
Proceedings of the 2nd Workshop on Deep Learning on Graphs for Natural Language Processing (DLG4NLP 2022), pages 12 - 21
July 15, 2022 ©2022 Association for Computational Linguistics

Improving Neural Machine Translation with the Abstract Meaning
Representation by Combining Graph and Sequence Transformers

Changmao Li and Jeffrey Flanigan
University of California, Santa Cruz

{changmao.li,jmflanig}@ucsc.edu

Abstract

Previous studies have shown that the Abstract
Meaning Representation (AMR) can improve
Neural Machine Translation (NMT). However,
there has been little work investigating in-
corporating AMR graphs into Transformer
models. In this work, we propose a novel
encoder-decoder architecture which augments
the Transformer model with a Heterogeneous
Graph Transformer (Yao et al., 2020) which
encodes source sentence AMR graphs. Ex-
perimental results demonstrate the proposed
model outperforms the Transformer model and
previous non-Transformer based models on
two different language pairs in both the high
resource setting and low resource setting. Our
source code, training corpus and released mod-
els are available at https://github.com/
jlab-nlp/amr-nmt.

1 Introduction

Neural Machine Translation (NMT, Bahdanau et al.
2015; Vaswani et al. 2017) has proven to be an
effective approach, and is the dominant method
for machine translation in recent years. However,
state-of-the-art NMT methods sometimes repeat
words, leave out important pieces of the translation,
and hallucinate information not contained in the
source, or in other words, fail to accurately capture
the semantics of the source in some cases.

To address this problem, researchers have ex-
plored incorporating syntactic and semantic infor-
mation into NMT systems. While most of previous
NMT studies incorporating extra information are
focused on syntax-based NMT (Stahlberg et al.,
2016; Aharoni and Goldberg, 2017; Li et al., 2017;
Chen et al., 2017; Bastings et al., 2017; Wu et al.,
2017; Chen et al., 2018; Currey and Heafield, 2019;
Zhang et al., 2019; Eriguchi et al., 2019; Sundarara-
man et al., 2019; Zhang et al., 2021; Ni et al., 2021),
there has recently been interest in incorporating se-
mantic information into NMT. Marcheggiani et al.

data-entity meet-03

He

end-01

Tuesday night

:ARG0
:ARG1

:time

:weekday
:dayperiod

:ARG0

Figure 1: The AMR graph for sentence "He ended his
meeting on Tuesday night.".

(2018) shows that incorporating Semantic Role La-
beling (SRL) information can alleviating the "ar-
gument switching" problem for NMT. Song et al.
(2019) shows that Abstract Meaning Representa-
tion (AMR, Banarescu et al. 2013) graphs can be
helpful for NMT for the Bi-LSTM with attention.
AMR (Banarescu et al., 2013) is a semantic formal-
ism that encodes the meaning of a sentence as a
rooted, directed graph. Figure 1 shows an AMR
graph, in which the nodes (eg. end-01) represent
the concepts, and edges (eg. AGR0) represent the
relations between concepts they connect.

In prior work, Nguyen et al. (2021) examined the
effect of AMRs in different NMT models, propos-
ing a method for incorporating AMR into NMT.
However, the method Nguyen et al. (2021) pro-
posed for incorporating AMR into the Transformer
showed limited success, as their performance with
the Transformer with AMR was less than their Bi-
LSTM with AMR.

In this work, we re-examine methods for incor-
porating AMR graphs into Transformer models.
The Transformer (Vaswani et al., 2017) architec-
ture has been the state-of-the-art for NMT for sev-
eral years. We propose to improve upon the Trans-
former model by incorporating AMR graphs with
a graph Transformer in a novel manner. In partic-

12

https://github.com/jlab-nlp/amr-nmt
https://github.com/jlab-nlp/amr-nmt

ular, we observe the best performance gains when
integrating the semantic information contained in
the AMR graphs into both the encoder and decoder
modules of the Transformer.

While much research on Transformers is for
text, many researchers have also investigated
Transformer-like architectures for the encoding of
graph structures. Yao et al. (2020) proposed the
Heterogeneous Graph Transformer which indepen-
dently models the different relations in the indi-
vidual subgraphs of the original graph, including
direct relations, indirect relations and other possi-
ble relations between nodes.

