XGBoost LambdaMART algorithm
to rank candidates. We have the following observa-
tions. First, switching from logistic regression to
XGBoost ranking algorithm (comparing row [ii] to
row [i]), we find 7%+ improvement on F1 score and
6%+ on recall of phonetic errors with minor latency
increase (i.e., 1.5%). The nonlinear structure and
the nature of handling feature interaction effects
in tree-based models (i.e., XGBoost) might be the
reason that our method outperforms linear ranking
models (e.g., logistic regression). Second, adding

65



row
hyperparameter performance

algorithm ph-dist F1 ph-recall TP99

[i] logistic regression no - - 13

[ii] XGBoost no +7.2% +6.3% +1.5%

[iii] XGBoost yes +10.6% +8.9% +3.8%

Table 2: Candidate ranking ablation study (c. row[i])

the phonetic distance feature contributes to 3%+
F1 and 2%+ phonetic error recall improvement
(comparing row [iii] to row [ii]). This supports our
motivation that the phonetic distance feature tends
to rank the correct candidate of a phonetically mis-
spelled query higher, improving both the overall F1
score and recall of phonetic errors.

Adopting XGBoost LambdaMART algorithm
with phonetic distance feature in the candidate rank-
ing stage, we evaluate the hybrid candidate genera-
tion performance in Table 3 (row [i] in Table 3 is
row [iii] in Table 2). Columns "ph-s" and "ed-s"
represent the size of phonetic mapping and edit-
distance based token candidates. Column "beam-s"
is the beam search size and "ed-th" is the maximum
edit distance allowed for edit-distance based token
candidates. Phonetic mapping is created based on
DM phonetic algorithm, limiting the top 10 candi-
dates to have same DM phonetic key and allowing
maximum 1 edit distance of the phonetic encoding
key for the remaining candidates. Row [i] serves as
a baseline model without phonetic mapping based
token candidates. Row [ii] shows the impact of
maximum edit distance setting on edit-distance
based token candidates. We find that enlarging
the maximum edit distance leads to high latency
(371%+ increase) by comparing row [ii] with row
[i], but with minor improvement on F1 and pho-
netic error recall. This indicates resolving phonetic
errors (with distant edit distance to the correction)
by directly searching the correct spelling within the
edit distance threshold is not feasible. Row [iii-vi]
shows the impact of adjusting different sizes of pho-
netic mapping and edit-distance based token candi-
dates. We find that increasing edit-distance based
token candidate size (comparing row [iii] to row [i])
leads to minor improvement (F1 + 0.6%, ph-recall
+1.9%), but complementing token candidates by
adding phonetic-mapping based candidates outper-
forms baseline by 6%+ on F1 and 5%+ on phonetic
error recall (comparing row [iv] to row [i]). If
phonetic mapping is the only source of token can-
didates (comparing row [v] to row [i]), there exists

row
hyperparameter performance

ph-s ed-s beam-s ed-th F1 ph-recall TP99

[i] 0 20 12 2 - - 13.5

[ii] 0 20 12 3 +0.4% +0.2% +371%

[iii] 0 40 12 2 +0.6% +1.9% +16.3%

[iv] 20 20 12 2 +6.2% +5.1% +22.2%

[v] 20 0 12 2 -11.2% -16.8% -1.5%

[vi] 40 0 12 2 -6.6% -8.8% +23.7%

[vii] 20 20 8 2 +6.2% +5.4% -3%

[viii] 20 20 1 2 -5.9% -8.8% -20.7%

Table 3: Candidate generation ablation study (c. row[i])

a performance regression on both F1 and phonetic
error recall. Furthermore, enlarging the phonetic
mapping (row [vi]) is not an optimal solution con-
sidering its worse performance than hybrid sources
(row [iv]). Then, we select the beam search size
(row [vii,viii]) to control the similar TP99 for best
F1 and phonetic error recall, compared with base-
line (row [i]). The setting in row [vii] achieves 6%+
F1 score and 5%+ phonetic error recall improve-
ment with flat latency. Aggregating the phonetic
feature’s impact (compare row [vii] in Table 3 to
row [ii] in Table 2), the spelling correction system
improves the F1 score by 9%+ and phonetic error
recall by 8%+ by integrating phonetics into hybrid
candidate generation and candidate ranking steps.

