
Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 181 - 190
May 26, 2022 c©2022 Association for Computational Linguistics

Structured Extraction of Terms and Conditions from German and English
Online Shops

Tobias Schamel
Technical University of Munich
tobias.schamel@tum.de

Daniel Braun
University of Twente

d.braun@utwente.nl

Florian Matthes
Technical University of Munich

matthes@tum.de

Abstract

The automated analysis of Terms and Con-
ditions has gained attention in recent years,
mainly due to its relevance to consumer pro-
tection. Well-structured data sets are the base
for every analysis. While content extraction,
in general, is a well-researched field and many
open source libraries are available, our evalu-
ation shows, that existing solutions cannot ex-
tract Terms and Conditions in sufficient quality,
mainly because of their special structure. In
this paper, we present an approach to extract
the content and hierarchy of Terms and Condi-
tions from German and English online shops.
Our evaluation shows, that the approach out-
performs the current state of the art. A python
implementation of the approach is made avail-
able under an open license.

1 Introduction

Terms and Conditions (T&Cs) of online shops are
rarely read and even more rarely understood (Bakos
et al., 2014), although we all still accept them. In
recent years, the automated analysis of T&Cs has
become an interesting field of research (Braun and
Matthes, 2021; Lippi et al., 2019). A structured ex-
traction of T&Cs from online shops is a necessary
prerequisite for such further processing in an NLP
pipeline.

Content extraction is a well-researched task and
numerous open source libraries are available. Exist-
ing approaches are predominantly designed for or
based on news articles and blog posts. In this paper,
we will show that the existing approaches are not
well-suited to deal with T&Cs, partially because of
the strict hierarchical structures that can be found
in such legal documents, which are not common in
other types of content such as news articles.

In this paper, we present a domain-specific
content extraction approach for T&Cs, that
combines both, Content Extraction and Hierarchy
Extraction, and an open source Python library

that implements this approach. needs to combine
both. Our evaluation shows that the library
outperforms general-purpose content extraction
approaches on T&Cs from German and English
online shops. The library is available on GitHub:
https://github.com/sebischair/
LowestCommonAncestorExtractor.

2 Related Work

The existing work on content extraction has been
mainly focused on news articles or generic con-
tent extraction, often based on the dataset of the
cleaneval competition (Baroni et al., 2008). To the
best of our knowledge, no work exists that specifi-
cally targets or is evaluated on T&Cs.

Gibson et al. (2007) described the process of
content extraction as a sequence labeling problem
on a document broken down into a sequence of
blocks. Each block needs to be classified as either
Content or NotContent. Kohlschütter et al. (2010)
work with a more detailed four-class separation.
Another approach is a Boundary Detection Method
where a heuristic needs to determine a Start- and
End-Block framing the whole content, i.e. every-
thing between Start- and End-Block is considered
Content whereas everything else is discarded as
NotContent. According to Jiménez et al. (2018),
the classification needs to take both HTML struc-
ture and the actual content into account. "Purely
text-based or purely HTML-based approaches do
not have perfect results."

Several approaches for classifying blocks as Con-
tent or NotContent can be found in the literature.

Kohlschütter et al. (2010) propose a classifica-
tion inspecting the text on a functional level using a
set of so-called shallow text features. Shallow text
features are statistical calculations on block-level
looking at domain and language independent fea-
tures like link density, the average sentence length,
the uppercase ratio, etc. Jiménez et al. (2018) in-
troduce an improvement to this algorithm by also

181

https://github.com/sebischair/LowestCommonAncestorExtractor
https://github.com/sebischair/LowestCommonAncestorExtractor

taking the HTML tree structure into account.
Pomikálek (2011) introduced a similar approach

using a low amount of features to determine the
likelihood of a block being Content or NotContent.
Uncertainties are dealt with within the next step,
which involves an analysis of the relative position
of a block in the HTML tree including the clas-
sification of its neighbors. This step is based on
the assumption that Content blocks are to be found
near other Content blocks (and vice versa).

Pasternack and Roth (2009) tried to solve the
task by finding a maximum subsequence in tok-
enized HTML documents, where each token is as-
signed a score determined by token-level classifiers.
Different classifiers like simply assigning prede-
fined scores to words and tags and more advanced
classifiers which combined Naive Bayes classifica-
tion with features of the surrounding tokens were
investigated.

