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Abstract

Online marketplaces use attribute-value pairs,
such as brand, size, size type, color, etc. to
help define important and relevant facts about a
listing. These help buyers to curate their search
results using attribute filtering and overall cre-
ate a richer experience. Although their critical
importance for listings’ discoverability, getting
sellers to input tens of different attribute-value
pairs per listing is costly and often results in
missing information. This can later translate
to the unnecessary removal of relevant listings
from the search results when buyers are filter-
ing by attribute values. In this paper we demon-
strate using a Text-to-Text hierarchical multi-
label ranking model framework to predict the
most relevant attributes per listing, along with
their expected values, using historic user be-
havioral data. This solution helps sellers by
allowing them to focus on verifying informa-
tion on attributes that are likely to be used by
buyers, and thus, increase the expected recall
for their listings. Specifically for eBay’s case
we show that using this model can improve
the relevancy of the attribute extraction pro-
cess by 33.2% compared to the current highly-
optimized production system. Apart from the
empirical contribution, the highly generalized
nature of the framework presented in this pa-
per makes it relevant for many high-volume
search-driven websites.

1 Introduction

Many online marketplaces have new-listing forms
that include both structured and unstructured input
types to help sellers describe their listing1. While
the unstructured part often includes free-text input
boxes for title and description, a pictures upload
option, etc., the structured part can include the
selection of the listing category from a predefined
list, or selecting specific attribute-value pairs (e.g.
{"Brand":"Apple", "Color":"Black"}). Of the two,

1or service; for simplicity we’ll continue with the listing
notation.

structured input often enables marketplaces a more
streamline use of the data, since it requires less
preprocessing and allows for more direct usage
(via search results filters, etc.). On the flip-side,
entering such data is more labor intensive for the
sellers, and therefore, more expensive to get. This
can also be intricate work for sellers since in most
cases there are tens of different possible attribute
names for every listing, with some attributes having
more than one possible value.

To reduce the seller-inflicted cost of entering list-
ing attribute values we set two solution guidelines:
(a) sellers should focus on the top attributes that
are expected to impact their listing discoverability.
This aims to reduce the number of attributes for
which seller attention is required and only focus
on those which are likely to be used in the buyer-
journey of their target audience. And (b), in an
effort to further reduce friction, the marketplace
should pre-populate a suggested value for each of
these top attributes.

To identify the top attributes in a scalable man-
ner we leveraged the rich historical data of buyer
behavior on the eBay website. Like many other
search-driven websites, eBay allows buyers to cu-
rate search results by applying filters on top of the
initial results from the free-text-based query. Log-
ging the filtering selections of buyers, alongside
with their post-search actions, allows for an oppor-
tunity to learn what are the key attributes that buy-
ers value when searching for the right result. For
example, a common buyer behavior is to type a gen-
eral description in the search box, like "handbag",
and then to filter the results using more granular
attributes, like "Material", etc. (Figure 1). Follow-
ing this filtering step, the buyer might click on, and
potentially purchase, a specific listing that was a
part of the filtered results set. Mapping this buyer
journey, from search to filtering and listing-click,
allows to learn which attributes are most important
for the discovery of every listing.
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Figure 1: An example of a typical buyer search session.
A buyer is searching for "handbag" in the search box
(top) and further filters the results by selecting the at-
tribute value "Leather" under "Material" (left).

From a modeling standpoint, to accommodate
both of the solution guidelines above, the output set
of the model should include the importance ranking
of the top attributes and their expected value. As
to the model input, in order for the solution to gen-
eralize across different downstream tasks, we need
to pick a minimal viable data point that all listings
have, but yet, that is highly informative. In our case
that would be the listing title. Model design can
be examined using different lenses; A supervised
model based on the historical mapping between list-
ing titles and multiple attribute-value pairs can be
modeled as a multi-label text classification (MLTC)
task. However, since there is a hierarchical relation-
ship between the attributes and values (since each
attribute has a finite list of possible values), the task
can also be viewed as a hierarchical multi-label
text classification (HMLTC) task. Last, since we
care about the importance ranking of the attribute-
value pairs, this can also be viewed as a ranking
task. Recent Text-to-Text-driven approaches have
shown to be highly valuable for various Natural
Language Processing (NLP) tasks including MLTC
and HMLTC (Nam et al., 2017; Yang et al., 2018;
Chang et al., 2018; Li et al., 2018; Lin et al., 2018;
Raffel et al., 2019). Inspired by these approaches,
we demonstrate using a Text-to-Text framework
in a HMLTC ranking task and compare it to other
classification models.

