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Abstract

Webpage information extraction (WIE) is an
important step to create knowledge bases. For
this, classical WIE methods leverage the Doc-
ument Object Model (DOM) tree of a web-
site. However, use of the DOM tree poses
significant challenges as context and appear-
ance are encoded in an abstract manner. To ad-
dress this challenge we propose to reformulate
WIE as a context-aware Webpage Object Detec-
tion task. Specifically, we develop a Context-
aware Visual Attention-based (CoVA) detec-
tion pipeline which combines appearance fea-
tures with syntactical structure from the DOM
tree. To study the approach we collect a new
large-scale dataset1 of e-commerce websites
for which we manually annotate every web el-
ement with four labels: product price, product
title, product image and others. On this dataset
we show that the proposed CoVA approach is a
new challenging baseline which improves upon
prior state-of-the-art methods.

1 Introduction

Webpage information extraction (WIE) is an im-
portant step when creating a large-scale knowledge
base (Chang et al., 2006; Azir and Ahmad, 2017)
which has many downstream applications such as
knowledge-aware question answering (Lin et al.,
2019) and recommendation systems (Ma et al.,
2019; Lin et al., 2020).

Classical methods for WIE, like Wrapper Induc-
tion (Soderland, 1999; Muslea et al., 1998; Chang
and Lui, 2001), rely on the publicly available
source code of websites. The code is commonly
parsed into a document object model (DOM) tree.
The DOM tree is a programming language inde-
pendent tree representation of any website, which
contains all its elements. It can be obtained using

1CoVA dataset and code are available at
github.com/kevalmorabia97/CoVA-Web-Object-Detection

*These authors contributed equally to this work

various libraries like Puppeteer. These elements
contain information about their location in the ren-
dered webpage, styling like font size, etc., and text
if it is a leaf node. State of the art method in WIE
(Lin et al., 2020) uses text and markup information
and employ CNN-BiLSTM encoder (Rhanoui et al.,
2019) on the sequence of HTML nodes obtained
from DOM to learn the embedding of each node.

However, using only the DOM tree for WIE is
increasingly challenging for a variety of reasons:
1) Webpages are programmed to be aesthetically
pleasing; 2) Oftentimes content and style is sepa-
rated in website code and hence the DOM tree; 3)
The same visual result can be obtained in a plethora
of ways; 4) Branding banners and advertisements
are interspersed with information of interest.

For this reason, recently, WIE applied optical
character recognition (OCR) on rendered websites
followed by word embedding-based natural lan-
guage extraction (Staar et al., 2018). However,
as mentioned before, recent webpages are highly
enriched with visual content, and classical word
embeddings don’t capture this contextual informa-
tion. For instance, text in advertising banners may
be interpreted as valuable information. For this rea-
son, a simple OCR detection followed by natural
language processing techniques is a suboptimal for
WIE (Vishwanath et al., 2018).

In response to these challenges we develop WIE
based on a visual representation of a web element
and its context. This permits to address the afore-
mentioned four challenges. Moreover, visual fea-
tures are independent of the programming language
(e.g., HTML for webpages, Dart for Android or iOS
apps) and partially also the website language (e.g.,
Arabic, Chinese, English). Intuitively, we aim to
mimic the ability of humans to detect the location
of target elements like product price, product ti-
tle and product image on a webpage in a foreign
language like the one shown in Fig. 1.

For this, we develop a context-aware Webpage
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(a) (b)

Figure 1: A person can detect the element for product price, title, and image, w/o knowing (a) Arabic or (b) Chinese

Object Detection (WOD), which we refer to as
Context-aware Visual Attention-based detection
(CoVA), where entities like prices are objects.
Somewhat differently from an object in natural
images which can be detected largely based on its
appearance, objects on a webpage are strongly de-
fined by contextual information. e.g., a cat’s appear-
ance is largely independent of its nearby objects,
whereas a product price is a highly ambiguous ob-
ject (Fig. 2). It refers to the price of a product only
when it is contextually related to a product title and
a product image. The developed WOD uses a graph
attention based architecture, which leverages the
underlying syntactic DOM tree (Zhou et al., 2021)
to focus on important context (Zhu et al., 2005)
while classifying an element on a webpage. Once
these web elements are identified, the relevant in-
formation e.g. price and title can be obtained from
the corresponding DOM nodes. These information
can then be indexed and used for applications like
product search and price comparison across online
retailers.