There is a number of synonyms to the process
of "content extraction" (Gibson et al., 2007; Bar-
baresi, 2019) like boilerplate detection/removal
(Kohlschütter et al., 2010), template matching
(Sano et al., 2021) and cleaning (Lejeune and Zhu,
2018; Kilgarriff, 2007).

In addition to extracting the content, a (relatively
small) number of approaches also try to extract the
hierarchy of the content. According to Manabe and
Tajima (2015), the nested hierarchy of an HTML
document can contribute some information to hier-
archy extraction but does not necessarily coincide
with the actual hierarchical structure of an HTML
document. The HTML tags originally meant to
structure a document and indicate headings are of-
ten misused for SEO or not used at all.

Manabe and Tajima (2015) introduced a seg-
menting method extracting the hierarchical struc-
ture of HTML documents based on the differences
in the visual styles in hierarchical headings. They
defined a set of rules based on the way humans
read hierarchically structured content. According
to them, headings a characterized by more promi-
nent visual styles (the same on one level of hierar-
chy) preceding the blocks they describe.

Sano et al. (2021) used a similar approach with
only nine parameters. The parameters include the
number of child nodes, text length of nodes and the
styling of succeeding content.

1. headings have few child nodes
2. headings have a short text length

3. the width of headings is greater than their
height

4. the size of a heading is smaller than the size
of the following content block underneath it

3 Requirements

In order to derive requirements for the extraction of
T&Cs, we compared existing extractors and our ex-
pected results. In addition, we manually inspected
T&C pages to detect patterns and domain-specific
characteristics. The test data was sampled from
the data set by Braun and Matthes (2020) which
is available under the CC BY-SA 3.0 license on
GitHub1. We investigated the extraction results
of the T&Cs pages of 30 German and 20 English
online shops. 15% of the English sample had to
be adjusted, as the URL from the data-set did not
point to the actual T&Cs page.

3.1 Content Extraction

Through visual inspection of the T&Cs page and
the DOM tree, we identified some prevalent pat-
terns: While news articles are often interrupted by
references to similar articles and advertisements,
all cases examined in the sample of T&Cs pages
displayed the relevant legal document without any
interruptions on a rather simply structured page.
For T&Cs of German online shops, the content is
not always grouped within a single large paragraph
but often divided into multiple paragraphs, e.g.,
1. Allgemeine Geschäftsbedingungen (German for
general terms and conditions) and 2. Kundeninfor-
mation (customer information), where both contain
relevant information. Generally speaking, German
T&Cs tend to be more structured than their counter-
part in English online shops. In most of the cases,
the relevant content shared a common style (font
size and style) and could be found in the same depth
of the DOM tree. This same style was used in the
footer of the page in rare cases. Exceptions to these
observations are headlines and differently styled
withdrawal forms, which are contained in a number
of T&C pages. These withdrawal forms are often
comprised of underscores, blank spaces, and text.
A small number of T&C pages had content that
needed to be unfolded making and purely visual
approach insufficient, as parts of the relevant con-
tent are not seen without further interaction with
specific elements of the website.

1https://github.com/sebischair/
TC-Detection-Corpus/

182

https://github.com/sebischair/TC-Detection-Corpus/
https://github.com/sebischair/TC-Detection-Corpus/

3.1.1 Existing Solutions
We compared the content extraction performance
of three existing libraries on the data set. The ex-
traction results were quantified by classifying the
extraction quality for the following properties (qual-
ity sorted from correct to most severe error):

• content start: correct, too early, too late
• content end: correct, too late, too early
• main content: correct, missing content (links

& addresses), none-content (whole paragraphs
or sentences), missing & none-content

If the content start is detected earlier than it ac-
tually is, noise is added to the content, however, if
the content start is detected later than it actually is,
content is cut off and information lost. The latter is
the more severe error. For the end of the content,
the reverse is true.

The following three content extraction libraries
were tested:

Boilerpipe We compared three different extractors
implemented in Boilerpipe2:
ArticleExtractor The end of the main con-

tent was often identified too early, i.e.,
content towards the end of the pages was
cut off. This was often caused by ad-
dresses and other contact information.
Less frequently, ArticleExtractor also
had problems identifying the start of the
main content.

CanolaExtractor The CanolaExtractor was
trained on the KrdWrd Canola corpus3,
which is created from random webpages
across various domains (Stemle, 2009).
It recurrently extracted cookie informa-
tion or the footer of the web pages. The
main content was usually detected but
the extracted text was interrupted many
times. This occurred for some short para-
graphs, headings, addresses and with-
drawal forms.