We adopt row [i] in Table 2 and row [vii] in Table
3 as baseline speller and phonetic speller for online
A/B testing. We find significant business metrics
gain without additional latency cost. Moreover,
Figure 3 shows an example that the phonetic speller
is able to resolve the irrelevant and/or sparse results
based on the search query: "blutut sant systam".
That is, there are only 82 search results returned by
the baseline speller, while more than 9000 results
are shown after applying the phonetic speller.

4 Conclusions and Future Work

In this work, we developed a generalized spelling
correction system integrating phonetics into both
hybrid candidate generation and candidate ranking
stages on E-commerce domain. We demonstrated
that our proposed phonetic solution improves more
than 9% on F1 score and 8% on recall of phonetic
errors without additional latency cost. This solution
can be applied to any automatic spelling correc-
tion system with candidate generation or ranking
stage. Online A/B testing showed positive business

66



(a) Search results based on baseline speller

(b) Search results based on phonetic speller

Figure 3: Baseline speller vs. phonetic speller for search
query: "blutut sant systam"

metrics while reducing sparse/irrelevant search re-
sults. Future directions include applying similar
phonetic integrating ideas to other spelling correc-
tion frameworks (Jayanthi et al., 2020; Park et al.,
2021) considering the growing popularity of the use
of encoder-decoder deep learning architectures.

References
Kevin Atkinson. 2006. Gnu aspell 0.60. 4.

Eric Brill and Robert C Moore. 2000. An improved
error model for noisy channel spelling correction.
In Proceedings of the 38th annual meeting of the
association for computational linguistics, pages 286–
293.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
pages 785–794, New York, NY, USA. ACM.

Kenneth W Church and William A Gale. 1991. Proba-
bility scoring for spelling correction. Statistics and
Computing, 1(2):93–103.

David R Cox. 1958. The regression analysis of binary
sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215–232.

Fred J Damerau. 1964. A technique for computer detec-
tion and correction of spelling errors. Communica-
tions of the ACM, 7(3):171–176.

RE Gorin, Pace Willisson, Walt Buehring, Geoff Kuen-
ning, et al. 1971. Ispell, a free software package for
spell checking files. The UNIX community.

Daniel Hládek, Ján Staš, and Matúš Pleva. 2020. Sur-
vey of automatic spelling correction. Electronics,
9(10):1670.

Sai Muralidhar Jayanthi, Danish Pruthi, and Graham
Neubig. 2020. Neuspell: A neural spelling correction
toolkit. arXiv preprint arXiv:2010.11085.

Daniel Jurafsky and James H Martin. 2008. Speech &
language processing (2nd ed.). Prentice Hall.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. Acm Computing Surveys
(CSUR), 24(4):377–439.

Eric Mays, Fred J Damerau, and Robert L Mercer. 1991.
Context based spelling correction. Information Pro-
cessing & Management, 27(5):517–522.

Chanjun Park, Kuekyeng Kim, YeongWook Yang,
Minho Kang, and Heuiseok Lim. 2021. Neural
spelling correction: translating incorrect sentences to
correct sentences for multimedia. Multimedia Tools
and Applications, 80(26):34591–34608.

Lawrence Philips. 2000. The double metaphone search
algorithm. C/C++ users journal, 18(6):38–43.

Xu Sun, Jianfeng Gao, Daniel Micol, and Chris Quirk.
2010. Learning phrase-based spelling error models
from clickthrough data. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 266–274.

Valeriy S Vykhovanets, J Du, and SA Sakulin. 2020.
An overview of phonetic encoding algorithms. Au-
tomation and Remote Control, 81(10):1896–1910.

Casey Whitelaw, Ben Hutchinson, Grace Chung, and
Ged Ellis. 2009. Using the web for language indepen-
dent spellchecking and autocorrection. In Proceed-
ings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 890–899.

67

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