To facilitate this task we create a dataset of 7.7k
English product webpage screenshots along with
DOM information spanning 408 different websites
(domains). We compare the results of CoVA with
existing and newly created baselines that take vi-
sual features into account. We show that CoVA
leads to substantial improvements while yielding
interpretable contextual representations.

In summary, we make the following contributions:

1. We formulate WIE as a context-aware WOD
problem.

2. We develop a Context-aware Visual Attention-
based (CoVA) detection pipeline, which is
end-to-end trainable and exploits syntactic

structure from the DOM tree along with
screenshots. CoVA improves recent state-of-
the-art baselines by a significant margin.

3. We create the largest public dataset of 7.7k
English product webpage screenshots from
408 online retailers for Object Detection from
product webpages. Our dataset is ∼ 10×
larger than existing datasets.

4. We show the interpretability of CoVA using
attention visualizations (Sec. 6.5)

5. We claim and validate that visual features
(without textual content) along with DOM in-
formation are sufficient for many tasks while
allowing cross-domain and cross-language
generalizability. CoVA trained on English
webpages perform well on Chinese Webpages
(Sec. 6.4).

2 Related Work

Webpage information extraction (WIE) has been
mainly addressed with Wrapper Induction (WI).
WI aims to learn a set of extraction rules from
HTML code or text, using manually labeled ex-
amples and counter-examples (Soderland, 1999;
Muslea et al., 1998; Chang and Lui, 2001). These
often require human intervention which is time-
consuming, error-prone (Vadrevu et al., 2005), and
does not generalize to new templates.

Supervised learning, which treats WIE as a
classification task has also garnered significant at-
tention. Traditionally, natural language process-
ing techniques are employed over HTML or DOM
information. Structural and semantic features
(Ibrahim et al., 2008; Gibson et al., 2007) are ob-
tained for each part of a webpage to predict cat-
egories like title, author, etc. Wu et al. (2015)
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Figure 2: Example webpage showing multiple possible prices (red), but relatively fewer possible title (green) or
image (purple)

casts WIE as a HTML node selection problem us-
ing features such as positions, areas, fonts, text,
tags, and links. Lin et al. (2020) proposes a neural
network to learn representation of a DOM node
by combining text and markup information. A
CNN-BiLSTM encoder is employed to learn the
embeddings for HTML node. Hwang et al. (2020)
develops a transformer architecture to learn spatial
dependency between DOM nodes. Unlike these
work which depends on text information, we aim
to learn representation of a DOM node using only
visual cues. Joshi and Liu (2009) develop a seman-
tic similarity between blocks of webpages using
textual and DOM features to extract the key article
on a webpage.

Visual features have been extensively employed
to generate visual wrappers for pattern extraction.
Mostly, these utilize hand-crafted visual features
from a webpage, e.g., area size, font size, and type.

Cai et al. (2003) develop a visual block tree of a
webpage using visual and layout features along
with the DOM tree information. Subsequent works
use this tree for tasks like webpage segmentation,
visual wrapper generation, and web record extrac-
tion (Cai et al., 2004; Liu et al., 2003; Simon and
Lausen, 2005; Burget and Rudolfova, 2009). Gogar
et al. (2016) aims to develop domain-specific wrap-
pers which generalize across unseen templates and
don’t need manual intervention. They develop a
unified model that encodes visual, textual, and po-
sitional features using a single CNN.