LargestContentExtractor The LargestCon-
tentExtractor extracts a continuous piece
of content in all cases. This connected
part is not a single HTML node but a
consecutive series of HTML nodes. By
nature, the extraction performance for

2https://code.google.com/p/boilerpipe
3https://krdwrd.org/

the center of the extracted content is ex-
cellent. However, the performance on
the identification of the start and end of
the main content is the worst observed in
comparison with the other extractors.

JusText The performance of JusText4 Pomikálek
(2011) was similar to the results of the Boiler-
pipe CanolaExtractor. The main content was
usually detected but the extracted text was
interrupted, as JusText classified many head-
lines, addresses, and paragraphs containing
links as boilerplate.

Trafilatura Trafilatura5 performed best among
the investigated solutions. However, Trafi-
latura ignored some of the paragraph head-
lines. In addition, there were problems with
content that was not visible to a user without
unfolding them in the browser manually.

6 of 20 sampled web pages from the English sam-
ple were not extractable due to malformed HTML.
As small mistakes in the HTML structure are not
uncommon and are usually fixed by browsers ren-
dering them, this should not be the case. The pro-
posed solution should be robust when encountering
that type of problem. The detailed results can be
found in Tables 2 and 3.

3.1.2 Derived Requirements
Based on the identified patterns in the data and the
problems of the existing approaches, we derived
the following reuqirements for a domain-specific
content extraction approach for T&C:

1. extract (largest) continuous part of HTML
document

2. extract the content sharing a common style
and depth in HTML tree

3. extract the withdrawal form/information with
different style and different depth

4. extract address information
5. always extract both of the sections 1. Allge-

meine Geschäftsbedingungen (general terms
and conditions) and 2. Kundeninformation
(customer information) in German T&Cs

6. extract hidden content which needs to be un-
folded in the browser (e.g. by clicking an
expand button)

7. robust against malformed HTML
4https://code.google.com/archive/p/

justext/
5https://github.com/adbar/trafilatura

183

 https://code.google.com/p/boilerpipe
 https://krdwrd.org/
 https://code.google.com/archive/p/justext/
 https://code.google.com/archive/p/justext/
https://github.com/adbar/trafilatura

visual numericvisual & numeric
0

10

20

30

2 2

25

8

0

12

de
en

Figure 1: Occurrences of different hierarchy styles in
the German and English sample

3.2 Hierarchy Extraction

Data on the visual and HTML-based representa-
tions of the hierarchical structure of web pages
containing T&Cs were gathered in a manual re-
view. The results found in the English sample and
the German sample differed slightly. The following
hierarchy representation classes were defined:

Visual page is structured using visual separators
and different text styles

Numeric page is structured using a numeric
scheme (Arabic, Latin/Roman, alphabetic,
etc.)

Visual & Numeric a combination of both Visual
and Numeric elements are used to structure
the page

The analysis showed, that German shops were
much more likely to use a combination of Visual
& Numeric features to structure the content (see
Figure 1).

Based on our observations, we formulated the
following requirements:

1. extract subclauses grouped in their own para-
graph forming HTML tag (block elements)

2. detect numeration patterns (alphabetic, Ara-
bic, Latin/Roman, section sign, etc.)

3. extract styling (CSS) of titles to determine
associated content

4. ignore enumerations for the table of contents

4 Approach and Implementation

This section covers the approach we developed
based on the identified requirements and the de-
sign and implementation of the StructuredLegalEx-

traction library that implements the approach in
Python.

4.1 Architecture
The extraction library consists of two main com-
ponents described in Section 4.3 and Section 4.4
which serve to extract the content and the hierarchy
of a given T&C page. In addition, there is an aux-
iliary component that serves to download the web
page and one that transforms the HTML content
into a DOM tree which is by far more useful for
further processing. Another auxiliary component
is used to generate the target structure relying on
another auxiliary component to segment sentences.

At first, the content is downloaded using the
Downloader component. The downloaded content
is processed by the DOMParser to achieve the de-
sired DOM tree holding no more information than
those actually needed during later processing steps.
The ContentExtractor component is responsible
for detecting and extracting the main content of
the downloaded page based on the parsed DOM
tree. The HierarchyExtractor component uses the
main content node of the DOM tree to build its
hierarchy tree based on visual information (CSS
attached to DOM nodes) and numerical patterns in
the text. In the last step, the hierarchy tree needs
to be transformed to the target format by the Tar-
getFormat component, which uses the Sentence-
Segmenter component to tokenize and segment the
content.