Specifically in our case, the use of a Text-to-
Text model approach is useful since it allows to
produce multiple ranked hierarchical predictions,
while separating between the probability score for

the attributes and values. This introduces further
flexibility to the solution (beyond the scope of the
above guidelines) by allowing to report high im-
pacting attributes even if we are uncertain about
their expected attribute values. Furthermore, in
comparison to approaches such as Named Entity
Recognition (NER), a Text-to-Text model does not
require the reported top attribute values to exist
in the input title. This is useful since sellers are
not always mentioning the most valuable attribute
values in the listing title. Last, from an empiri-
cal standpoint, the Text-to-Text models we trained
almost always outperformed models from other
approaches (see section 4.2).

To conclude, in this work we suggest a scalable
and automatic method for using listing titles to iden-
tify the most valuable set of attribute-value pairs by
learning from the buyers’ filtering behavior. In the
next section we describe related work in the field
of attribute-value extraction and hierarchical classi-
fication tasks. In the following section we describe
our data collection methodology and the training
procedures used for the four models that we trained.
This is followed by a quantitative comparison of
the results of the models, and a qualitative evalua-
tion of the results of our best performing one. We
conclude by discussing the tradeoffs of our current
approach, and describe our plans for future work.

2 Related Work

Various methods are used to automatically extract
attribute-value pairs from product-related text. This
ranges from manual rules and regular expressions
(Petrovski et al., 2014) to more advanced modern
learning algorithms (Ghani et al., 2006; Kannan
et al., 2011; de Bakker et al., 2013; Melli, 2014;
Joshi et al., 2015; Ristoski and Mika, 2016; More,
2016; Petrovski and Bizer, 2017; Majumder et al.,
2018; Charron et al., 2016). In contrast to our work,
these methods are focusing on extracting the most
complete set of attribute-value pairs, or limited to
only attribute values which appear explicitly in the
product-related text. Apart from (Charron et al.,
2016), non of these works have leveraged data from
historical user interaction with the attribute-value
pairs.

Hierarchical classification has been of wide inter-
est both in computer vision applications and text re-
lated tasks. Early work has been focusing on flatten-
ing the labels (Cai and Hofmann, 2004; Hayete and
Bienkowska, 2005) or on training multiple local

92



classifiers, where the number of classifiers is depen-
dent on the depth of the label hierarchy (Koller and
Sahami, 1997; Sun and Lim, 2001; Cesa-Bianchi
et al., 2006). More recent studies aimed to train
a single neural network which can learn the label
hierarchy complexity (Johnson and Zhang, 2015;
Peng et al., 2018; Mao et al., 2019), while others
combined both a single global network and multi-
ple local classifiers (Wehrmann et al., 2018). Most
recently, several works demonstrated that sequence-
to-sequence (Seq2Seq) networks are a promising
representation for hierarchical text classification
tasks (Nam et al., 2017; Lin et al., 2018). How-
ever, less focus was given to using Seq2Seq for the
ranking of multiple hierarchical label data struc-
tures, which are commonly being used, especially
in online marketplaces.