Object detection (OD) techniques in Com-
puter Vision, which aims to detect and classify
all objects, has been extensively studied for natu-
ral images. Deep learning methods such as YOLO
(Redmon and Farhadi, 2018), R-CNN variants (Gir-
shick et al., 2014; Girshick, 2015; He et al., 2017),
etc. yielded state-of-the-art results in OD.
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OD methods that can capture contextual in-
formation are of particular interest here. Murphy
et al. (2006) learn local and global context by object
presence and localization and use a product of ex-
perts model (Hinton, 2002) to combine them. Kong
et al. (2021) proposes a short path context module
which transforms the integrated feature maps by
considering local feature affinities.

Graph Convolutional Networks (GCN) (Kipf
and Welling, 2016) was proposed to learn a node
representation while taking neighbors of a node
into account. Using it, Liu et al. (2019) represent
a visually rich document as a complete graph of
text content obtained by passing OCR (Mithe et al.,
2013). They employ GCN to learn node represen-
tations for each web element.

Recently, Attention mechanisms have also
shown remarkable ability in capturing contextual
information (Bahdanau et al., 2014). Vaswani
et al. (2017) propose a transformer architecture
for language modeling. Luo et al. (2018) use atten-
tion over a BiLSTM-CRF layer for Named Entity
Recognition (NER) on biomedical data. Word vec-
tors learned on BERT (Devlin et al., 2018), which
use self-attention, have yielded state-of-the-art re-
sults on 11 NLP tasks.

Separately, attention has been used for contex-
tual learning in OD (Li et al., 2013; Hsieh et al.,
2019; Morabia et al., 2020) and image captioning
(You et al., 2016). Attention mechanisms have also
been employed over graphs to learn an optimal rep-
resentation of nodes while taking graph structure
into account (Veličković et al., 2017). Moreover,
attention permits to interpret result, which is often
desired in many applications. We show our visual-
izations depicting this advantage below (Sec. 6.5).

3 Problem formulation

The DOM tree captures the syntactical structure
of a webpage similar to a parse tree of a natural
language. Our goal is to extract semantic informa-
tion exploiting this syntactic structure. We view
a leaf web element as a word and the webpage
as a document with the DOM tree as its underly-
ing parse tree. Formally, we represent a webpage
W as the set W = {v1, v2, . . . , vi, . . . , vN , D}
where vi denotes the visual representation of the
i-th web element, N denotes number of web ele-
ments, and D refers to the DOM tree which con-
tains the relations between the web elements. Our
goal is to learn a parametric function fθ(yi|W, i)

which extracts a visual representation vi of the i-th
web element from website W so as to accurately
predict label yi of the web element. In the fol-
lowing we consider four labels for a product, i.e.,
yi ∈ {product price, title, image, others}. The pa-
rameters θ are obtained by minimizing the follow-
ing supervised classification loss

θ∗ = argmin
θ

E
i,W∼PW

[L(fθ(yi|W, i), y∗i )] ,

where E denotes an expectation, yi and y∗i denote
the predicted and ground truth labels and PW de-
notes a probability distribution over webpages.

Information of a webpage is present in the leaves
of the DOM tree, i.e., the web elements i. Web ele-
ments are an atomic entity which is characterized
by a rectangular bounding box. We can extract
the target information yi from the DOM tree if we
know the exact leaf bounding boxes of the desired
element. Therefore, we can view WIE as an object
detection (OD) task where objects are leaf elements
and might contain the desired entity (target). How-
ever, identity yi of a web element is heavily depen-
dent on its context, e.g., price, title, and image of
a product are most likely to be in same or nearby
sub-tree in comparison to unrelated web elements
such as advertisements. Similarly, there can be
multiple instances of price-like elements. However,
the correct price would be contextually positioned
with product title and image (Fig. 2). Therefore,
we formulate WIE as a context-aware OD.

We use the DOM tree to identify context for
a web element. We represent the syntactic close-
ness between web elements through edges in the
graph (discussed in next section). We then em-
ploy a graph attention mechanism (Veličković et al.,
2017) to attend to the most important contexts.