4.2 Additional Technologies
Some generic tasks can be solved by using existing
solutions. The requirements and selected libraries
are presented in this section.

4.2.1 Web Page Download
In an effort to determine the main content of a web
page, the entire content must first be downloaded.
The following requirements have been identified:

• download full HTML file representing the
web page

• extract CSS style information on the content
• full XML Path Language (XPath) support to

navigate the dom tree

Selenium6 is a well-known library usually used
for website testing. By this, it allows full inter-
action with the website using X-Path by control-
ling a browser. This also allows us to use the

6https://github.com/SeleniumHQ/selenium/

184

browser’s HTML error correction when download-
ing the HTML. However, the find_by_xpath
(path) method does not support text elements.
Text can be extracted by accessing an element’s
.text attribute. Unfortunately, text segments
(complete text - direct and indirect children - under
the current node) cannot be mapped to the individ-
ual nodes so that one could track down which text
has which style. This will require another library.

An outstanding feature of selenium is its capa-
bility of extracting CSS style information. The
high number of visual represented hierarchies (see
Figure 1) makes this a crucial feature.

4.2.2 HTML Parser
As Selenium does not support text nodes in its X-
Path functionality, there is a need for a dedicated
parser with the following requirements:

• full XPath support to navigate the DOM tree
• XPath generation from DOM tree nodes

lxml7 an XML-parser offering dedicated HTML-
parsing functionality. Due to its full XPath support,
it also allows extracting all child nodes including
the text nodes of a DOM-node using the XPath
child::node(). The library also allows gener-
ating XPath for elements relative to a given parent
element which makes it possible to link it to other
libraries capable of XPath for style extraction (see
Section 4.2.1).

4.2.3 Sentence Segmentation and Tokenising
The content of the document needs to be segmented
into sentences which themselves need to be tok-
enized for the target format. This requires reliable
segmenting and tokenizing with respect to text ele-
ments like references to laws or address informa-
tion common in the domain of T&Cs.

According to Braun (2021), SoMaJo8 performed
best in the domain of T&Cs .

LangID9 is used, as SoMaJo requires knowledge
on the language of the text to segment and tokenize.
LangID’s multinomial naive Bayes model is trained
to determine a text’s language among 97 languages
including German and English (Lui et al., 2021).

4.3 Content Extraction
As described in Section 3, the main content of a
T&Cs page usually shares a common style. The

7https://github.com/lxml/lxml/
8https://github.com/tsproisl/SoMaJo/
9https://github.com/saffsd/langid.py

main content makes up for the largest visible con-
tent block most of the time. Therefore, the extrac-
tion approach can be built upon this knowledge.

In a first step, we determine the MCS (Most
Common Style) by traversing the DOM tree nodes
while collecting a mapping of styles to number
of characters. Different approaches to determine
and approximate the style of a given node were
investigated.

Naïve Style The first naïve approach is combin-
ing the HTML tag and all the attributes (incl.
CSS classes and ids). However, this is just
an approximation, as CSS style information is
passed to child nodes of the parents holding
them. This approach is rather efficient but less
accurate.

Naïve Style and Short Text Exclusion As navi-
gation bars and headlines consist of nodes
holding only one to two words, it can be
dangerous to include them when determining
the MCS, as nested navigation elements hold
large amounts of characters. Excluding short
text nodes (< 4 words) can solve that issue

Rendered Style Using Selenium allows the re-
trieval of the rendered style information.

It turned out, that the Naïve Style and Short Text
Exclusion’s approximation is almost as accurate as
the Rendered Style approach. Using the Naïve Style
and Short Text Exclusion approximation, we can
limit the time-intensive rendered style extraction
through Selenium to the actual main content for
hierarchy extraction (see Section 4.4). The number
of nodes for which the rendered style needs to be
extracted can be reduced by approximately 69% in
the German sample and by approximately 71% in
the English sample.

After the MCS is identified, the tree is traversed
to identify a node covering at least 85% (this thresh-
old is variable) of the characters of the MCS. Once
this node is identified, all descendants are classi-
fied as Content. This decision is justified by the
findings in Section 3: T&Cs are usually continu-
ous texts often structured into a container (e.g. a
<div>) by content management systems.