3 Methodology

3.1 Datasets

Our training dataset includes information from two
major eBay verticals - "Electronics" and "Fash-
ion", where search-filtering activity is most fre-
quent. The data includes roughly 10M and 3M
random entities from Fashion and Electronics (re-
spectively), all from the eBay US website. Each
training entity includes a listing title and one match-
ing attribute-value pair which was previously used
in a single search filtering session to discover that
listing. Since the distribution of attribute-value
pairs has a long-tail, we reduced the complexity of
the task by truncating the data to include only the
top 800 most frequent combinations. Doing so,
we kept 90% of all of the filtering activity done by
buyers (which is considered sufficient coverage for
our use case). We used 5% of the data for valida-
tion and and model selection, and an additional
5% for test. For non-hierarchical classification
experiments we have concatenated attribute-value
pairs to a single token (e.g. {"Color":"Black"} was
transformed to "Color:Black"). For Seq2Seq hi-
erarchical classification, we kept the pairs as two
separated tokens (e.g. "Color Black"). Separat-
ing the tokens allows the Seq2Seq model to na-
tively perform hierarchical classification, as the
Seq2Seq decoder’s predictions are dependent on
the previous predicted tokens (e.g. in case the at-
tribute prediction token is "Color" the next token
prediction is likely to be a color name, such as
"Black"). All tokens in multi-token attribute names
or values were concatenated with an underscore

as a delimiter. As duplications in the training set
represent a frequent, and therefore more impor-
tant, listing discovery pattern, the data was not de-
duplicated in any way. For example, the title "Color
Clash 100% Genuine Leather Snake Ladies Hand-
bag Tote Shoulder Bag" might appear 20 times
in the training data, out of which 12 times it will
be coupled with the attribute-value pair {"Mate-
rial":"Leather"}, 6 times with {"Style":"Tote"} and
only 2 times with {"Size":"Large"}. The listing
titles dataset was pre-processed by transforming
the tokens to lowercase and removing known stop-
words and non-alphanumeric characters.

3.2 Model Training

For the Text-to-Text approach we trained a Con-
volution Neural Network (CNN) Seq2Seq model
(Gehring et al., 2017) via the Fairseq framework
(Ott et al., 2019). For this we used a CNN archi-
tecture, following (Gehring et al., 2017), which
consists an embedding layer, positional embedding
layer, an encoder with 4 convolutional layers, a
decoder with 3 convolutional layers and a kernel
width of 3. The output of the each encoder convo-
lutional layer is transformed by a non-linear gated
linear units (GLU) (Dauphin et al., 2016) with
the residual connections linking between the GLU
blocks and the convolutional blocks. Each decoder
GLU output undergoes a dot-product based atten-
tion with the last encoder GLU block output (see
also (Gehring et al., 2017) for more details). Train-
ing was done with learning rate of 0.25, gradient
clipping (clip-norm) of 0.1, dropout of 0.2, maxi-
mum number of tokens in a batch (max-tokens) of
4000 and max number of epochs of 15, with a Nes-
terov Accelerated Gradient (NAG) optimizer (NES-
TEROV, 1983) on a single GPU. Prior to training,
pre-processing was done with "fairseq-preprocess"
to build a vocabulary and binarize the data. For
predictions, beam search size was set to 5. We
trained two versions of the Seq2Seq models - one
with attribute-value labels flattened to a single to-
ken (Seq2Seq-single), and the other where we kept
their hierarchical structure (Seq2Seq-hierarchical),
as described in section 3.1 above. Both versions
were trained with the same hyper-parameters.

We tested our Text-to-Text modeling approach
for attributes prediction against BERT and ULM-
FiT models, which have both been shown to be
highly beneficial for multiple text classification
tasks (Howard and Ruder, 2018; Devlin et al.,
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2018). Apart from their past success, we also se-
lected BERT and ULMFiT because they allowed
us to test two different types of pre-training and
fine-tuning approaches, as described below. For
the multi-classification BERT model (Devlin et al.,
2018), we used the FastBert library2 which is based
on HuggingFace (Wolf et al., 2019). The model
that we fine-tuned was bert-base-uncased which
includes 110 million parameters, 12 encoder layers
consisting of 12 attention heads per layer and 768
hidden units. Fine-tuning was done for a maximum
of 3 epochs with a batch size of 16, learning rate of
5e-5, a maximum sequence length of 128, a LAMB
optimizer (You et al., 2019; Lan et al., 2019) and
using 4 GPUs.