4 Proposed End-to-End Pipeline – CoVA

In this section, we present our Context-Aware Vi-
sual Attention-based end-to-end pipeline for Web-
page Object Detection (CoVA) which aims to learn
function f to predict labels y = [y1, y2, . . . , yN ]
for a webpage. The input to CoVA consists of
1. a screenshot of a webpage, 2. list of bounding
boxes [x, y, w, h] of the web elements, and 3. neigh-
borhood information for each element obtained
from DOM. It should be noted that bounding boxes
of the web elements are relatively accurate and
doesn’t pose challenges similar to OD for natural
images.
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Figure 3: CoVA end-to-end training pipeline (for a single web element). CoVA takes a webpage screenshot and
list of bounding boxes along with K neighbors for each web element (obtained from DOM). RN learns visual
representation (v0) while GAT learns contextual representation (c0) from its neighbor’s visual representations.

As illustrated in Fig. 3, this information is pro-
cessed by CoVA in four stages: 1. the graph rep-
resentation extraction for the webpage, 2. the Rep-
resentation Network (RN), 3. the Graph Attention
Network (GAT), and 4. a fully connected (FC) layer.
The graph representation extraction computes for
every web element i its set of neighboring web el-
ements Ni. The RN consists of a Convolutional
Neural Net (CNN) and a positional encoder aimed
to learn a visual representation vi for each web
element i ∈ {1, . . . , N}. The GAT combines the
visual representation vi of the web element i to
be classified and those of its neighbors, i.e., vk
∀k ∈ Ni to compute the contextual representa-
tion ci for web element i. Finally, the visual and
contextual representations of the web element are
concatenated and passed through the FC layer to
obtain the classification output. We describe each
of the components next.

4.1 Webpage as a Graph
We represent a webpage as a graph where nodes
are leaf web elements and an edge indicates that
the corresponding web elements are contextually
relevant to each other. A naive way to create graph
is by putting edge between every pair of nodes (Liu
et al., 2019). An alternative way of creating a graph
is to add edges to nearby nodes based on spatial
distance. However, web elements vary greatly in
shapes & sizes, and two web elements might have
small distance but they’re contextually irrelevant
since they lie in different DOM subtrees. For this,
we use the K nearest leaf elements in the DOM

tree as the neighbors Ni a web element i. An edge
within the graph denotes the syntactic closeness in
the DOM tree.

4.2 Representation Network (RN)
The goal of the Representation Network (RN) is
to learn a fixed size visual representation vi of any
web element i ∈ {1, . . . , N}. This is important
since web elements have different sizes, aspect ra-
tios, and content type (image or text). To achieve
this the RN consists of a CNN operating on the
screenshot of a webpage, followed by a Region of
Interest (RoI) pooling layer (Girshick, 2015) and
a positional encoder. Specifically, RoI pooling is
performed to obtain a fixed size representation for
all web elements. To capture the spatial layout,
we learn a P dimensional positional feature which
is obtained by passing the bounding box features
[x, y, w, h, wh ] through a positional encoder imple-
mented by a single layer neural net. Finally, we
concatenate the flattened output of the RoI pool-
ing with positional features to obtain the visual
representation vi.

4.3 Graph Attention Network (GAT)
The goal of the graph attention network is to com-
pute a contextual representation ci for each web
element i which takes visual information vi from
neighboring web elements into account. However,
out of multiple neighbors for a web element, only
a few are informative, e.g., a web element having
a currency symbol near a set of digits seems rel-
evant. To identify the relational importance we
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use a Graph Attention Network (GAT) (Veličković
et al., 2017). We transform each of the input fea-
tures by learning projection matrices W1 and W2

applied at every node and its neighbors. We then
employ self-attention (Lin et al., 2017) to compute
the importance score,

αij =
exp(LeakyReLU(aT [W1vi||W2vj ]))∑

k∈Ni
exp(LeakyReLU(aT [W1vi||W2vk]))

,

where ·T represents transposition, || is the concate-
nation operation, Ni denotes the neighbors of web
element i. The weights αij are non-negative atten-
tion scores for neighboring web elements of web
element i. Finally, we obtain the contextual rep-
resentation ci for a web element i as a weighted
combination of projected visual representations of
its neighbors, i.e., via

ci =
∑

j∈Ni

αijW2vj . (1)

4.4 Augmenting CoVA with extra features
In scenarios where additional features (e.g., text
content, HTML tag information, etc.) are avail-
able, CoVA can be easily extended to incorporate
those. These features can be concatenated with
visual representations obtained from the RN with-
out modifying the pipeline in any other way. We
refer to this extended pipeline as CoVA++. How-
ever, making the model dependent on these features
might lead to constraints regarding the program-
ming language (HTML tags) or text language. In
Sec. 6.4, we show that CoVA trained on English
webpages (without additional features) generalizes
well to Chinese webpages.

