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Abstract

Large multilingual Transformer-based ma-
chine translation models have had a pivotal
role in making translation systems avail-
able for hundreds of languages with good
zero-shot translation performance. One
such example is the universal model with
shared encoder-decoder architecture. Ad-
ditionally, jointly trained language-specific
encoder-decoder systems have been pro-
posed for multilingual neural machine
translation (NMT) models. This work in-
vestigates various knowledge-sharing ap-
proaches on the encoder side while keep-
ing the decoder language- or language-
group-specific. We propose a novel ap-
proach, where we use universal, language-
group-specific and language-specific mod-
ules to solve the shortcomings of both
the universal models and models with
language-specific encoders-decoders. Ex-
periments on a multilingual dataset set
up to model real-world scenarios, includ-
ing zero-shot and low-resource translation,
show that our proposed models achieve
higher translation quality compared to
purely universal and language-specific ap-
proaches.

1 Introduction

Multilingual neural machine translation has been a
fundamental topic in recent years, especially for
zero- and few-shot translation scenarios. Tradi-
tionally, universal NMT models (see Fig. 1a) have
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Figure 1: Different granularities of the modular architecture.
roa – Romance; gem – Germanic; tgt lang – Target language
token added to indicate the language of the output sentence.

been used to produce zero-shot or low-resource
translations (Johnson et al., 2016). However, pre-
vious research has established that universal NMT
models with shared encoder-decoder architecture
have some disadvantages: (1) high-resource lan-
guage pairs tend to suffer loss in translation qual-
ity (Arivazhagan et al., 2019); (2) the vocabulary
of the model increases greatly, especially for lan-
guages that do not share an alphabet such as En-
glish and Japanese; (3) the need to retrain from
scratch when a new language does not share the
model’s vocabulary.

Recently, there has been renewed interest in
multilingual systems, which have jointly trained
language-specific encoders-decoders (see Fig. 1c)
which we call the modular architecture (Lyu et
al., 2020). The goal of these models has been to
achieve a better overall translation quality com-
pared to universal or uni-directional NMT models.
However, there is a disadvantage: lower zero-shot
translation quality compared to universal models.
To combat this problem, shared encoder/decoder
layers (also called interlingua layers) have been
proposed (Liao et al., 2021).
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Figure 2: Different types of encoder layer sharing in the mod-
ular architecture. Note that the width of layers in the figure
does not correspond to the actual width but rather reflects the
sharing extent, i.e. all layers in the encoder have the same
width dimension. U – universal, G – Germanic, R – Romance.

In this paper, we focus on improving the overall
translation quality by using different knowledge-
and layer-sharing methods. More specifically, we
investigate the effect of sharing encoder layers to
improve the generalizability and quality of NMT
models. Secondly, we present novel language
group based models that are inspired by the univer-
sal and modular systems. We propose (1) various
degrees of granularity (or specificity) of modules
(illustrated in Fig. 1); (2) layer sharing, includ-
ing combining layers of various granularities into
a tiered architecture (illustrated by Fig. 2). Our
methods show better translation quality in all test-
ing scenarions compared to the universal model
without increasing training or inference time by
having variable degrees of modularity or sharing
in the encoder.

Our research looks beyond zero-shot and high-
resource NMT performance – we set up our ex-
periments to investigate model performance for
many data scenarios like zero-shot and low- to
high-resource settings. We use a combination
of Europarl (Koehn, 2005), EMEA (Tiedemann,
2012), and JRC-Acquis (Steinberger et al., 2006)
datasets for training and evaluation and six lan-
guages grouped into two language groups: Ger-
manic (German, English, Danish) and Romance
(French, Spanish, Portuguese). The results show
that our approaches can provide an improvement
to universal models in all data scenarios. Further-
more, our approaches improve the zero-shot and
low-resource translation quality of the modular ar-
chitecture without harming the high-resource lan-
guage translation quality.

The main contributions of our paper are:

• We introduce a novel language-group-
specific modular encoder and decoder
architecture (Fig. 1b).

