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Abstract

Recently, diverse refinements to the back-
translation process have been proposed for
improving the performance of Neural Ma-
chine Translation (NMT) systems, includ-
ing the use of sampling instead of beam
search as decoding algorithm, or append-
ing a tag to the back-translated corpus.
However, not all the combinations of the
previous approaches have been tested, re-
maining unclear which is the best ap-
proach for developing a given NMT sys-
tem. In this work, we empirically com-
pare and combine existing techniques for
back-translation in a real low resource set-
ting: the translation of clinical notes from
Basque into Spanish. Apart from auto-
matically evaluating the NMT systems, we
ask bilingual healthcare workers to per-
form a human evaluation, and analyze the
different synthetic corpora by measuring
their lexical diversity. For reproducibil-
ity and generalizability, we repeat our ex-
periments for German to English transla-
tion using public data. The results suggest
that in lower resource scenarios tagging
only helps when using sampling for decod-
ing, complementing the previous literature
using bigger corpora from the news do-
main. When fine-tuning with a few thou-
sand bilingual in-domain sentences, one of
our proposed methods (tagged restricted
sampling) obtains the best results both in
terms of automatic and human evaluation.

© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
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1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014) is
the state-of-the-art approach for developing Ma-
chine Translation (MT) systems. However, as
NMT is based on artificial neural networks, its per-
formance is dependent on big quantities of bilin-
gual sentences, which are not available for all lan-
guage pairs and domains.

Back-translation (BT) (Sennrich et al., 2016a),
based on the automatic translation of a corpus
from the target language into the source language
for augmenting the training data, has become a
de facto standard for improving the performance
of NMT models, provided that large monolingual
corpora in the target language and domain are
available.

When generating a translation, considering that
looking for all the possible output sentences is
practically infeasible, MT systems have to imple-
ment an efficient technique for selecting the most
probable sentence according to the distribution of
the training data. Typically, beam search (Tillmann
and Ney, 2003) is used for generating both the out-
put sentences of NMT systems and the synthetic
sentences produced by BT systems.

Edunov et al. (2018) proposed to use sampling
for BT as one way to further improve the perfor-
mance of NMT systems. Specifically, their ‘un-
restricted sampling’1 approach, consisting of ran-
domly sampling from the output distribution, ob-
tained the best results on average comparing to
other decoding algorithms, including beam search.

On the contrary, Caswell et al. (2019) suggest
that the improvement derived from using sampling

1In recent literature, unrestricted sampling is also referred as
‘ancestral sampling’.



for BT comes from the fact that the final NMT
system can identify the synthetic corpus for hav-
ing been generated by sampling instead of beam
search, so they propose a simple alternative con-
sisting of adding a tag to the corpus generated by
the BT system using traditional beam search. They
also tried to tag the output of the BT system using
noising as proposed by Edunov et al. (2018), but
they did not combine tagging with sampling.

Concurrent work by Graça et al. (2019) instead
propose some variations to the sampling approach,
consisting of disabling the label smoothing option
when training the BT system, and restricting the
sampling by setting a minimum value to the prob-
ability of the output sentences or limiting it to the
top-k values. From these options, the last one ob-
tained the best results, which we refer to as ‘re-
stricted sampling’.

Thus, we would have six options for generat-
ing the BT corpus, depending on which decoding
algorithm is used, and whether tagging is used or
not. From these combinations, the last two are pro-
posed for the first time in this work:

1. beam search (Tillmann and Ney, 2003)

2. unrestricted sampling (Edunov et al., 2018)

3. restricted sampling (Graça et al., 2019)

4. tagged beam search (Caswell et al., 2019)

5. tagged unrestricted sampling (our contribu-
tion)

6. tagged restricted sampling (our contribution)

We compare these 6 methods both in terms of
automatic evaluation of NMT systems, and lex-
ical diversity (LD) of the synthetic corpora cre-
ated by the BT systems. For MT automatic
evaluation we use BLEU (Papineni et al., 2002),
TER (Snover et al., 2006), chrF (Popović, 2015),
and METEOR (Banerjee and Lavie, 2005); while
for lexical diversity we measure TTR (Templin,
1975), Yule’s I (Yule, 1944) and MTLD (Mc-
Carthy, 2005).