5 Dataset Generation

To the best of our knowledge there is no large-scale
dataset for WIE with visual annotations for object
detection. So far, the Structured Web Data Extrac-
tion (SWDE) dataset (Hao et al., 2011) is the only
known large dataset that can be used for training
deep neural networks for WIE (Lin et al., 2020;
Lockard et al., 2019). SWDE dataset contains web-
page HTML codes which is not sufficient to render
it into a screenshot (since it contains links to old
and non-existent URLs). Because of this we create
a new large-scale labeled dataset for object detec-
tion on English product webpage screenshots along
with DOM information. We chose e-commerce
websites since those have been a de-facto standard

for WIE (Gogar et al., 2016; Zhu et al., 2005). Our
dataset generation consists of two steps: 1. search
the web with ‘shopping’ keywords to aggregate di-
verse webpages and employ heuristics to automate
labeling of product price, title, and image, 2. man-
ual correction of incorrect labels. We discuss both
steps next.
Web scraping and coarse labeling. To scrape web-
sites, we use Google shopping2 which aggregates
links to multiple online retailers (domains) for the
same product. These links are uploaded by the
merchants of the respective domains. We do a key-
word search for various categories, like electronics,
food, cosmetics. For each search result, we record
the price and title from Google shopping. Then,
we navigate through the links to specific product
websites and save a 1280 × 1280 screenshot. To
extract a bounding box for each web element, we
store a pruned DOM tree. Price and title candi-
dates are labeled by comparing with the recorded
values using heuristics. For product images, we
always choose the DOM element having the largest
bounding box area among all the elements with an
<img> HTML tag, although this might not be true
for many websites. We correct this issue in the next
step.
Label correction. The coarse labeling is only
∼60% accurate because 1. price on webpages
keeps changing and might differ from the Google
shopping price, and 2. many bounding boxes have
the same content. To correct for these mistakes,
we manually inspected and correct labeling errors.
We obtained 7,740 webpages spanning 408 do-
mains. Each of these webpages contains exactly
one labeled price, title, and image. All other web
elements are labeled as ‘others’. On average, there
are ∼90 leaf web elements on a webpage.
Train-Val-Test split. We create a cross-domain
split which ensures that each of the train, val and
test sets contains webpages from different domains.
We observed that the top-5 frequent domains were
Amazon, EBay, Walmart, Etsy, and Target. So, we
created 5 different splits for 5-Fold Cross Valida-
tion such that each of the major domains is present
in one of the test splits.

6 Experimental Setup & Results

6.1 Baseline Methods
We compare the results of our end-to-end pipeline
CoVA with other existing and newly created base-

2shopping.google.com
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Figure 4: Gini impurity-based importance of features in
RF

lines summarized below. Our newly created base-
lines combine existing object detection and graph
based models to identify the importance of visual
features and contextual representations.
(Gogar et al., 2016): This method identifies prod-
uct price, title, and image from the visual and tex-
tual representation of the web elements.
Random Forest on Heuristic features: We train a
Random Forest classifier with 100 trees using var-
ious HTML tags, text, and bounding box features
as shown in Fig. 4.
Fast R-CNN*: We compare with Fast R-CNN (Gir-
shick, 2015) to quantify the importance of contex-
tual representations in CoVA. We use the DOM tree
instead of selective search (Uijlings et al., 2013)
for bounding box proposals. We also use positional
features as described when discussing the repre-
sentation network (Sec. 4.2) for a fair comparison
with CoVA. We will refer to this baseline as ‘Fast
R-CNN*.’
Fast R-CNN* + GCN (Kipf and Welling, 2016):
We use GCN on our graph formulation where node
features are the visual representations obtained
from Fast R-CNN*.
Fast R-CNN* + Bi-LSTM (Schuster and Paliwal,
1997): We train a bidirectional LSTM on visual rep-
resentations of web elements in preorder traversal
of the DOM tree. We use its output as the con-
textual representation and concatenate it with the
visual representation of the web element obtained
from Fast R-CNN*.