• Showing that different architectures of shared
encoder layers (Fig. 2) improve the low-
resource MT quality of the modular model
while also improving the high-resource MT
quality that suffers in the universal NMT set-
ting.

• We empirically show what effect sharing en-
coder layers has and present a detailed analy-
sis that supports layer sharing.

2 Related Works

Multilingual neural machine translation models
follow the encoder-decoder architecture and ap-
proaches following this architecture can vary in the
amount of parameter sharing (Dabre et al., 2020).

The most straightforward approach with no pa-
rameter sharing would be having a system of uni-
directional models. While it is feasible with a
small amount of high-resource languages, it be-
comes problematic in scenarios with low-resource
languages or a large number of languages. Firstly,
the number of uni-directional models in the sys-
tem grows quadratically with the number of lan-
guages, harming maintainability. Secondly, there
is no transfer learning between language pairs due
to separate models, which means that low-resource
languages generally have low translation quality.
These issues are addressed by pivoting with some
success, however, it does not come without trade-
offs (Habash and Hu, 2009). The main problem
with pivoting is that it is not possible to fully uti-
lize all the training data since we only use training
data that contains the pivot language. Furthermore,
due to multiple models being potentially used for
a translation, the translation is slower, and there is
a chance of error propagation and loss of informa-
tion.

The most widely used approach in multilingual
NMT uses a fully shared (universal) model, which
has a single encoder and decoder shared between
all the languages and uses a token added to the in-
put sentence to indicate the target language (John-
son et al., 2016). Arivazhagan et al. (2019) iden-
tified that the universal model suffers from the
capacity bottleneck: with many languages in the
model, the translation quality begins to deteriorate.



This especially harms the translation quality of
high-resource language pairs. Zhang et al. (2020)
further confirmed this and suggested deeper and
language-aware models as an improvement. Still,
the problem of low maintainability remains, since
adding the languages to the model is not possible
without retraining the whole model. Furthermore,
adding languages with different scripts likely re-
sults in lower translation quality since the vocabu-
lary can not be altered.

Escolano et al. (2019) suggested a proof-of-
concept model with language-specific encoders
and decoders that started bilingual and was in-
crementally trained to include other languages.
Escolano et al. (2020) further improved on it
and proposed a joint training procedure that pro-
duced a model that outperformed the universal
model in translation quality. Furthermore, their
proposed model is expandable by incrementally
adding new languages without affecting the ex-
isting languages’ translation quality. Lyu et al.
(2020) investigated the performance of the mod-
ular model from the industry perspective. They
found that the modular model often outperforms
single direction models thanks to transfer learning
while being a competitor to the universal model
as well due to the additional capacity of language-
specific modules.

Modular models can contain shared modules as
well. Liao et al. (2021) set out to improve the zero-
shot performance of modular models, which is of-
ten worse than the zero-shot performance of uni-
versal models. They achieve this by sharing up-
per layers of language-specific encoders between
all languages. The current paper is an extension of
that work. While Liao et al. (2021) used English-
centric training data and denoising autoencoder
task to achieve universal interlingua, in this paper
we are not using an autoencoder task, since our
data is not one language centric.

Introducing language-specific modules into a
universal model can be a good way to increase
the capacity of the model without significantly in-
creasing training or inference time. An example of
a system that utilizes this is described in Fan et al.
(2020). They use language-specific and language
group layers in the decoder of the model following
the universal architecture model to provide more
capacity. They also note that language-specific
layers are more effective when applied to the de-
coder. Liao et al. (2021) also found that sharing

in decoder is not beneficial when there are shared
layers in the encoder. These are also the main mo-
tivations for focusing on sharing encoder layers in
this paper.

3 Experiment setup

3.1 Data
Our aim was to create a dataset that resembles
a real-world scenario where language pairs with
varying amounts of data are encountered. The data
is collected from Europarl (Koehn, 2005), EMEA
(Tiedemann, 2012), and JRC-Acquis (Steinberger
et al., 2006). The training dataset is created by
sampling from the aforementioned datasets so that
the training dataset is composed of 70% Europarl,
15% EMEA, and 15% JRC-Acquis. The test set is
composed of completely multi-parallel sentences.