We improve the performance of the Transformer
by employing a vanilla Transformer to encode and
decode the source sentence and a Heterogeneous
Graph Transformer to encode an AMR graph of the
source sentence. We use a novel integration model
to combine the graph representations (§3) into the
encoder and decoder. We show that our method
improves upon the Transformer, and improves upon
the best previous method for incorporating AMR
graphs into NMT.

Experiments on the WMT16 English to German
dataset and IWSLT15 English to Vietnamese show
that incorporating AMR into Transformer models
with proper encoding representation combination
models can robustly improve the vanilla sequence-
to-sequence Transformer baseline and outperforms
all previous approaches when incorporating AMR
in both low data setting and large data setting.

In summary, our contributions are the following:

• We propose a novel integration encoder-
decoder model which combines the sentence
representations from the vanilla sequence
Transformer and graph representations from
Heterogeneous Graph Transformer to better
incorporate AMR into machine translation
purely using Transformers.

• We introduce two encoder integration meth-
ods and two decoder integration methods to
combine the two Transformers which enforces
the model to combine information from both
representations independently and coherently.

• We perform several comparison experiments
and results show that our proposed models
robustly performs better than both vanilla se-
quence Transformer and previous baselines
which shows that including AMR into ma-

chine translation can be more effective by only
using Transformer-based models.

2 Background

In this section, we review the original Transformer
architecture for sequences as well as the Heteroge-
neous Graph Transformer, and introduce notation
we will use in later sections.

2.1 Transformer
The Transformer (Vaswani et al., 2017) con-
tains several layers, which has a multi-head self-
attention layer (Bahdanau et al. 2015; Graves et al.
2014; Weston et al. 2015) followed by a feedfor-
ward layer, along with residual connections (He
et al., 2016) and layer normalization (Ba et al.,
2016) .

Let the input sequence be S = [s1, ..., sL] ∈
RL×e, where L is the sequence length and e is
the hidden size of the attention layer. Queries Q,
keys K, and values V used in the self-attention
computation are obtained by linearly projecting the
input, or the output of the previous layer, X:

Q = SWQ,K = SWK , V = SW V , (1)

While WQ,WK ,W V ∈ Re×e are learnable pro-
jection matrices. To perform multi-head self
attention, Q, K, and V are split into heads
Qh,Kh, Vh ∈ RL×d for h in 1, ...,H where H is
the number of heads and d = e/H . Then, the con-
text representation Eh ∈ RL×d, that corresponds
to each attention head h, is obtained by:

Eh = softmax(
QhK

T
h√
d

)Vh, (2)

Where d is the hidden size dimension of each Kh

and the softmax is performed row-wise. The head
context representations are concatenated to obtain
the final context representation ES ∈ RL×e:

ES = [E1, ..., EH]WR, (3)

where WR ∈ Re×e is another projection matrix
that aggregates all head’s representations.

2.2 Heterogeneous Graph Transformer
A Heterogeneous Graph Transformer (Yao et al.,
2020) is a Transformer-based graph encoder and
decoder model. Yao et al. (2020) extends the input
transformed Levi graph (Beck et al., 2018) into
multiple types of subgraphs (i.e.fully-connected,

13

reverse, etc.) according to its heterogeneity then
updating the node representation in different sub-
graphs based on its neighbor nodes in the current
subgraph and finally combining all the representa-
tions of this node in different subgraphs to get the
graph final representation.

Let the input graph nodes be G = [g1, ..., gN] ∈
RN×e, whereN is the number of nodes and e is the
hidden size of the attention layer. Then the output
representation of node i in each attention head Zi

is obtained by:

Zi =
∑

j∈Ni

αij(gjW
V) (4)

αij = softmax(
(giW

Q)(gjW
K)T√

d
) (5)

where W V ,WQ,WK ∈ Re×e are layer-specific
learnable parameter matrices and αij represents
the attention score of node j to i and d = e/H
where H is the number of attention heads. Then
the output Z in each encoder layer is obtained by:

Z = [ZGsub
1 , ..., ZGsub

M]WR (6)

Z
Gsub

m
i =

∑

j∈NGsub
m

i

αij(gjW
V),m ∈ [1,M] (7)

where M is the number of subgraphs,
WR ∈ RMe×e, Gsub

m is the set of sub-
graphs including M elements (i.e. Gsub =
{fullyconnected, connected, default, reverse})
and N

Gsub
m

i is the set of neighbors in the m-th
subgraph of node i. Finally there is a layer
aggregation strategy from Xu et al. (2018) using
Jumping Knowledge architecture (Xu et al., 2018),
so the final output of the graph representation
EG ∈ RN×e is:

EG = [Z1, , ..., ZT]Wjump (8)

where Wjump ∈ RLe×e and T is the number of
layers including the embedding layer.