6.2 Model Training, Inference and Evaluation

In each training epoch, we randomly sample 90%
from others. This increases the diversity in train-
ing data by providing different contexts for web-

pages with exactly the same template. We use batch
normalization (Ioffe and Szegedy, 2015) between
consecutive layers, Adam optimizer for updating
model parameters and minimize cross-entropy loss.
During inference, the model detects one web ele-
ment with highest probability for each class. Once
the web element is identified, the corresponding
text content can be extracted from the DOM tree or
by using OCR for downstream tasks.

For CoVA++ we use as additional information
the same heuristic features used to train the Ran-
dom Forest classifier baseline. Unless specified
otherwise, all results of CoVA and baselines use
the following hyperparameters where applicable:
learning rate = 5e-4, batch size = 5 screenshot im-
ages, K = 24 neighbor elements in the graph, RoI
pool output size (H ×W ) = (3 × 3), dropout =
0.2, P = 32 dimensional positional features, out-
put dimension for projection matrix W1,W2 is 384,
weight decay = 1e-3. We use the first 5 layers of
a pre-trained ResNet18 (He et al., 2016) in the
representation network (RN), which yields a 64
channel feature map. This significantly reduces
the parameters in the RN from 12m to 0.2m and
speeds up training at the same time. The evalua-
tion is performed using Cross-domain Accuracy
for each class, i.e., the fraction of webpages of new
domains with correct class. All the experiments are
performed on Tesla V100-SXM2-16GB GPUs.

6.3 Results

As shown in Table 1, our method outperforms
all baselines by a considerable margin especially
for price prediction. CoVA learns visual features
which are significantly better than the heuristic fea-
ture baseline that uses predefined tag, textual and
visual features. Fig. 4 shows the importance of
different heuristic based features in a webpage. We
observe that a heuristic feature based method has
similar performance to methods which don’t use
contextual features. Moreover, CoVA++ which
also uses heuristic features, doesn’t lead to statis-
tically significant improvements. This shows that
visual features learnt by CoVA are more general
for tasks like price & title detection. Context in-
formation is particularly important for price (in
comparison to title and image) since it’s highly
ambiguous and occurs in different locations with
varying contexts (Fig. 2). This is evident from
the ∼8.9% improvement in price accuracy com-
pared to the Fast R-CNN*. Unless stated other-
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Method Params Price Acc Title Acc Image Acc
Gogar et al. (2016) 1.8m 78.1± 17.2 91.5± 1.3 93.2± 1.9
Random Forest using Heuristic features - 87.4± 10.4 93.5± 5.3 97.2± 3.8
Fast R-CNN* (Girshick, 2015) 0.5m 86.6± 7.3 93.7± 2.2 97.0± 3.6
Fast R-CNN* + GCN 1.4m 90.0± 11.0 95.4± 1.5 98.2± 2.8
Fast R-CNN* + Bi-LSTM 5.1m 92.9± 4.6 94.0± 2.1 97.6± 3.6

CoVA 1.6m 95.5± 3.8 95.7± 1.2 98.8± 1.5
CoVA++ 1.7m 96.1± 3.0 96.7± 2.2 99.6± 0.3

Table 1: Cross Domain Accuracy (mean ± standard deviation) for 5-fold cross validation.

wise, we will discuss results with respect to price
accuracy. We observe that CoVA yields stable re-
sults across folds (∼3.5% reduction in standard
deviation). This shows that CoVA learns features
which are generalizable and which have less depen-
dence on the training data. Using GCN with Fast
R-CNN* leads to unstable results with 11% stan-
dard deviation while yielding a 3.4% improvement
over Fast R-CNN*. Fast R-CNN* with Bi-LSTM is
able to summarize the contextual features by yield-
ing a ∼6.3% improvement in comparison to Fast
RCNN*. CoVA outperforms Fast RCNN* with
Bi-LSTM by ∼2.6% with much fewer number of
parameters while also yielding interpretable results.
We also obtained top-3 accuracy for CoVA, which
are 98.6%, 99.4%, and 99.9% for price, title and
image respectively.