Language
combination

Direction (lang. group)

intra inter

high–high 1,000,000 1,000,000
high–mid 500,000 500,000
mid–mid 500,000 100,000
low–high 100,000 10,000
low–mid 100,000 0
low–low 0 0

Table 1: Dataset size rules per language type pair and lan-
guage group. intra – translation within language group, inter
– translating between language groups

The dataset is composed of English, German,
Danish, French, Spanish, and Portuguese. For cre-
ating the dataset and defining models, these are
divided into Germanic (English, German, Dan-
ish) and Romance (French, Spanish, Portugese)
language groups. We define high-resource (En-
glish, German, French), medium-resource (Span-
ish), and low-resource (Danish, Portuguese) lan-
guages that produce high-resource (1,000,000
lines), higher medium resource (500,000 lines),
lower medium resource (100,000 lines), low-
resource (10,000 lines), and zero-shot (0 lines)
language pairs when combined according to the
rules in Table 1. With these rules, we also give
low and medium resource language directions less
training sentences if they consist of languages
from different language groups compared to the
pairs consisting of the same language group lan-
guages. The resulting dataset composition from
these rules is visible in Table 2. The test set
consists of 2000 multi-parallel sentences for each
language pair from the same distribution as the
training data. Since the training dataset is cre-
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en – 1,000,000 100,000 1,000,000 500,000 10,000 2,610,000
de 1,000,000 – 100,000 1,000,000 500,000 10,000 2,610,000
da 100,000 100,000 – 10,000 0 0 210,000
fr 1,000,000 1,000,000 10,000 – 500,000 100,000 2,610,000
es 500,000 500,000 0 500,000 – 100,000 1,600,000
pt 10,000 10,000 0 100,000 100,000 – 220,000

all 2,610,000 2,610,000 210,000 2,610,000 1,600,000 220,000 9,860,000

Table 2: Dataset sizes (number of sentence pairs) per language pair.

ated by randomly sampling data for each lan-
guage pair, it is not completely multi-parallel,
however, it probably contains many multi-parallel
lines. The validation dataset is created for all
non-zero-shot pairs with size per language pair de-
fined by ntest(langpair) = max(ntrain(langpair)·
0.0006, 100).

The dataset size is quite small compared to data
used for training state-of-the-art models mainly
due to limited computational resources. However,
we believe that it still allows us to draw conclu-
sions that can be applied at larger scales.

3.2 Model architecture
Previous research has investigated sharing layers
of the modular architecture (Liao et al., 2021). In
this work, we mainly focus on layer sharing in the
encoders. The layers are shared in 2 ways: (1) in-
side language groups (Fig. 2a), and (2) between all
languages (universally, Fig. 2c). These two meth-
ods are also combined into a tiered architecture
(Fig. 2b). We also experiment with different levels
of granularity of modules and introduce language-
group-specific modules referred to as group mod-
ular model (Fig. 1b).

As baselines, we use a modular architecture
without layer sharing (Fig. 1c) and a universal ar-
chitecture with one encoder and decoder shared
between all languages (Fig. 1a).

All of the models in our experiments follow
the transformer base architecture (Vaswani et al.,
2017) (6 encoder layers, 6 decoder layers). In
addition to dropout of 0.1, attention and activa-
tion dropout of 0.1 are used. The embeddings
are shared within a language module (encoder-
decoder) for language-specific modular models
and within a language group module for group
modular models. For the universal model, all em-
beddings are shared.

3.3 Segmentation model training
We use Byte Pair Encoding (BPE) (Sennrich et
al., 2016) implemented in SentencePiece (Kudo
and Richardson, 2018) as the segmentation algo-
rithm. For the language-specific encoder-decoder
approach, we train a BPE model with a vocabu-
lary size of 16,000 for each of the languages. In
the group-specific approach, we have a BPE model
for each of the language groups with a vocabulary
size of 32,000. For the universal model, we have a
single unified BPE model with vocabulary size of
32,000. For training the BPE models, we use char-
acter coverage of 1.0 and training data consisting
of the training set of the corresponding languages.