The selection of the right (domain-specific)
threshold is crucial for the success of this extrac-
tion algorithm. A threshold too low can result in
only a part of the main content being extracted; a
threshold too high can make it impossible to find a
node covering the given amount of MCS characters

185

https://github.com/lxml/lxml/
https://github.com/tsproisl/SoMaJo/
https://github.com/saffsd/langid.py

and thereby triggering a fallback solution described
later. After investigating the MCS (Naïve Style and
Short Text Exclusion) coverage of the nodes hold-
ing the main content and the next largest child in
the German and English samples from Section 3,
the lower bound of the interval of possible thresh-
old values is found to be limited to approximately
83.65% by the English sample (lowest MCS cov-
erage of the next largest MCS coverage in a main
content’s child node). The upper bound of this
interval is defined by the lowest coverage of the
main content node above 83.65%, which can also
be found in the English sample with a value of ap-
proximately 91.01%. Therefore, the threshold is
set to 85%.

In some rare cases, the algorithm will not find
a node covering at least 85% of the MCS, as the
webpage does not use a dedicated container to hold
the main content. Instead, individual containers
for each of the paragraphs are placed as direct de-
scendants of the <body> node. By identifying the
longest subsequence containing the MCS, one can
most likely extract the main content while exclud-
ing boilerplate content like the navigation bar and
footer. This fallback solution provides much worse
results than the actual content extraction algorithm.

We call the extraction algorithm Lowest-
CommonAncestorExtractor

4.4 Hierarchy Extraction

The hierarchy extraction is based on the idea pre-
sented by Manabe and Tajima (2015). The visual
style of the text is used to identify headings and
their associated text blocks. In some cases, T&Cs
are also structured using enumerations or a combi-
nation of visual style and enumerations (see Figure
1). Thus, this information needs to be considered,
too. For the actual hierarchy extraction informa-
tion from both, the enumerations and the visual
styles, need to be taken into account in a rule-based
approach in order to produce accurate results. In-
formation from the DOM tree does not provide
reliable information on the hierarchy. Given the
data from Figure 1, the hierarchy extraction algo-
rithm will focus on visual features and use numeric
patterns for verification and adjustments.

In a first step, the DOM (sub-)tree identified as
the main content is converted to a list of content
blocks where each block has its own style. A block
is a sequence of characters ending with a forced
newline. This forced newline could be a

tag, the start or end of a paragraph (<p>), or any
other element with block as the standard level
for the display property. The style of a block
corresponds to the style that the majority of the
characters in it are part of (excluding the anchor
tag <a>).

The style attached to a block is determined by
extracting the rendered style retrieved through Se-
lenium. The style is defined by font-decorations,
font-weight, font-size, font-family and font-color.

For each of the blocks, possible enumeration
patterns are identified and attached to the blocks by
using the following regular expression:
\s[\(§]?(([IVXLivxl]{1,7})|
([0-9]{1,2})|[a-zA-Z])
([\.\-,:](([IVXLivxl]{1,7})|
([0-9]{1,2})|[a-zA-Z]))*[\-:\.)]?
\s

Arabic enumeration Arabic numbers are the
most common enumeration used in the do-
main of T&C structuring. They can easily be
extracted from a string and transformed into
an integer representation.

Roman enumeration Since in a few cases Roman
numerals were also used for numbering, these
must be converted into Arabic numerals. In
all investigated cases Roman numerals were
not bigger than 20. By limiting the allowed
Roman enumeration characters to I, V, X and
L, the risk of mixing up alphabetic and roman
enumeration can be reduced, as I would only
be used in alphabetic enumerations larger than
8.

Alphabetic enumeration As alphabetic enumera-
tion is only applicable for single characters,
there is no need for extensive conversion. Let-
ters are mapped to their position in the alpha-
bet.

Lists elements are automatically separated
into blocks, however, enumerations rendered
by the browsers when using tags are
not part of the textual content of the blocks.
Thus, the information about list enumerations
is attached to the block as regular enumeration
information.

The following assumptions by Manabe and
Tajima (2015) are used as a basis for the visual
hierarchy extraction:

1. headings appear at the beginning of the corre-
sponding blocks

186

2. headings are given prominent visual styles
3. headings of the same level share the same

visual style

A section’s start is identified by determining its
headline, i.e. a line with a different style than the
MCS identified during content extraction. A head-
line is only allowed a maximum of 10 words. The
section ends whenever the next line styled like the
current section’s headline occurs. The content in
between these two lines forms the provisionally
content of the upper headline. Each of the identi-
fied sections is then grouped into subsections using
the same algorithm (see Appendix, Algorithm 1)
until no more prominent style is visible in between
two headlines. Assuming, that no section is in-
terrupted by another section and later continued,
content in between two headlines, respectively the
last headline and the end of the main content, is
assumed to be the content of the upper headline.