6.4 Cross-lingual Evaluation of CoVA

To validate our claim that visual features (with-
out textual or HTML tag information) can capture
cross-lingual information, we test our model on
webpages in a foreign language. In particular, we
evaluated CoVA (trained on English product web-
pages) using 100 Chinese product webpages span-
ning across 25 unique domains. CoVA achieves
92%, 90%, and 99% accuracy for product price,
title, and image. It should be noted that image has
the same accuracy as for English pages. This is ex-
pected since images have no language components
that the model can attend to.

6.5 Attention Visualizations

Table 1 shows that attention significantly improves
performance for all the three targets. As discussed
earlier, only few of the contexts are important
which are effectively learnt by Graph Attention Net-
work (GAT). We observed that on average, ∼20%
of context elements were activated (score above
0.05 threshold) by GAT. We also study a multihead

attention instead of single head following (Vaswani
et al., 2017), which didn’t yield significant improve-
ments in our case.

Fig. 5 shows visualizations of attention scores
learnt by GAT. Fig. 5(a) shows an example where
title and image have more weight than other con-
texts when learning a context representation for
price. This shows that attention is able to focus on
important web elements and discards others. Simi-
larly, Fig. 5(b) shows that price has a much higher
score than other contexts for learning contextual
representation for title.

7 Ablation Studies

Importance of Positional features: Table 2 shows
that positional features can significantly improve
accuracy for price, title, and image prediction. This
also validates that for webpage OD, location and
size of a bounding box carries significant informa-
tion, making it different from classical OD.
Dependence on number of neighbors in graph:
Fig. 6 shows the variation in cross domain accuracy
of CoVA with respect to the number of neighboring
elements K. Note that having 0 context elements
is equivalent to our baseline Fast R-CNN*. We
observe that, unlike title and image, price accu-
racy can significantly be improved by considering
larger contexts. This is due to the fact that price
is highly ambiguous (Fig. 2). We also study the
graph construction described by (Liu et al., 2019)
where all nodes are considered in the neighborhood
of a particular node. This significantly reduced the
performance for price (90.7%) and title (92.7%).

8 Conclusion & Future Work

In this paper, we reformulated the problem of web-
page IE (WIE) as a context-aware webpage object
detection. We created a large-scale dataset for this
task and is available publicly. We proposed CoVA

87
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Figure 5: Attention Visualizations where red border denotes web element to be classified, and its contexts have
green shade whose intensity denotes score. Price in (a) get much more score than other contexts. Title and image in
(b) are scored higher than other contexts for price.

Method Price Accuracy Title Accuracy Image Accuracy
CoVA without positional features 89.2± 10.3 91.9± 1.4 95.9± 1.8
CoVA 95.5± 3.8 95.7± 1.2 98.8± 1.5

Table 2: Importance of positional features in RN

Figure 6: Comparison of context size with accuracy

which uses i) a graph representation of a webpage,
ii) a Representation Network (RN) to learn visual
representation for a web element, and iii) a Graph
Attention Network (GAT) for contextual learning.
CoVA improves upon state-of-the-art results and
newly created baselines by considerable margins.
Our visualizations show that CoVA is able to attend
to the most important contexts. In the future, we

plan to adapt this method to other tasks such as
identifying malicious web elements. Our works
shows the importance of visual features of WIE
which is traditionally overlooked. We hope that
our work will motivate researchers in WIE to em-
ploy CV alongwith NLP techniques to solve this
important problem.
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