3.4 Model training
Fairseq (Ott et al., 2019) is used to implement
training and models. We made the code for our
custom implementations publicly available1.

For the following experiments, we set the con-
vergence criteria to be 5 epochs of no improvement
in the validation set loss. To evaluate the experi-
ments, we always use the best epoch according to
the validation loss.

The learning rate is selected from {0.0002,
0.0004, 0.0008} by the highest BLEU score on the
validation set after 20 training epochs. Gradient
accumulation frequency is selected using BLEU
score on the validation set after convergence from
8, 16, 32, 48. For all experiments in this paper, the
total maximum batch size is 384,000 tokens (max
tokens in a batch multiplied by the gradient accu-
mulation frequency and the number of GPUs).

From the initial experiments, learning rate of
0.0004 and gradient accumulation frequency of
48 is selected. For all experiments, Adam opti-
mizer (Kingma and Ba, 2015), inverse square root
learning-rate scheduler with 4,000 warm-up steps,
and label smoothing (Szegedy et al., 2016) of 0.1
1https://github.com/TartuNLP/fairseq/
tree/modular-layer-sharing



Architecture Language pair resource

zero-shot low medium-low medium-high high all

Universal 33.62 38.12 39.64 43.64 42.32 39.87

Group modular (GM)
EA3–6 35.03 39.48 40.89 44.66 43.31 41.06
EA5–6 34.52 39.23 40.78 44.59 43.19 40.88
No sharing 33.76 38.90 40.75 44.60 43.32 40.73

Language modular (LM)
EA3–6 34.73 38.79 40.91 44.68 43.36 40.90
EG3–4 EA5–6 34.57 38.61 40.76 44.91 43.59 40.90
EG 3–6 34.37 38.56 40.56 44.90 43.42 40.78

EA5–6 33.81 38.28 40.32 44.75 43.38 40.54
EG5 EA6 33.51 38.07 40.33 44.72 43.41 40.46
EG5–6 33.59 37.85 40.32 44.69 43.44 40.43

No sharing 32.14 37.19 39.92 44.74 43.50 40.02

Table 3: Average test set BLEU scores per language pair resource. EG - encoder layer shared within language group, EA -
encoder layer shared between all languages. Best score(s) per resource (column) in bold.

are used.
The training approach is similar to the propor-

tional approach in Lyu et al. (2020). The batches
are created according to the granularity of the
modules, so that the correct module can be cho-
sen for each batch. For the modular models with
language-specific encoders-decoders, each batch
contains only samples from one language pair. For
the group-specific models, the batch contains data
from one group pair. We determined by prelim-
inary experiments that gradient accumulation is
necessary for the modular models to learn, which
we speculate is due to language-specific modules
and the aforementioned batch creation strategy.
Since the universal model does not have that con-
straint, a lower gradient accumulation frequency of
8 is used. For group-specific and universal models,
target language tokens are added to the input sen-
tence.

We used one NVIDIA A100 GPU for training
the models. All models were trained with mixed
precision.

3.5 Evaluation
BLEU (Papineni et al., 2001) score is used as the
primary metric for translation quality. It is cal-
culated using SacreBLEU2 (Post, 2018). Beam
search with beam size of 5 is used for decoding.
Since there are 30 language pairs in total, we group
the languages depending on the size of the lan-
guage pair dataset and mostly look at average test
set BLEU scores for analysis.

4 Results

4.1 Main results
As a baseline, we trained a universal and a modu-
lar model. We then trained modular models with
2 uppermost or 4 uppermost layers of the encoder
shared universally, language-group-specifically or
tiered (bottom half of the shared layers shared
group-specifically, the rest universally). We also
explore language-group-specific modules (group
modular model). The main results are visible in
Table 3 (evaluation results of individual directions
are in Appendix B). Note that the ordering of rows
in the table corresponds to the increasing order of
total number of parameters which can be found in
Appendix A.