3 Our AMR-Transformer Model

Figure 2 shows the overview of our proposed model
architecture. To encode and decode both source
sentences and source AMR graphs to target sen-
tences, our model consists of two parallel stacked
encoder and decoder layers, one for sequence en-
coding and decoding from the neural sequence to
sequence model, and the other for graph encoding
and decoding from the neural graph to sequence

Encoder Integration

Decoder Integration

Linear Layer

Sequence
Transformer

Decoder

Graph

Transformer

Decoder

Graph

Transformer

Encoder

Sequence
Transformer

Encoder

Source AMR

Target

Figure 2: Overview of our AMR-Transformer model.

model. Given the encoded sequence representa-
tion from the sequence encoder and the encoded
graph representation from the graph encoder, the
sequence to sequence decoder only receives the se-
quence representation while the graph to sequence
decoder receives the combination of the sequence
representation and the graph representation. The
specific combination approaches are discussed in
§3.2 and §3.3. Finally, two decoder representations
are concatenated and fed into the final linear layer
to generate target sequence representation. In this
way, the model can combine the advantage of the
traditional sequence to sequence model which does
translation based on source sentence encodings and
the graph to sequence model which incorporates
AMR graphs into the translation. The combination
of source sentence representation and the graph
representation into the graph to sequence decoder
can lead the graph to sequence decoder to decoding
towards good translation quality since using only
AMR graphs representation can lead to poor trans-
lation quality compared to the vanilla sequence to
sequence model using source sentences.

14

3.1 Sequence and Graph Encodings
Here we describe our sentence and graph encod-
ings. Let S = [s1, ..., sLs] ∈ RLs×e be the source
sentence where si is the ith token in S, Ls is the
length of the source sentence and e is the hidden
size of the encoder. Let G = [g1, ...gN] ∈ RN×e

be the AMR graph of the source sentence where gj
is the j’th node in G and N is the number of nodes.
The source sequence encoding representation ES

is computed by Eq. 3 and the AMR graph encoding
representation EG is computed by Eq. 8.

3.2 Encoder Integration: Multi-head
Attention Integration

To integrate the encoder representations for the se-
quence encode and graph encoder, we employ a
multi-head attention mechanism. Figure 3 shows
an overview of the multi-head attention (MHA)
(Vaswani et al., 2017) integration of the two en-
coder representations. At a high level, we com-
pute MHA between the source sequence encoding
representation ES and the AMR graph encoding
representationEG, which allows the model to learn
correlations between individual tokens and nodes
in S and G, s∗ and g∗.

Each row inES is the representationES
i ∈ R1×e

of the corresponding token si. Each row in EG is
the representation EG

j ∈ R1×e of the correspond-
ing node gj . These two matrices, ES and EG, are
fed into two types of multi-head attention (MHA)
layers, one finding correlations from S to G (S2G)
and the other from G to S (G2S), which gener-
ate two attention matrices, As2g ∈ RLs×e and
Ag2s ∈ RN×e.

As2g = [hs2g1 , ..., hs2gH]WOs2g (9)

hs2gi = σ(
ESW

Qs2g

i (EGW
Ks2g

i)T√
d

)EGW
Vs2g

i

(10)
H is the number of heads and d = e/H .
W

Qs2g

i ,W
Ks2g

i ,W
Vs2g

i ∈ Re×d, WOs2g ∈ RN×e

are learned parameters and σ represents softmax.

Ag2s = [hg2s1 , ..., hg2sH]WOg2s (11)

hg2si = σ(
EGW

Qg2s

i (ESW
Kg2s

i)T√
d

)ESW
Vg2s

i

(12)

WOg2s ∈ Re×e and W
Qg2s

i ,W
Kg2s

i ,W
Vg2s

i ∈
Re×d are learned parameters and σ is softmax.

Then the graph to sequence decoder input repre-
sentation Dg

in ∈ R(Ls+N)×e is computed by:

Dg
in = [As2g,Ag2s] (13)

Multihead Attention S2G

Multihead Attention G2S

es
Ls

es
1

. . . :ES eg
Neg

1
. . . :EG

as2g
Ls

as2g
1 :As2g . . .

ag2s
Nag2s

1 :Ag2s . . .