Next, for the multi-classification ULMFiT
(Howard and Ruder, 2018) we used eBay’s title
corpus to fine-tune an English language model
(LM) with an AWD-LSTM architecture (Merity
et al., 2017a), which is an LSTM model with tuned
dropout hyper-parameters that consists of an em-
bedding size of 400, 3 layers and 1150 hidden ac-
tivations per layer which were pre-trained on the
Wikitext-103 dataset (Merity et al., 2017b) and
downloaded from fast.ai3. The LM fine-tuning was
done using the same data that is described in sec-
tion 3.1, with a batch size of 64, a dropout set to
0.5, for 2 epochs using one cycle policy (Smith and
Topin, 2019) and with a maximum learning rate of
1e-2 and 1e-3 for each on a single GPU. Next, a
classifier model was trained while using the fine-
tuned LM as an encoder, with a batch size of 64,
for 3 epochs on 4 GPUs, using one cycle policy,
with a discriminative layer training and gradual un-
freezing (Howard and Ruder, 2018). During the
first epoch only the last layer was fine-tuned, with
a maximum learning rate of 1e-2. For the second
epoch we fine-tuned the last two layer groups, with
a maximum learning rate ranging between 2.5e-3
and 5e-3, and for the last epoch we fine-tuned all
of the layers with a maximum learning rate rang-
ing between 2e-5 and 2e-3. The labels for both
BERT and ULMFiT were represented as a single
token (see section 3.1 above). We also trained a
multi-classification model for both, instead of a
multi-label one, since we saw that the latter per-
formed significantly worse.

All models were trained on data from eBay’s
Electronics and Fashion verticals as described at

2https://github.com/kaushaltrivedi/fast-bert
3https://docs.fast.ai/index.html

Section 3.1.

4 Results

4.1 Evaluation Metrics

As commonly used in similar ranking tasks, we
computed Precision at k (Prec@k) and normalized
Discounted Cumulative Gain at k (nDCG@k or
N@k) for model evaluation. Prec@k is defined as
follows:

Prec@k =
1
k

k∑

l=1

yrank(l)

Where rank(l) is the index of the l-th highest
predicted label and y ∈ {0, 1}L is the true binary
vector. nDCG@k is defined as follows:

DCG@k =
k∑

i=1

reli
log(i + 1)

iDCG@k =
|RELk |∑

i=1

reli
log(i + 1)

nDCG@k =
DCG@k
iDCG@k

Where reli is the relevance of the result at po-
sition i and RELk represents the list of relevant
documents (ordered by their relevance) in the cor-
pus up to position k. The relevance score of each
attribute-value pair per listing title is defined as the
number of times it was used by buyers to filter the
results, prior of clicking that specific listing.

4.2 Quantitative Evaluation

To compare the performance of the different mod-
els we computed the ranking accuracy of each us-
ing historic attribute-value pairs that were used
by buyers to filter their results, prior of clicking a
specific listing. As seen in Table 1, the Seq2Seq-
hierarchical model outperformed the other models
in most of the test criteria. Interestingly, both of
the Seq2Seq models (single and hierarchical) out-
performed BERT and ULMFiT in almost all of the
metrics, which demonstrates the advantage of us-
ing a Text-to-Text frameworks in both hierarchical
and non-hierarchical learning tasks.

In theory, the results from Table 1 could be
purely due to better attribute value prediction by the
Seq2Seq-hierarchical model, and not necessarily
because of better attribute ranking. Therefore, to
further examine the robustness of these results, we
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Table 1: Model performance measured by Precision@k
(P@k) and nDCG@k (N@k) comparison of the four
models - ULMFiT (ULM), BERT, Seq2Seq-single (S2S)
and Seq2Seq-hierarchical (S2S-hier) for the Electronics
(Elec) and Fashion (Fash) verticals. Best results are
marked in bold.