4.1.1 No sharing
We can firstly observe that the modular model

without any sharing (LM No sharing) performs
worse on zero-shot and low-resource language
pairs than the universal model (by 1.48 and 0.93
BLEU points, respectively). However, when look-
ing at the medium-high and high resource di-
rections, the modular model performs achieves a
higher translation quality (by 1.10 and 1.18 BLEU
points, respectively). The translation quality in the
medium-low language pairs is similar between the
universal and baseline modular model.

4.1.2 Sharing 2 layers
Compared to the baseline modular model (LM

No sharing), the modular model with 2 shared
encoder layers (LM EA5–6) performs better on
2signature: refs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.0.0



zero-shot, low, and medium-low resource language
pairs on average, with medium-high and high re-
source language translation quality only slightly
decreasing. Overall, we can observe 0.52 BLEU
point increase in translation quality of the shared
layer model compared to the modular model.

We can also see that with sharing 2 upper lay-
ers in language groups (LM EG5–6) or tiered (LM
EG5 EA6), the results are similar, but on average
lower by 0.11 and 0.08 BLEU points, respectively.
Sharing layers group-specifically gives a similar
effect to sharing layers between all languages on
average. With group-specific sharing, the lower
resource languages have a slightly lower BLEU
score, and the higher resource languages have a
slightly higher BLEU score compared to the uni-
versal layer sharing. We can see the same trend
with tiered sharing.

Comparing the language modular models with
2 shared layers to the universal model, the group
sharing (LM EG5–6) and tiered (LM EG5 EA6)
have slightly worse translation quality in zero- and
low-resource language pairs on average, however
they outperform the universal model in all of the
other higher resource directions. The model with
2 universally shared layers outperforms the uni-
versal model in all resource levels. On average,
the universally shared modular model (LM EA5–
6) outperforms the universal model by 0.67 BLEU
points.

4.1.3 Sharing 4 layers
We can see that sharing 4 layers provides better

translation quality on average than sharing 2 lay-
ers. All of the models (LM EG3–6, LM EG3–
4 EA5–6, LM EA3–6) outperform the universal
model in all resource types. The universally shared
model (LM EA3–6) performs the best out of the
three on average in the zero, low, and medium-low
resource directions, while the tiered model (LM
EG3–4 EA5–6) has the best higher resource per-
formance, even outperforming the baseline modu-
lar model, although only by a small margin. Over-
all, the two aforementioned models have the high-
est average BLEU score of the language modu-
lar models, outperforming the baseline modular
model by 0.88 points and the universal model by
1.03 points. Both of them outperform the univer-
sal model in the zero-shot direction: the univer-
sally shared modular model (LM EA3–6) by 1.11
BLEU points and the tiered modular model (LM
EG3–4 EA5–6) by 0.95 BLEU points.

4.1.4 Group modules
When looking at models with group-specific

modules (group modular in Table 3), we can see
that they outperform the universal model and the
baseline language modular model (LM No shar-
ing) on average. The improvement over the base-
line modular model comes mostly from the in-
crease in translation quality in low-resource di-
rections and the improvement over the universal
model from higher-resource directions, as we also
observed in the previous results. We can also ob-
serve that the group modular models outperform
the universal model at all resource levels.

The group modular model also benefits from
having layers shared between all languages. The
average BLEU score increases when shared lay-
ers are added to the group modular model, which
can mainly be attributed to the increase in zero-
shot and low resource translation quality.

The group modular model with 4 encoder lay-
ers (GM EA3–6) shared is the best performing
model in zero-shot and low-resource directions,
outperforming the universal model by 1.41 BLEU
points in zero-shot and 1.36 BLEU points in low-
resource directions on average. On average, it
outperforms the baseline language modular model
by 1.04 BLEU points and the baseline universal
model by 1.19 BLEU points. Complete evaluation
results are presented in Appendix B.

Although we used language group modules and
language group sharing in our experiments, we
failed to find any meaningful effect on the trans-
lation quality when translating between language
groups versus translating between languages in the
same group.

4.2 Sharing between all languages
The previous experiments have shown that group
sharing and tiered architectures were only slightly
different from sharing between all languages. Fur-
thermore, the number of shared layers affects the
result more than the type of sharing. Hence, we
continue with experiments on sharing the language
modular model layers between all languages to
further study the effect of number of encoder lay-
ers shared on BLEU scores. The results can be
seen in Table 4.