In the following, we briefly describe the lexical
diversity metrics, for being less known.

TTR, standing for Type-Token Ratio, is the most
common measure for lexical diversity. Its value
is obtained by dividing the number of types —
defined as the number of different words— by the
total number of tokens or words in a given corpus.

While easy to interpret, TTR is limited in the sense
that their values differ significantly when chang-
ing the corpora size, thus it is only a valid met-
ric for comparing lexical diversity of similar sized
corpora.

Yule’s I is the reversion of Yule’s K, or ”charac-
teristic constant”, which represents the variability
of the lexical frequency as the analysed text from
the corpus under study gets bigger. Yule’s I and
Yule’s K are thought to be less sensitive to changes
in the corpora size. However, both TTR and Yule’s
I are considered as better suited for small sized cor-
pora.

MTLD or Measure of Textual, Lexical Diver-
sity, sequentially measures the mean length of sub-
sequent n-grams that have the same TTR value.
As it is measured sequentially, it is less prone to
changes in the values measured on different sized
corpora, and it is considered as the most represen-
tative metric for measuring the lexical diversity of
big corpora as the ones typically used in MT.

As a complement to our MT and LD metrics,
we add the results coming from a preliminary hu-
man evaluation done by a bilingual biomedical ex-
pert. According to these results, we select the best
two systems for translating clinical reports from
Basque to Spanish, and ask bilingual healthcare
workers to post-edit the outputs of these systems,
as well as the system trained in the opposite direc-
tion.

Finally, we report an estimation of the carbon
footprint produced when developing our systems,
which can be considered for deciding which ap-
proach to take in future works.

2 Related Work

Apart from the works mentioned in the introduc-
tion proposing different methods for decoding or
tagging the synthetic BT corpus (Edunov et al.,
2018; Graça et al., 2019; Caswell et al., 2019),
there is some other previous work on comparing
different systems for BT.

Probably the most relevant work in this respect
is the one that compares different techniques (i.e.:
rule-based, statistical or neural MT) for generat-
ing the synthetic BT corpus. In this area, the work
by Burlot and Yvon (2018) firstly compared the
use of statistical (SMT) and neural (NMT) systems
for BT, without observing significant differences.
More similarly to our work, Soto et al. (2019) tried
rule-based (RBMT), SMT and NMT for BT ap-



plied to the translation of clinical texts, obtain-
ing better results with NMT, and specifically the
Transformer architecture (Vaswani et al., 2017).

Poncelas et al. (2019) went one step further and
not only compared the performance of different
techniques for BT, but combined the synthetic cor-
pora created by SMT and NMT systems, probing
that the combination of the outputs of both systems
was useful. Furthermore, Soto et al. (2020) com-
pared and combined the outputs of RBMT, SMT
and NMT systems for BT, also analysing the lex-
ical diversity of the generated corpora. They ob-
served that the combination of all systems was in
general better than using the output of only one
system, and tried to improve the performance by
applying data selection (Biçici and Yuret, 2015;
Poncelas et al., 2018) to the BT corpus, condi-
tioned on the measured MT and LD metrics for
each of the BT systems.

Regarding the use of tags for identifying the BT
corpus, Marie et al. (2020) concluded that it was
advisable to add a tag when the origin of the text
was unknown, since systems using BT without a
tag overfitted to the synthetic corpus, and even
shown to be detrimental when used to translate text
originally written in the source language.

Finally, our analysis of the lexical diversity of
the BT data generated by different methods fol-
lows the work of Vanmassenhove et al. (2019),
where the authors study the loss of lexical diver-
sity of a given corpus after being translated with
SMT and NMT systems. Therefore, in our work
we measure the lexical diversity of the BT corpora
according to the same metrics they calculate.

3 Material and methods

We test the six methods presented in the introduc-
tion for a real use case: the translation of clinical
notes from Basque to Spanish (eu–es). This work
is part of an ongoing project that aims to imple-
ment an MT system in the Basque public health
service (Osakidetza), so Basque speaking health-
care workers can write their reports in Basque
without compromising the safety of their patients.2

The first step in this project is the compilation of
a Basque/Spanish (eu/es) parallel corpus of health
records to be used for fine-tuning and evaluation,
while previously collected Spanish monolingual

2It is expected that the output of the MT system will be
post-edited before making it available to Spanish monolingual
healthcare workers.

corpora will be used for BT. Since these corpora
are private, we reproduce our experiments in a sim-
ilar setting for translating biomedical texts from
German to English (de–en), using only publicly
available data.