Enumerations extracted during the conversion
to the block list are used to correct and validate
the existing hierarchy which was extracted visual
features. In the first step, the blocks assigned to
each of the visually separated sections are exam-
ined for possible numerical hierarchies. List enu-
merations are treated in a special way, as we allow
them to interrupt a section that is continued after
the list element blocks. Given that the section can
be divided into further subsections based on the
enumeration patterns found in the blocks, these
subsections are processed in the same way. After
the initial enumeration-based segmentation within
the nodes’ content blocks, all headlines on the same
level of the tree are checked for enumeration pat-
terns. If there are different enumeration patterns
on one level, the tree is modified in order to have
consistent enumeration.

An enumeration pattern is only considered if
there are at least two consecutive numberings of
that pattern whose numerical values reflect a valid
step. Invalid steps or enumeration patterns occur-
ring only once are most likely to be detected due
to an error in the enumeration detection and thus
ignored.

4.5 Target Format

The tree-like results from content and hierarchy
extraction are converted to JSON after being seg-
mented and tokenized.

too late too early correct

start 3 0 46
end 0 2 47

Table 1: Extraction performance for the Lowest-
CommonAncestorExtractor on the test set. 49 out of 50
web pages in the test set could be processed.

5 Evaluation

The performance of the developed algorithms is
evaluated in this section. Besides the sample used
to derive the requirements, there is also another
sample to evaluate the library to prelude overfitting.

5.1 Content Extraction

The content extraction algorithms were tested with
a focus on the correct identification of the start and
end of the content, as the center is always identified
correctly given the functionality of the previously
introduced LowestCommonAncestorExtractor with
NaïveStyle, ShortTextExclusion, and a threshold of
85%. The results of the evaluation are shown in
Table 1.

During the evaluation, the following three rea-
sons were identified as the main drivers of extrac-
tion errors: (1) threshold too high: Whenever the
threshold is too high for the page, the fallback al-
gorithm is triggered; (2) no container for main
content: Whenever the T&C page lacks a container
wrapping the whole main content, the fallback al-
gorithm is triggered; (3) use of different tags: The
NaïveStyle approach cannot handle the usage of
different tags rendering to the same actual style
used for the main content. If one of the tags is held
in its own container, as often is the case in lists,
only this container is extracted.

However, the LowestCommonAncestorExtractor
performed significantly better than the previously
examined extractors, as shown in Tables 2 and 3.

5.2 Hierarchy Extraction

The hierarchy extraction algorithm was, similar
to the content extraction, evaluated with the sam-
ple used to derive requirements and a test sample
created for the purpose of evaluation. Errors aris-
ing from a failed content extraction are ignored in
this section, as they provide no information on the
quality of the algorithm applied during hierarchy
extraction.

The algorithm showed good results (see Ap-

187

too late too early correct processing error

LowestCommonAncestorExtractor 1 3 45 1
Boilerpipe ArticleExtractor 16 4 24 6
Boilerpipe LargestContentExtractor 29 2 13 6
Boilerpipe CanolaExtractor 7 15 22 6
JusText 6 11 25 6
Trafilatura 5 2 37 6

Table 2: Performance of detecting the start of T&Cs (for “correct”, higher numbers are better, for all others, lower
numbers are better).

too late too early correct processing error

LowestCommonAncestorExtractor 3 2 44 1
Boilerpipe ArticleExtractor 23 13 8 6
Boilerpipe LargestContentExtractor 32 1 11 6
Boilerpipe CanolaExtractor 3 27 14 6
JusText 8 15 19 6
Trafilatura 5 4 35 6

Table 3: Performance of detecting the end of T&Cs (for “correct”, higher numbers are better, for all others, lower
numbers are better).

pendix A.2). In most cases, small extraction errors
can be found in the hierarchy. However, their im-
pact on the overall result can be described as minor.
A precise analysis of the sources of errors showed
the following reasons for erroneous hierarchy ex-
traction:

1. Use of bold text: Some pages used bold text
elements to highlight whole sections or just
some blocks. This can screw up the whole
result as the bold blocks might be identified
as headlines.