We can see that, on average, sharing more lay-
ers increases the BLEU score steadily until 5 up-
per encoder layers are shared. Compared to shar-
ing 5 upper layers, sharing all 6 layers slightly de-



Enc. shared layer(s) Language pair resource

zero-shot low medium-low medium-high high all

No sharing 32.14 37.19 39.92 44.74 43.50 40.02
6 33.07 37.63 40.09 44.67 43.35 40.23

5–6 33.81 38.28 40.32 44.75 43.38 40.54
4–6 34.16 38.43 40.41 44.85 43.43 40.68
3–6 34.73 38.79 40.91 44.68 43.36 40.90
2–6 34.97 39.03 40.81 44.94 43.44 41.03
1–6 34.61 38.70 40.79 44.60 43.23 40.80

Table 4: Average test set BLEU scores for experiments with encoder layer sharing between all languages in the language
modular model.

creases the BLEU scores in all language resource
types. This could be attributed to: (1) 1 language-
specific layer can better transform the language-
specific embeddings to a joint representation than
none or (2) more capacity with 5 layers shared and
1 language-specific compared to sharing all 6.

The modular model with encoder layers 2–6
shared provides a very close BLEU score to the
best performing model from the previous set of ex-
periments (GM EA3–6). It should be noted how-
ever that none of the shared layer models outper-
form the plain modular model in high resource lan-
guages on average, although the difference is quite
small. Detailed evaluation results with all transla-
tion directions for this model are available in Ap-
pendix B.

4.3 Effect of joint embeddings
Since the universal model uses joint embed-
dings and vocabulary and the modular model
uses language-specific embeddings, we investigate
whether this could be the reason for the better
performance of the latter. We train a modular
model with shared embeddings, vocabulary, and
encoder layers while still using language-specific
decoders. The results in Table 5 show that on av-
erage the modular model with shared encoder lay-
ers still outperforms the universal model in all re-
source types even with shared vocabulary and em-
beddings. Although the selection of training data
for the SentencePiece model did not take the lan-
guage data imbalance into account, we can see that
using a unified segmentation model and vocabu-
lary does not significantly decrease the translation
quality.

5 Discussion and future work

Multilingual NMT is a complex problem. On
the one hand, we face the problem of poor low-
resource MT performance of the fully modular
model, and on the other hand, we have the capac-

ity issues of the universal model. Our experiments
show that we can achieve the best of both worlds
with models that combine aspects of both universal
and modular NMT architectures.

Although including shared layers in the modu-
lar model has kept the translation quality of higher
resource language pairs the same or slightly de-
creased it, there has been a substantial improve-
ment in the translation quality of low and zero re-
source language pairs compared to the plain mod-
ular model. Furthermore, compared to the univer-
sal model, these shared layer modular models sub-
stantially increase translation quality in all types of
language resource directions.

Language-group-specific modules are worth
considering as an architecture, as they provide
better translation quality in all language resource
types compared to the universal model while hav-
ing fewer parameters in total than models with
language-specific modules. Even with language
group modules, the zero-shot and low-resource
translation quality benefits from layers shared be-
tween all languages.

The layer sharing strategy ultimately depends
on the available computational and data resources.
Having language-specific modules could become
memory inefficient in massively multilingual sce-
narios. Hence, having language group modules or
layer sharing is a good compromise between ca-
pacity and model size. Approaching the problem
from the perspective of the universal model, using
some degree of modularization is a good way of
increasing capacity without sacrificing zero-shot
performance or training time.