Data Metric BERT ULM S2S S2S
-hier

P@1 54 59.4 61.6 62.7
P@3 33.3 37.2 39.4 40.1

Elec P@5 24.4 26.9 28.7 29.2
N@1 50.6 56.2 58.1 59.5
N@3 56.7 63.4 67.2 68.3
N@5 60.5 66.7 71.1 72.1

P@1 61 62.8 62.8 63.1
P@3 33.8 35.4 36.2 36.3

Fash P@5 23 24.1 25.2 25.2
N@1 59.4 61.2 61.2 61.5
N@3 64.7 67.7 68.8 69
N@5 67.7 70.9 72.6 72.6

disconnected the ranking evaluation from the value
prediction one, and tested the above models just
on attribute ranking. To conduct this comparison
we split the models’ concatenated attribute-value
predictions to attribute and attribute value predic-
tions (i.e. {"Color:Black"} was split to "color" and
"black") and re-computed the evaluation metrics
only on the former. As seen in Table 2, the models’
performance-ranking is overall consistent with pre-
vious experiments, with the Seq2Seq-hierarchical
model also outperforming for the attribute ranking
task.

In addition, from a pure technical perspective,
Seq2Seq was the fastest model to train (x15 faster
than BERT and x5 faster than ULMFiT), did not
require any pre-trained models, and consisted of

Table 2: Model performance comparison solely for the
attributes ranking task. Best results are marked in bold.

Dataset Metric BERT ULM S2S S2S
Attr Attr Attr -hier

Attr

P@1 92.4 94 93 94.6
P@3 74 76 76.2 78

Elec P@5 51.8 53.8 56 57.8
N@1 78.9 81.9 79.4 82.1
N@3 82.8 85.2 84.3 86.6
N@5 83.1 85.6 85.7 87.8

P@1 95.7 95.5 95.5 96
P@3 61.9 61.2 63.2 63.6

Fash P@5 40.1 40.2 43.2 43.5
N@1 86.2 85.9 87.2 88
N@3 88.3 88.5 89.5 90.3
N@5 87.7 88.4 90.2 90.7

only a single training step (unlike ULMFiT, which
also required an LM fine-tune step).

To get a sense of the magnitude of impact that the
Seq2Seq-hierarchical model could have on eBay’s
on-site experience, we compared our results to
those from eBay’s Attribute Extraction Service
(AES). AES is a production system that has been
highly optimized over the years, and is in charge of
automatically extracting attribute-value pairs from
titles that sellers provide. Currently it is mostly
reliant on extensively curated rules that got added
and optimized over the years. To compare the per-
formance of the two methods we used around 15K
attribute-value pairs that were used by buyers to
filter search results and to discover a specific list-
ing from the Electronics and Fashion verticals. For
each we computed whether the attribute extraction
method could automatically provide the relevant
attribute-value given only the listing’s title. This
count was later divided by the number of attribute-
value pairs to compute a percentage. As seen in Ta-
ble 3, Seq2Seq-hierarchical led to an overall 33.2%
improvement in relevant attribute-value extraction
compared to AES.

Table 3: A comparison between eBay’s current pro-
duction system (AES) and the Seq2Seq-hierarchical
(S2S-hier) model for the task of relevant attribute-value
extraction. The number of attribute-value pairs which
were used for the evaluation is denoted as N. For each
method we show the percentage of cases that the rele-
vant attribute-value pairs were extracted correctly (as
defined by buyer behaviour).

Dataset N AES S2S-hier

Electronics 10,289 58.8% 71.9%
Fashion 4,752 40.2% 67.4%

Total 15,041 52.9% 70.5%

4.3 Qualitative Evaluation

Since Seq2Seq-hierarchical outperformed the other
models (Table 1), we focused our qualitative evalu-
ation only on its predictions. Table 4 shows exam-
ples of the top predictions of five different listings,
ordered by the model likelihood score (descending
order).

As seen in Table 4, {"Brand":"Ray-Ban"} was
only the 3rd most important attribute-value pair
picked by the model for the title "Ray-Ban G-
15 Aviator Black Frame Black Classic 58mm".
This can be counterintuitive from a domain ex-
pertise standpoint, since the latter is clearly a
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Table 4: Example of Seq2Seq-hierarchical prediction, including values which are not explicitly mentioned in the
title and multi-values attributes. Values are ordered by their importance rank.