For both language pairs, we preprocess our cor-
pora by tokenizing and truecasing through Moses
tools.3 Further, we apply BPE (Sennrich et al.,
2016b) for 90,000 (eu/es) and 40,000 (de/en) it-
erations. The number of BPE steps for eu/es was
optimized in previous experiments, while the de/en
one was taken from a reference system (Bawden et
al., 2020) that will be described in Section 3.2.

For training all our systems, we use the Trans-
former architecture as implemented in Fairseq (Ott
et al., 2019), with 6 encoder-decoder layers and an
embedding size of 512.

All the systems were trained for 30 epochs,
except the es–eu system that was trained
for 50 epochs due to applying the BPE-
dropout (Provilkov et al., 2020) regularization
technique, as this setting obtained better results
on preliminary experiments. In the future, we
plan to do the same for the best performing eu–es
systems. For de/en, we opt to use regular BPE for
better reproducibility.

In the following subsections, we describe the
data used for each language pair.

3.1 eu–es corpora

In the eu–es scenario we define four types of data:
1) out-of-domain bilingual sentences, 2) bilingual
clinical terms, 3) bilingual clinical notes, and 4)
monolingual health records in Spanish. We use the
sets 1–3 to train the BT system (es–eu), and later
train the final eu–es systems adding the monolin-
gual corpora through BT.

In both translation directions, we apply regular
fine-tuning, dividing the training process in two
steps: 1) pretraining, using all except the bilin-
gual clinical notes, and 2) fine-tuning, continu-
ing the training of the pretrained systems with the
bilingual in-domain sentences. In this case, we
pretrain+fine-tune the systems for 30+30 epochs.

Table 1 sums up the domain, languages, number
of sentences and use of each of our corpora.

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl and https://
github.com/moses-smt/mosesdecoder/blob/
master/scripts/recaser/truecase.perl re-
spectively



Domain Languages Sentences Use
out-of-domain eu/es 4,896,719 pretrain
clinical terms eu/es 924,804 pretrain
clinical notes eu/es 28,602 fine-tune
health records es 4,946,293 back-tr.

Table 1: Characteristics and use of the eu/es corpora.

In the following lines, we present some of the
details of the training corpora, as enumerated in
the beginning of this subsection.

3.1.1 Out-of-domain bilingual sentences
In this work, we use around 5 million out-of-

domain sentences. Among these, around 3 million
sentences are from the news domain, formed by
the 3 times repetition of a corpus from the Basque
public broadcast service EiTB (Etchegoyhen et al.,
2016), along with a more recent one from the same
source (Etchegoyhen and Gete, 2020). The re-
maining 2 million sentences are from different do-
mains as administrative (IVAP), consumer mag-
azines (Eroski), online magazines (Irrika), trans-
lation memories (EIZIE), movie synopses, web
crawling (San Vicente and Manterola, 2012) and
literature (Sarasola et al., 2015).

We also include as out-of-domain data the sen-
tences extracted from documents published in Os-
akidetza’s website, since their domain is not close
to the clinical notes focus of our study. These doc-
uments are available online,4 and for this work
we omitted the administrative ones (in Spanish:
‘Planes y programas anuales y plurianuales’ and
‘Memorias Osakidetza’).

3.1.2 Bilingual clinical terms
For adapting the pretraining systems to the

clinical domain, we leverage clinical terminology
available in Basque and Spanish. Most of the
900,000 bilingual terms come from the automatic
translation of SNOMED CT into Basque (Perez-
de-Viñaspre, 2017), while another 30,000 are man-
ual translations into Basque of ICD-10 concept de-
scriptions in Spanish made available for the WMT
Biomedical shared task (Bawden et al., 2020).