2. Wrong enumeration: A surprisingly large
amount of T&C pages contain errors in their
enumerations. As the algorithm requires a
strict sequence of numerations, this can lead
to problems in the hierarchy extraction.

3. Violation of the assumption "Sections are
not interrupted": The algorithms assume that
there is no more content of a section after one
of its subsections.

4. Use of tables: Whenever tables occurred on a
page (often in the context of shipping costs),
the algorithm separated each cell into its own
block resulting in a large number of blocks
with different styles. A high frequency of
numbers occurring in the table worsened the
results as the vast amount of detected enumer-
ation patterns triggered further adjustments to

the table.
5. Failed style extraction: In order to link the

custom DOM tree structure to the Selenium
tree, each DOM node is attached with its full
XPath. As some pages render elements after
a short time span, they may not be included
in the parsed DOM tree. At the time the al-
gorithm starts style extraction, new elements
can render and tackle the validity of the XPath
attached to the DOM node making the extract-
ing of visual features impossible.

6 Conclusion

We introduced a new content extraction algorithm
that performs better than existing solutions in its
specific domain of T&C web pages. Since the
algorithm is based on some domain-specific as-
sumptions, it is unclear how successful it would
operate on a generic web corpus. Further research
in the field could answer this question. Initial small
tests looked promising under the assumption that
the content of the page is not interrupted. The
style extraction, which is currently based on Se-
lenium can be considered the performance bottle-
neck, as retrieving certain CSS properties takes a
rather long time. One should look for a more ef-
ficient solution to extract the rendered style. In
addition, several content extraction threads can op-

188

erate in parallel. The general functionality of the
rule-based approach to hierarchy extraction could
be demonstrated. The general idea of Manabe and
Tajima (2015) was extended by an enumeration de-
tection due to the frequent usage of enumerations
to structure T&C pages. It is much more difficult
to achieve similar success rates in hierarchy extrac-
tion as with content extraction, due to the many
irregularities in visual representation. This is prob-
ably due to the fact that the operators of different
online shops often want to highlight very different
elements from the contract text visually. In cases
where such outliers do not occur in the visual repre-
sentation, hierarchy extraction yields good results.

Acknowledgements

The project was supported by funds of the Federal
Ministry for the Environment, Nature Conservation,
Nuclear Safety and Consumer Protection (BMUV)
based on a decision of the Parliament of the Federal
Republic of Germany via the Federal Office for
Agriculture and Food (BLE) under the innovation
support programme.

References
Yannis Bakos, Florencia Marotta-Wurgler, and David

Trossen. 2014. Does anyone read the fine print?
consumer attention to standard-form contracts. The
Journal of Legal Studies, 43:1–35.

Adrien Barbaresi. 2019. Generic web content extraction
with open-source software. In Proceedings of the
15th Conference on Natural Language Processing,
KONVENS 2019, Erlangen, Germany, October 9-11,
2019.

Marco Baroni, Francis Chantree, Adam Kilgarriff, and
Serge Sharoff. 2008. Cleaneval: A competition for
cleaning web pages.

Daniel Braun. 2021. Automatic Semantic Analysis,
Legal Assessment, and Summarization of Standard
Form Contracts. Ph.D. thesis, Technical University
of Munich.

Daniel Braun and Florian Matthes. 2020. Automatic de-
tection of terms and conditions in german and english
online shops. In 16th International Conference on
Web Information Systems and Technologies, WEBIST
2020. SciTePress.

Daniel Braun and Florian Matthes. 2021. NLP for con-
sumer protection: Battling illegal clauses in German
terms and conditions in online shopping. In Proceed-
ings of the 1st Workshop on NLP for Positive Impact,
pages 93–99, Online. Association for Computational
Linguistics.

John Gibson, Ben Wellner, and Susan Lubar. 2007.
Adaptive web-page content identification. pages 105–
112.

Francisco Viveros Jiménez, Miguel A. Sánchez-
Pérez, Helena Gómez-Adorno, J. Posadas-Durán,
G. Sidorov, and Alexander Gelbukh. 2018. Improv-
ing the boilerpipe algorithm for boilerplate removal
in news articles using html tree structure. Com-
putación y Sistemas, 22.

Adam Kilgarriff. 2007. Last words: Googleology is bad
science. Computational Linguistics, 33(1):147–151.