Title Predictions

Ray-Ban G-15 Aviator Black Frame Black Classic {"Frame Color":"Black", "Lens Color": "Black", "Brand": "Ray-Ban"}
Asus Strix Gaming LGA1151 DDR4 Motherboard {"Form Factor": "microATX", "Compatible CPU Brand": "Intel"}

DJI Phantom 4 Aerial UAV Drone Quadcopter {"Camera": "Included", "Features": "4K HD Video Recording"}
Nike Air Max Shoes Men’s Size 7-9 {"US Shoe Size (men’s)": [8, 8.5, 9, 7.5, 7]}

Men’s Slim Fit Coat Jean Denim Jacket Size S-XL {"Size (men’s)": ["M", "L", "XL", "S"]}

more differential attribute-value pair for the cat-
egory of sunglasses than, for example, {"Frame
Color":"Black"}, which was picked first. However,
looking at a sample of the search queries that were
prior to the filtering steps (not shown here), we see
that 93% of them already contained some variation
of the term "Ray-Ban" (e.g. "rayban sunglasses",
"ray ban sunglasses aviator", "ray-ban aviator").
Therefore most of the search engine’s out-of-the-
box results already included "Ray-Ban" branded
sunglasses, which mitigated the need to further fil-
ter by brand. In contrast, only 2% of the queries
mentioned the color "black", which explains the
frequent buyer behavior of further filtering the re-
sults by color after seeing the search results (which
included sunglasses from various colors). Such
ranking results are in-line with our solution guide-
line to identify the top attributes that are expected
to be used in the listing’s buyer-discovery-journey,
and therefore, help maximize the listing’s chances
to be discovered.

In Table 4 we provide further prediction exam-
ples which show that our Text-to-Text model does
not require the reported top attribute values to be
included in the input title. In addition, we evaluated
the model’s predictions in cases where attributes
can include multiple values, like with ’size’, and
show that the model successfully extracts all of
the relevant values from the ranges that appear in
the titles. Note that the different likelihood predic-
tion for each size value can serve as proxy to its
popularity among buyers.

5 Conclusion

In this paper we demonstrate using filtering be-
havior data to predict the most relevant listing
attribute-value pairs, and the superiority of using
a Text-to-Text approach for modeling a hierarchi-
cal multi-label text classification (HMLTC) task
that combines ranking. We identify several key
advantages of this solution framework: First, ac-
quiring the training data we use is a scalable and

inexpensive process which does not require man-
ual labor. Therefore, the volume of data collected
in high-volume websites is likely to be sufficient
for training deep-learning-based models such as
Seq2Seq. Second, unlike methods such as NER,
using a Text-to-Text approach enables to identify
attribute-value pairs that do not necessarily exist
in the title, to extract multiple values per attribute
(Table 4) and to separately analyze the importance
of every possible attribute-value pair. Third, as to
the choice of hierarchical modeling, this allows us
to separately analyze the likelihood probabilities
of the expected attributes and values, which further
generalizes the model for additional downstream
tasks.

As for classifiers performance, the Seq2Seq mod-
els provided better results for most metrics com-
pared to BERT and ULMFiT. Unlike the latter two,
the Seq2Seq models didn’t use a Transfer Learn-
ing approach that leverages a pre-trained Language
Models. We suspect that the relatively short length
of listing titles (12 tokens on average), combined
with the unique jargon in eBay’s data, which is hard
to fully capture in the fine-tune process, might have
negatively impacted the performance of BERT and
ULMFiT.

Regardless to the classifier of choice, we keep
in mind that the model’s attribute ranking is clearly
affected by the set of filtering options that were
presented to the buyers on the site, and thus, cannot
find attribute pairs that have not been historically
used for filtering. Therefore, to avoid a closed
feedback loop scenario, we would avoid using the
model’s attribute ranking results as an input to de-
cide these filtering options. Also, to further in-
crease the quality of the attribute ranking we can
use a training data that consists of a sample of
buyers that were served with a random (or partly
random) list of filtering options. Nonetheless, even
without this sample, the model can still provide
sellers with meaningful information about their po-
tential buyers’ current attribute priority ranking.
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