Finally, around 200 terms related to the COVID-
19 pandemic are compiled, coming around half of
them from an interim release of SNOMED CT that
was made available in the beginning of the pan-

4https://www.osakidetza.
euskadi.eus/profesionales/-/
publicaciones-profesionales/, accessed on
October 1, 2020.

demic,5 and translated into Basque by a transla-
tor of Osakidetza. The remaining terms were col-
lected by Elhuyar.6

3.1.3 Bilingual clinical notes

For fine-tuning and evaluation, we use the bilin-
gual corpus compiled in the project with Os-
akidetza, where 149 Basque speaking healthcare
workers volunteered writing their clinical notes in
Basque and Spanish.

These sentences are classified among 5 types:
1) discharge reports, 2) progress reports, 3) hospi-
talization reports, 4) informative permissions and
5) others. Since the main aim of Osakidetza is to
translate discharge and progress reports, only sen-
tences coming from these document types are used
for evaluation.

The documents were written by professionals of
different specialties (e.g.: pediatrics), from where
2,000 sentences were reserved half for validation
and another half for testing purposes. The remain-
ing 28,602 were used for fine-tuning.

3.1.4 Monolingual health records in Spanish

In addition to the collected bilingual data, from
previous projects developed with Osakidetza we
had access to discharge reports from Galdakao-
Usansolo hospital, adding up to around 2 million
non-repeated sentences; as well as discharge (1
million) and progress (2 million) reports from Ba-
surto hospital.

Both the bilingual and monolingual corpora
from Osakidetza were provided to us without any
personally identifiable information (names, sur-
names, etc.), and it was further de-identified by
shuffling the sentences coming from each source.
The authors had to sign a non-disclosure commit-
ment before getting access to this private data.

3.2 de–en corpora

For generalization and reproducibility, we also per-
form our experiments using available data in de–
en, as well as clinical notes in English for BT.
The bilingual data is the same used for training the
baseline systems in the WMT Biomedical shared
task (Bawden et al., 2020), consisting of around
3 million sentences extracted from the UFAL cor-

5https://www.snomed.org/
news-and-events/articles/
march-2020-interim-snomedct-release-COVID-19
6We can make them available upon permission from Elhuyar.



pus7 after removing the “Subtitles” subset. For
evaluation we use Khresmoi,8 also used in Baw-
den et al. (2020), where 500 sentences are defined
for validation and 1,000 sentences for testing.

For evaluation, and when generating the syn-
thetic corpus through beam search, we use a beam
size of 16.9 This value, along with the 40,000 BPE
iterations mentioned above, were optimized for the
en–de language pair in Bawden et al. (2020).

Finally, for BT we use the discharge reports
in English available in MIMIC III (Johnson et
al., 2016).10 After removing the headers contain-
ing unnecessary information, deleting the tags for
identifying dates, and erasing the empty lines, this
monolingual corpus is reduced to around 2 mil-
lion sentences. We choose to not perform sentence
splitting to avoid introducing errors associated
with this process. As a consequence, before trans-
lating this corpus we filter out the sentences longer
than 1,000 BPE (sub)words using Moses cleaning
corpus tool.11 Note that, although there are longer
sentences in the training corpus, fairseq skips by
default all the sentences longer than 1,024 tokens,
so the maximum sentence length of the training
corpus is similar to the one of the monolingual
corpus used for BT. All the necessary scripts for
reproducing the de-en experiments can be found
in https://gitlab.com/xabiersoto1/
bt_tagging_and_decoding.

4 Results and discussion

4.1 MT automatic evaluation
Table 2 presents the MT automatic evaluation
scores of the es–eu and en–de systems used for
back-translating the monolingual corpora from the
clinical domain. Note that both target languages
Basque and German are morphologically richer
than the corresponding source languages, so met-
rics like BLEU, based on word-level accuracy, un-
derestimate the actual MT quality comparing to
the same systems trained in the opposite direction
(‘pretraining+fine-tuning’ for eu–es and ‘pretrain-
ing’ for de–en in Table 3).
7https://ufal.mff.cuni.cz/ufal_medical_
corpus
8https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-2122
9Beam size is 10 for evaluation in the eu/es language pair.
10https://mimic.physionet.org/
gettingstarted/access/
11https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
training/clean-corpus-n.perl

BLEU↑ TER↓ METEOR↑ CHRF↑
es–eu 33.88 49.27 47.02 61.02
en–de 29.96 52.63 47.64 60.60

Table 2: MT scores of the back-translation systems.