C
oncatenate

 :Dg
in

as2g
Ls

as2g
1
. . .

ag2s
N

. . .
ag2s

1

Figure 3: The multi-head attention integration.

3.2.1 Direct Integration
As a baseline, we also experiment with a simpler
method of integrating the two encoders, which we
call direct integration. Given the previous obtained
source sequence encoding representation ES and
AMR graph encoding representation EG, the graph
to sequence decoder input representation Dg

in ∈
R(Ls+N)×e is computed using concatenation:

Dg
in = [ES , EG] (14)

3.3 Decoder Integration

To keep the advantages of the vanilla sequence
Transformer, the sequence to sequence decoder in-
put representation Ds

in is identical to ES , then Ds
in

is fed into the sequence to sequence decoder to
obtain the target sentence representation Ds

out ∈
RLt∗e, where Lt is the length of the target sentence.
The previous obtained Dg

in which is the graph to
sequence decoder input representation is fed into
the graph to sequence decoder to obtain the target
sentence representation Dg

out ∈ RLt∗e. Then the fi-
nal target sentence representation Ztarget ∈ RLt×e

is obtained by:

Ztarget = (Ds
out +Dg

out)W
T
e +Be (15)

Where We ∈ Rv∗e is the embedding weight matrix,
Be ∈ RLt∗v is the bias and v is the vocabulary size.

15

Dataset Train Dev Test
WMT16 EN-DE NC-V11 238K

3000 2999
WMT16 EN-DE Full 4.5M
IWST15 EN-VI 133K 1553 1268 1080

Table 1: The statistics of datasets. EN-DE: English to
German; EN-VI: English to Vietnamese. For IWST15
English-Vietnamese, there are two test sets, the left cell
in the Test column represents the tst2013 and the right
cell in the Test column represents the tst2015.

4 Experiments

4.1 Data and Preprocessing

Following Song et al. (2019), we use the WMT16
English to German dataset1 in both the news com-
mentary setting (News Commentary v11, NC-V11)
and the full data scenario. For all experiments we
use newstest2013 and newstest2016 respectively
as the development and test sets. To evaluate the
model performance on low-resource languages, we
also include experiments on IWST15 English to
Vietnamese dataset2and follow the preprocessing
steps described below. For this dataset, we use
tst2012 as development set and use tst2013 and
tst2015 as test sets following Nguyen et al. (2021).
Table 1 shows the number of sentences for training,
development and testing splits.

To preprocess the data, we use Moses3 data
cleaning and tokenization tools to clean and to-
kenize all data for both sides. We used Google
sentencepiece4 in BPE mode to deal with rare
and compound words for both sides and conducted
4000 BPE merges for English-Vietnamese data,
8000 BPE merges for the English-German News
Commentary V11 data and 16000 BPE merges for
the English-German full data. For the AMR pars-
ing, instead of JAMR (Flanigan et al., 2016) used
by Song et al. (2019), we employed a recent AMR
parser, AMR-gs5 (Cai and Lam, 2020) to obtain
better AMR parsing quality. However we also con-
ducted an AMR parsing ablation experiment using
JAMR in §5.2 to show comparison of the effect of
AMR parsing quality.

4.2 Models

We trained and evaluated the following models on
WMT2016 English-German in both subset data set-
ting and full data setting and one real low resource

1http://www.statmt.org/wmt16/translation-task.html
2https://wit3.fbk.eu/2015-01
3http://www.statmt.org/moses/
4https://github.com/google/sentencepiece
5https://github.com/jcyk/AMR-gs

languages and IWST15 English-Vietnamese. Fol-
lowing Nguyen et al. (2021) we also carefully reim-
plemented and ran their best system which is a
non-Transformer based model with our settings to
show a fair comparison. We use AMR-Transformer
to refer to our proposed model. The models we
compare are:

• Vanilla sequence Transformer (Baseline, §2.1)

• AMR-Transformer-DI: Ours with direct inte-
gration (§3.2.1)

• AMR-Transformer: Ours with MHA integra-
tion (§3.2)

We also compared to other Non-Transformer base-
lines including Dual2seq ((Song et al., 2019))
which leverages the BiLSTM to encode sequences
and graph recurrent network (GRN) to encode
AMR graphs and an improved version proposed
by ((Ni et al., 2021)) which also applies the BiL-
STM to encode sequences but employs the graph
attention network (GAN) to encode AMR graphs.