Christian Kohlschütter, Peter Fankhauser, and Wolfgang
Nejdl. 2010. Boilerplate detection using shallow text
features. pages 441–450.

Gaël Lejeune and Lichao Zhu. 2018. A new proposal
for evaluating web page cleaning tools. Computación
y Sistemas, 22.

Marco Lippi, Przemysław Pałka, Giuseppe Contissa,
Francesca Lagioia, Hans-Wolfgang Micklitz, Gio-
vanni Sartor, and Paolo Torroni. 2019. Claudette: an
automated detector of potentially unfair clauses in
online terms of service. Artificial Intelligence and
Law, 27(2):117–139.

Marco Lui, Timothy Baldwin, and Nicta Vrl. 2021.
Cross-domain feature selection for language iden-
tification.

Tomohiro Manabe and Keishi Tajima. 2015. Extract-
ing logical hierarchical structure of html documents
based on headings. Proceedings of the VLDB Endow-
ment, 8:1606–1617.

Jeff Pasternack and Dan Roth. 2009. Extracting arti-
cle text from the web with maximum subsequence
segmentation. pages 971–980.

Jan Pomikálek. 2011. Removing boilerplate and du-
plicate content from web corpora. Ph.D. thesis,
Masaryk University, Faculty of informatics, Brno,
Czech Republic.

Hiroyuki Sano, Shun Shiramatsu, Tadachika Ozono, and
Toramatsu Shintani. 2021. A web page segmentation
method based on page layouts and title blocks.

Egon Stemle. 2009. The krdwrd annotation framework
– gathering training data for sweeping web pages: the
canola corpus.

189

https://doi.org/10.1086/674424
https://doi.org/10.1086/674424
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/kaleidoskop/camera_ready_barbaresi.pdf
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/kaleidoskop/camera_ready_barbaresi.pdf
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.10
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.10
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.10
https://doi.org/10.1145/1316902.1316920
https://doi.org/10.1162/coli.2007.33.1.147
https://doi.org/10.1162/coli.2007.33.1.147
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.14778/2824032.2824058
https://doi.org/10.14778/2824032.2824058
https://doi.org/10.14778/2824032.2824058
https://doi.org/10.1145/1526709.1526840
https://doi.org/10.1145/1526709.1526840
https://doi.org/10.1145/1526709.1526840

A Appendix

A.1 Hierarchy Extraction Algorithm

Algorithm 1: Extract hierarchy based on
headlines (recursive).

Input: List of blocks (blockList)
Result: Children of a Node
/* Determine headline style of

current level and gather all
headlines on this current level.
*/

headlineStyle← getNextHeadlineStyle(blockList);
headlineList← [];
for block in blockList do

if block.style = headlineStyle then
headlineList.append(block);

end
end
/* Create children list for current

node by adding the blocks
associated to the current node
and by extracting the lower
level nodes. */

children← [];
children.append(blockList[0 : headlineList[0].index];
for headline in headlineList do

cChildren←
extractHierarchy(blockList[(headline.index +
1) : headline.next.index];

children.append(Node(headline, cChildren));
end
return children;

A.2 Hierarchy Extraction
The deviations of the hierarchy extraction algo-
rithm from the expected results are determined
by assigning the following scores to the extracted
nodes:

• 0: each section with correct parent, correct
content, and correct title

• 0.4: wrong parent
• 0.5: wrong content
• 0.1: wrong title

As different T&C pages contain different amounts
of sections, the score is divided by the total amount
of sections identified by the algorithm. An error
score of 0 accounts for a perfect extraction.

The meaning of the brackets used in Tables 4
and 5 is the following:

x ∈ [a; b) | x ≥ a ∧ x < b

Error Score German English

0 12 5
(0; 0.05] 12 4
(0.05; 0.1] 1 1
(0.1; 0.15] 2 2
(0.15; 0.2] 1 0
(0.2; 0.3] 1 0
(0.3; 0.5] 1 1
(0.5; 1] 0 0
Failed 0 6

Table 4: Distribution of error scores for the hierarchy
extraction of the German and English requirements sam-
ple.

Error Score German English

0 8 9
(0; 0.05] 11 3
(0.05; 0.1] 1 2
(0.1; 0.15] 1 1
(0.15; 0.2] 1 2
(0.2; 0.3] 1 2
(0.3; 0.5] 5 1
(0.5; 1] 0 0
Failed 2 0

Table 5: Distribution of error scores for the hierarchy
extraction of the German and English test sample.

190