Table 3 shows the MT evaluation scores of the
final eu–es and de–en systems. The first rows
for each language pair present the results before
adding the BT corpus, while the next lines present
the values obtained when applying each of the de-
coding algorithms tested in this work, whether us-
ing tagging or not. In the case of eu–es, we include
the scores before and after fine-tuning.

System BLEU↑ TER↓ MET.↑ CHRF↑

eu
–e

s

pretraining 26.99 58.61 47.70 53.35
+fine-tuning 46.67 38.74 63.56 66.46
+BT (beam search) 44.11 41.54 61.48 66.24
+fine-tuning 51.37 35.15 67.11 70.10
+BT (tag. beam search) 41.29 44.45 59.47 64.22
+fine-tuning 51.99 34.96 67.27 70.11
+BT (unr. sampling) 43.48 41.39 61.36 65.94
+fine-tuning 52.68 33.84 67.93 71.06
+BT (tag. unr. sampl.) 42.07 44.33 59.97 65.13
+fine-tuning 52.42 34.75 67.51 70.72
+BT (res. sampling) 44.69 40.83 62.23 66.85
+fine-tuning 52.90 33.96 68.23 71.12
+BT (tag. res. sampl.) 42.13 43.71 60.22 65.40
+fine-tuning 53.10 33.55 68.30 71.34

de
–e

n

pretraining 42.34 38.55 39.91 67.93
+BT (beam search) 44.67 37.46 40.97 69.62
+BT (tag. beam search) 44.40 37.63 40.79 69.41
+BT (unr. sampling) 42.47 41.17 39.58 67.65
+BT (tag. unr. sampl.) 43.14 38.42 40.35 68.59
+BT (res. sampling) 40.03 45.73 38.60 66.42
+BT (tag. res. sampl.) 43.27 38.28 40.51 68.68

Table 3: MT scores of the final eu–es and de–en systems

Beyond the scope of this work, we want to
start highlighting that for the eu–es direction, fine-
tuning with less than 30,000 sentences (row 2)
obtains higher improvements than any of the BT
methods (rows starting with ‘+BT’) tried in this
work, with the only exception of the chrF value
for restricted sampling.

Focusing on the methods under study after fine-
tuning, we observe that one of the new combina-
tions tried in this work, tagged restricted sampling,
obtains the best scores according to all the MT
metrics in the eu–es direction, closely followed by
restricted sampling and unrestricted sampling, in-
verting the order of these two according to TER.

Looking to the generated translations, we see
that, regardless of the decoding algorithm, the sys-
tems before fine-tuning and not using tagging hal-
lucinate ‘¡/- ... -/¿’ style marks when translat-
ing sentences corresponding to typical headers like



‘CURRENT DISEASE’ or ‘TREATMENT’. An-
alyzing the training corpora, we detect this kind
of marked headers in the reports coming from Ba-
surto Hospital, so we will remove these tags in fu-
ture developments. However, we want to highlight
that, not only fine-tuning with clean bilingual data,
but also tagging the BT corpora, had the effect of
removing this particular noise.

Regarding the de–en direction, where, condi-
tioned by the privacy of clinical data, the size of
the training corpora is smaller than for the eu–es
counterpart, traditional beam search still obtains
the best results, followed by tagged beam search.
Most interestingly, we see that, in this particu-
lar setting, the effect of tagging is only beneficial
when using sampling for BT, complementing the
hypothesis of Caswell et al. (2019), that presents
tagged back-translation as a ”simpler alternative to
noising”. With these results, we show that both
tagging and sampling can be orthogonal methods
to improve the performance in lower resource set-
tings.