Our work also leaves room for future research.
While we focused on encoder layer sharing, de-
coder layer sharing is a direction that we want to
investigate in future work comprehensively. In-
crementally adding languages is also an important
aspect of modular models and should be inves-
tigated. In our work, we had a relatively small



Architecture Language pair resource

zero-shot low medium-low medium-high high all

Universal 33.62 38.12 39.64 43.64 42.32 39.87

Language modular
shared enc. + emb. + voc. 34.65 39.01 40.67 44.43 43.06 40.77
shared enc. 34.61 38.70 40.79 44.60 43.23 40.80

Table 5: Average test set BLEU scores for embedding sharing experiments. shared enc. – shared encoder; shared enc. + emb.
+ voc. – shared encoder, shared embeddings (incl. decoder embeddings) and joint vocabulary.

dataset compared to many state-of-the-art systems,
so it would be beneficial to see how our approaches
work in a scenario with significantly more data.
As previously mentioned, using significantly more
languages in the system could also set more con-
straints on our approaches and would be a promis-
ing direction for future works since it could high-
light differences between our proposed methods
better.

6 Conclusion

In this paper, we propose multiple ways of improv-
ing universal models and models with language-
specific encoders-decoders by combining features
of both. We experimented with language- and
language-group-specific modules and sharing lay-
ers of the encoders between all languages, groups
of languages, or combining them into a tiered ar-
chitecture. We found that having some layers uni-
versally shared (between all languages) benefits
the zero-shot and low-resource translation qual-
ity of the modular architectures while not hurt-
ing the translation quality of high-resource direc-
tions. The modular models with some universally
shared layers outperform the universal models in
all language-resource types (from zero to high).
Our best model outperforms the baseline language
modular model by 1.04 BLEU points and the uni-
versal model by 1.19 BLEU points on average.
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A Number of parameters

The number of parameters of the models can be
seen in Table 6.

Architecture Total params. Inference params.

Universal 60,526,080 60,526,080
Group modular

EA3–6 108,442,624 60,526,080
EA5-6 114,747,392 60,526,080
No sharing 121,052,160 60,526,080

Language modular
EA3-6 250,938,368 52,331,008
EA5-6 EG3-4 257,243,136 52,331,008
EG3–6 263,547,904 52,331,008
EA5-6 282,462,208 52,331,008
EA6 EG5 285,614,592 52,331,008
EG5-6 288,766,976 52,331,008
No sharing 313,986,048 52,331,008

Table 6: Number of parameters

B Detailed evaluation results

Tables 7, 8, 9, 10, and 11 provide detailed evalua-
tion results for selected experiments.

src tgt

en de da fr es pt

en – 38.84 40.39 48.60 51.07 45.32
de 46.41 – 32.44 38.60 39.08 34.41
da 45.60 30.57 – 36.77 37.32 32.77

fr 49.28 32.19 31.65 – 42.95 39.65
es 52.06 32.66 32.63 44.02 – 41.13
pt 49.17 31.37 31.74 43.25 44.09 –

Table 7: Universal model test set BLEU scores.

src tgt

en de da fr es pt

en – 1.30 2.14 1.25 1.30 -0.30
de 1.44 – 0.98 1.31 1.15 -0.38
da 0.56 -0.32 – -1.56 -1.60 -2.93

fr 1.07 0.73 1.03 – 1.04 0.16
es 1.61 0.98 1.17 0.50 – 0.12
pt -1.49 -2.84 -2.55 -0.77 -0.60 –

Table 8: Improvement of the baseline language modular
model over the universal model on test set in BLEU points.



src tgt

en de da fr es pt

en – 0.76 1.78 1.44 0.55 1.29
de 1.00 – 1.52 1.12 1.13 1.37
da 0.98 0.91 – 1.41 0.87 1.28

fr 0.79 0.82 1.62 – 0.75 1.51
es 1.31 1.11 1.87 1.25 – 0.98
pt 1.38 1.14 1.65 1.34 0.95 –

Table 9: Improvement of the group modular model with layers 3–6 shared (group modular EA3–6) over the universal model
on test set in BLEU points.

src tgt

en de da fr es pt

en – 0.84 1.75 1.49 1.10 -0.62
de 1.40 – 1.30 1.19 1.43 -0.44
da 2.30 1.25 – 1.93 1.59 0.35

fr 0.94 0.88 2.10 – 1.26 0.18
es 1.70 1.06 1.79 1.26 – 0.22
pt 1.73 0.80 1.70 1.07 1.33 –

Table 10: Improvement of the modular model with layers 2–6 shared (EA2–6) over the universal model on test set in BLEU
points.