For complementing the de/en MT scores cal-
culated in biomedical data from Khresmoi, we
test these same systems with clinical data from
HimL,12 to analyze possible distortions by the
slight domain mismatch between the bilingual
biomedical data from WMT Biomedical shared
task and the monolingual clinical data from
MIMIC III. For converting the HimL data from
.sgm to raw text we use the tool available on Ne-
matus.13 Later we tokenize, truecase and apply
BPE as done for the rest of the de/en data. Table 4
presents the results on HimL.14

System BLEU↑ TER↓ MET.↑ CHRF↑
en–de pretraining 24.71 59.50 41.06 52.30

de
–e

n

pretraining 32.39 50.96 33.52 55.95
+BT (beam search) 33.58 49.93 34.96 57.89
+BT (tag. beam search) 33.31 50.01 34.36 57.29
+BT (unr. sampling) 28.70 59.68 31.36 53.12
+BT (tag. unr. sampl.) 32.42 51.23 33.89 56.42
+BT (res. sampling) 29.04 58.71 31.90 54.12
+BT (tag. res. sampl.) 33.31 50.26 34.40 57.06

Table 4: MT scores of the de/en systems on HimL

We observe that beam search also obtains the
best results on HimL data in the de–en direction,

12http://www.himl.eu/test-sets
13https://github.com/EdinburghNLP/
nematus/blob/master/data/strip_sgml.py
14Specifically, on the 1044 sentences coming from the NHS
subset, since the remaining sentences from Cochrane are used
for validation purposes.

again followed by tagged beam search for BLEU,
TER and chrF, being the results of tagged restricted
sampling equal to the latter according to BLEU,
and slightly better in terms of METEOR. The main
difference comes from the worst results obtained
by unrestricted sampling, which in this setting
achieves the lowest scores according to all metrics,
confirming the hypothesis that unrestricted sam-
pling only works with big corpora.

4.2 Lexical diversity derived from BT

Table 5 presents the LD values measured on the
BT corpora created by each of the methods under
study, including the results on the original mono-
lingual corpora for reference.

Language Corpus MTLD Yule’s I TTR
es original 13.99 0.668 0.438

eu

BT (beam search) 13.71 0.863 0.578
BT (tag. beam search) 14.72 0.799 0.387
BT (unr. sam.) 13.99 7.628 65.22
BT (tag. unr. sam.) 14.84 7.123 41.69
BT (res. sam.) 13.73 2.545 5.851
BT (tag. res. sam.) 14.72 2.359 3.748

en original 14.14 0.347 0.129

de

BT (beam search) 14.50 0.899 0.754
BT (tag. beam search) 15.37 0.841 0.521
BT (unr. sam.) 15.15 8.376 93.62
BT (tag. unr. sam.) 15.86 7.890 62.19
BT (res. sam.) 14.39 3.374 12.64
BT (tag. res. sam.) 15.15 3.167 8.566

Table 5: Lexical diversity scores of the monolingual cor-
pora before and after BT using different decoding algorithms,
whether tagging or not. Yule’s I and TTR values are multi-
plied by 100 for improved readability.

Comparing the results on each language, we sur-
prisingly see that the MTLD values increase when
adding a tag to the BT corpus, while Yule’s I
and TTR metrics follow our intuition and decrease
when adding the same prefix to each sentence com-
ing from BT. Focusing on the more linguistically
relevant LD scores without tagging, we observe
that, as expected, unrestricted sampling obtains
the highest scores in each language for all met-
rics. By definition, translations generated through
restricted sampling are less diverse than the ones
produced by unrestricted sampling, since the for-
mer will generally produce words that appear more
in the training corpus. Considering these LD re-
sults, a human MT evaluation is needed in the eu–
es direction to see if the higher MT scores for re-
stricted sampling correspond to an actual increase
on MT quality or, as it happens with beam search,
these higher MT scores are an artifact of automatic



metrics that use to overestimate systems that tend
to output more frequent words.

4.3 Preliminary human evaluation

Before carrying out a proper human evaluation by
the same healthcare workers who compiled the
bilingual clinical eu/es data, we make a first esti-
mation by asking a bilingual biomedical expert to
blindly evaluate the quality of the 3 systems that
obtained higher MT automatic scores in the eu–es
setting, namely 1) tagged restricted sampling, 2)
restricted sampling and 3) unrestricted sampling.

For assessing the quality of these systems we fo-
cus on the adequacy of the generated translations,
comparing their semantics with the ones of the cor-
responding source sentences and checking the ref-
erence translations in case of doubt. Table 6 shows
the number of sentences from the first 100 non-
repeated sentences of the test set identified as to-
tally correct in terms of meaning for each of the
best performing systems in the eu–es direction.

tag. res. sam. res. sam. unr. sam.
83 75 83

Table 6: Number of sentences perfectly translated from the
first 100 non-repeated sentences of the test set for each of the
best ranked systems in the eu–es direction.

We clearly observe that restricted sampling,
which obtained the second best MT automatic
scores but the lowest LD scores according to the
most relevant MTLD metric, gets significantly
lower adequacy scores (75/100) in this preliminary
human evaluation, while tagged restricted sam-
pling and unrestricted sampling obtain the same
number of totally correct translations (83/100).
This confirms our intuition that, in the absence of
a human evaluation, LD metrics can be used as a
proxy to assess the MT quality of different systems
trained with the same corpus.

4.4 Human evaluation

In this section we present the results of the hu-
man evaluation performed by 37 bilingual health-
care workers. For doing this, we use PET15 tool,
asking each evaluator to post-edit 100 out of 500
sentences translated by the es–eu system and the
best performing eu–es systems. Each of these 500
sentences was post-edited by 3 different evalua-
tors. Considering that some of the sentences were
translated equally by the two eu–es systems, 22
15https://github.com/wilkeraziz/PET

volunteers evaluated the eu–es translations, while
15 post-edited the outputs of the es–eu system.

Table 7 presents the post-editing times regis-
tered for each system. For a better comparison, we
normalize the post-editing time by sentence length
in the second column.

Seconds Seconds/Word
es–eu 65.88 7.19
eu–es (tag. res. sam.) 23.23 2.67
eu–es (unr. sam.) 22.78 2.66

Table 7: Average post-editing times by the best performing
eu–es systems and the es–eu system, before and after normal-
izing per sentence length.

Comparing the results in each direction, we see
that post-editing times are much larger for es–eu
translation, while the difference between the two
eu–es systems is very small, especially after nor-
malization.

Table 8 shows the calculated HTER values, by
distinguishing its post-edition types corresponding
to insertions (INS), deletions (DEL), substitutions
(SUB) and shifts (SHIFT).

HTER HTER HTER HTER HTER
(ALL) (INS) (DEL) (SUB) (SHIFT)

es–eu 12.47 0.95 3.39 7.21 0.92
eu–es (t.r.s.) 5.50 0.54 2.60 2.17 0.20
eu–es (u.s.) 6.24 0.60 3.00 2.30 0.35

Table 8: HTER values by the best performing eu–es systems
and the es–eu system, disaggregated by post-edition types.

As it happened with post-editing times, we ob-
serve that the HTER values are higher for the es–
eu direction. On the other hand, while post-editing
times were slightly higher for the ‘tagged restricted
sampling’ system, we see that this system outper-
forms the ‘unrestricted sampling’ system regard-
ing HTER and all its post-edition types.

Finally, Table 9 shows the average keystrokes
registered by PET in all its 3 main values.

VISIBLE KEYSTROKES ALLKEYS
es–eu 7.32 10.20 11.13
eu–es (t.r.s.) 3.23 4.21 4.42
eu–es (u.s.) 4.16 5.41 5.63

Table 9: Registered keystrokes for the best performing eu–es
systems and the es–eu system, where ”VISIBLE”: letters +
digits + spaces + symbols; ”KEYSTROKES”: ”VISIBLE” +
erase; and ”ALLKEYS”: ”KEYSTROKES” + navigation +
commands.

Again, for the eu–es direction, we see that the
‘tagged restricted sampling’ system obtains better
results than the ‘unrestricted sampling’ system in



terms of keystrokes, so we select this system for a
final error analysis.

4.5 Error analysis
Table 10 shows the number of omissions, addi-
tions, mistranslations and shift errors by the best
performing ‘tagged restricted sampling’ system in
the eu–es direction, distinguishing between single
and multiple word errors.

Omissions Additions Mistransl. Shifts
TOTAL 51 6 103 4
Single words 35 4 80 1
Multiple words 16 2 23 3

Table 10: Classification of the MT errors for the best per-
forming eu–es system (tagged restricted sampling).

We observe that most of the errors correspond to
mistranslations, approximately doubling the omis-
sions, and being the additions and shifts very
scarce. For the most common omissions and mis-
translations, most of the time these errors are re-
lated to a single word, especially for the latter.