Lang. pair Universal Group modular Language modular

EA3–6 EA5–6 – EA3–6 EG3–4 EA5–6 EG3–6 EA5–6 EG5 EA6 EG5–6 –

en–de 38.84 39.6 39.57 39.77 39.96 40.11 39.8 39.67 39.96 39.83 40.14
de–en 46.41 47.41 47.25 47.32 47.76 47.8 47.78 47.88 47.56 47.72 47.85
en–da 40.39 42.17 41.99 42.37 42.36 42.65 42.5 42.52 42.45 42.68 42.53
da–en 45.6 46.58 46.77 46.62 47.86 47.91 47.52 46.93 47 47.23 46.16
en–fr 48.6 50.04 50.04 49.9 49.78 50.15 49.78 49.77 50.08 49.84 49.85
fr–en 49.28 50.07 49.84 50.32 50.43 50.56 50.49 50.57 50.27 50.45 50.35
en–es 51.07 51.62 52.03 52.01 51.92 52.22 52.34 52.18 52.03 52.07 52.37
es–en 52.06 53.37 53.27 53.58 53.72 53.77 53.84 53.89 53.69 53.7 53.67
en–pt 45.32 46.61 46.49 46.12 45.11 44.73 44.58 45.04 45.07 44.54 45.02
pt–en 49.17 50.55 50.39 50.53 50.13 49.95 49.95 48.97 48.82 48.87 47.68
de–da 32.44 33.96 33.66 33.56 34.08 34.11 33.67 33.93 33.75 33.58 33.42
da–de 30.57 31.48 31.42 31.21 31.89 31.53 31.27 30.85 30.8 30.95 30.25
de–fr 38.6 39.72 39.7 39.7 39.56 39.92 39.72 39.77 39.72 39.97 39.91
fr–de 32.19 33.01 32.72 32.93 32.68 32.98 32.97 32.64 32.89 32.83 32.92
de–es 39.08 40.21 40.12 40.2 39.94 40.44 40.28 40.18 40.07 40.06 40.23
es–de 32.66 33.77 33.61 33.29 33.44 33.63 33.76 33.66 33.55 33.45 33.64
de–pt 34.41 35.78 35.72 35.14 34.27 34.35 34.28 34.59 34.33 34.18 34.03
pt–de 31.37 32.51 32.35 32.17 31.55 31.51 31.52 30.38 30.03 30.02 28.53
da–fr 36.77 38.18 37.91 37.94 37.99 38 38.26 37.03 36.78 36.82 35.21
fr–da 31.65 33.27 32.54 31.49 33.67 33.11 32.8 33.65 33.37 32.66 32.68
da–es 37.32 38.19 38.31 37.84 38.47 38.56 38.59 37.39 37.09 37.52 35.72
es–da 32.63 34.5 33.41 32.46 34.52 34.81 33.78 34.62 34.14 34.23 33.8
da–pt 32.77 34.05 33.78 33.5 33.19 32.57 32.72 31.79 31.66 31.74 29.84
pt–da 31.74 33.39 32.57 31.24 32.76 32.34 32.38 31.44 31.13 30.86 29.19
fr–es 42.95 43.7 43.78 43.78 43.86 44.18 44.09 43.73 43.83 43.86 43.99
es–fr 44.02 45.27 44.74 44.76 45.18 45.21 45.08 44.88 45.14 44.98 44.52
fr–pt 39.65 41.16 41.08 40.84 40.13 39.57 39.79 39.88 39.97 39.64 39.81
pt–fr 43.25 44.59 44.27 44.24 44.19 43.94 43.79 43.16 43.14 42.99 42.48
es–pt 41.13 42.11 42.15 42.38 41.65 41.39 41.36 41.19 41.42 41.04 41.25
pt–es 44.09 45.04 44.88 44.78 45.09 44.95 44.61 44.06 44.1 44.46 43.49

Table 11: Test set BLEU scores for the main experiments. The best result of each row is in bold.