From the omitted words, 12 are articles, while
one of the added words is also an article. Among
the mistranslations, there are 15 clinical terms
translated as acronyms, 8 abbreviations, 3 missing
accents and 3 singular/plural mismatches. Notice
that all of these errors will not substantially alter
the sentence meaning.

4.6 Carbon footprint
To conclude this section, answering to the call
made by Strubell et al. (2019), we report the car-
bon footprint derived from training our systems.
For doing that, we obtain the training times from
the log files for each system, accordingly calculate
the consumed power, and then estimate the corre-
sponding CO2 emissions.

Table 11 shows the measured time, power con-
sumption and CO2 emissions estimated for each
of the developed systems. Each experiment was
done using a single Nvidia Titan V GPU with a
maximum power of 250W. We estimate the CO2
emissions by applying equations (1) and (2) in
Strubell et al. (2019), considering only the power
consumed by our GPUs. Note that the training of
the es–eu system is done for 50 epochs, while the
rest are performed for 30 epochs.

For interpreting these results, it must be consid-
ered that the default implementation of fairseq is
not optimized to use the maximum power of the
GPUs at any time, so the presented values must

System Time (h) Power (kWh) CO2e (lbs)
es–eu 81.93 32.36 30.88
eu–es 38.66 15.27 14.57

eu–es + BT (b.s.) 71.90 28.40 27.10
eu–es + BT (t.b.s.) 65.92 26.04 24.84
eu–es + BT (u.s.) 75.66 29.89 28.51

eu–es + BT (t.u.s.) 70.33 27.78 26.50
eu–es + BT (r.s.) 70.83 27.98 26.69

eu–es + BT (t.r.s.) 67.96 26.85 25.61
en–de 42.30 16.71 15.94
de–en 37.31 14.74 14.06

de–en + BT (b.s.) 51.53 20.35 19.42
de–en + BT (t.b.s.) 53.08 20.97 20.00
de–en + BT (u.s.) 54.37 21.48 20.49

de–en + BT (t.u.s.) 55.94 22.10 21.08
de–en + BT (r.s.) 52.26 20.64 19.69

de–en + BT (t.r.s.) 53.47 21.12 20.15
TOTAL 355.53

Table 11: Training time, power consumption and estimated
CO2 emissions for each system. ‘t.’ stands for tagged; ‘b.s.’
for ‘beam search’; ‘u.s.’ for ‘unrestricted sampling’; and ‘r.s.’
for ‘restricted sampling’.

be taken with caution as a clear overestimation.
We leave as future work modifying the fairseq hy-
perparameters to make a more efficient use of our
GPUs, at the same time adjusting our estimation of
the generated CO2 emissions.

5 Conclusions and future work

In this work, we have empirically compared and
combined different methods for BT applied to the
MT of clinical texts. One of the new combinations
tried in this work, tagged restricted sampling, ob-
tained the best automatic scores according to all
the metrics studied in the eu–es direction, con-
firmed by the HTER and keystroke results from the
human evaluation performed by bilingual health-
care workers.

In the simulated low resource de–en scenario,
traditional beam search still obtained the best MT
results, followed by tagged beam search. This
confirms the generalized agreement that sampling
is only helpful when large monolingual data are
available. Moreover, we observe that tagging only
helps when using sampling for decoding the BT
systems, complementing previous work that pro-
posed tagging the synthetic corpora as an alterna-
tive to the use of sampling. However, to drive more
generalizable conclusions it would be necessary to
try these methods on more diverse scenarios.

Considering the LD metrics, the decoding algo-
rithm that obtained the best MT results in the eu–
es scenario (restricted sampling) obtained one of
the lowest MTLD scores. In a preliminary human



evaluation done by a bilingual biomedical expert to
assess the 3 systems that obtained higher MT eval-
uation scores, restricted sampling obtained signif-
icantly worse results than unrestricted sampling,
even that the latter obtained lower MT automatic
scores. This is a sign that LD metrics can be used
as a complement to the MT automatic evaluation
scores for identifying the best performing systems.

Finally, we have estimated the carbon footprint
derived from our experiments. We will consider
these values to study possible ways of reducing or
neutralizing our carbon footprint.
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