4.3 Hyperparameters

We use the Adam optimizer (Kingma and Ba, 2015).
The batch size on tokens is set to 4096 with gradi-
ent accumulation size 2. Between layers, we apply
dropout with a probability of 0.1 for the vanilla
sequence Transformer. The best model is selected
based on the word accuracy on the development
set. BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) and Meteor (Denkowski and Lavie,
2014) are used as the metrics on cased and to-
kenized results. For experiments with WMT16
English-German, both Sequence Transformer and
Heterogeneous Graph Transformer word embed-
ding size are 512 and hidden size are 2048, the
dropout for the Heterogeneous Graph Transformer
part is 0.3 and the models are trained for at most
300000 steps with early stopping and 16000 warm
up steps. For experiments with IWST15 English-
Vietnamese, the Sequence Transformer word em-
bedding size is 256 and hidden size is 1024, Het-
erogeneous Graph Transformer embedding size is
256 and hidden size is 512, the dropout for the Het-
erogeneous Graph Transformer part is 0.8 and the
models are trained for at most 120000 steps with
early stopping and 2000 warm up steps. All models
were trained on either one A40 or A100 GPU.

16

System on WMT16 English-German
NC-v11 Full

BLEU TER↓ Meteor PS GH BLEU TER↓ Meteor PS GH
Dual2seq (Song et al., 2019) 19.2 63.1 38.4 - - 25.5 54.8 43.8 - -
Bi-LSTM -AMR (Nguyen et al. 2021, reimplement) 19.0 66.4 37.5 62M 7h 24.8 58.9 43.1 72M 15h
Vanilla sequence Transformer (§2.1) 20.3 66.3. 39.4 52M 12h 26.0 58.5 45.2 61M 20h
Vanilla sequence Transformer (Double Parameters) 20.9 62.1 40.3 138M 12h 26.2 57.6 45.2 151M 20h
AMR-Transformer-DI (§3.2.1) 21.5 62.7 40.4 117M 16h 26.4 56.7 44.9 132M 28h
AMR-Transformer (§3.2) 22.1* 62.0* 41.1* 117M 16h 26.5** 56.4* 45.2 133M 28h

Table 2: TEST performance on WMT16 English-German. NC-v11 represents training only with the NC-v11 data,
while Full means using the full training data. * represents significant (Koehn, 2004) result (p < 0.001) over vanilla
sequence Transformer. ** represents significant result (p < 0.05) over vanilla sequence Transformer. ↓ indicates
lower is better. PS: approximate parameter size. GH: approximate GPU training hours with early stopping.

System on IWST15 English-Vietnamese PS GH
tst2013 tst2015

BLEU TER↓ Meteor BLEU TER↓ Meteor
Bi-LSTM -AMR (Nguyen et al., 2021) - - 29.3 - - 26.4 - -
Bi-LSTM -AMR (Nguyen et al. 2021, reimplement) 17M 9h 26.4 56.4 44.1 25.2 60.5 42.1
Vanilla sequence Transformer (§2.1) 13M 5h 30.0 52.1 48.2 27.6 57.6 45.4
Vanilla sequence Transformer (Double parameters) 36M 5h 28.3 54.4 46.4 26.8 59.2 44.2
AMR-Transformer-DI (§3.2.1) 20M 7h 30.2 52.4 48.2 28.2 57.3 45.5
AMR-Transformer (§3.2) 20M 7h 30.6* 52.1 48.5 28.2** 57.1 45.9

Table 3: TEST performance on IWST15 English-Vietnamese. tst2013 represents the results evaluated on tst2013
and tst2015 represents the results evaluated on tst2015. * represents p < 0.05 over vanilla sequence Transformer.
** represents p < 0.11 over vanilla sequence Transformer. ↓ indicates lower is better. PS: approximate parameter
size. GH: approximate GPU training hours with early stopping.

4.4 Main Results

4.4.1 Results on WMT16 English-German
Table 2 shows the test BLEU, TER and Meteor
scores of all systems trained on the small scale
News Commentary v11 subset or the large scale
full set. The result shows that our Transformer
baseline already outperforms all previous non-
Transformer based results. Our system using AMR-
Transformer whether it is DI or MI are all consis-
tently better than the other systems under all three
metrics, showing the effectiveness of the semantic
information provided by AMR with Transformers.
Particularly, AMR-Transformer is the best perform-
ing model for both settings and significantly bet-
ter than vanilla sequence Transformer baselines
under all three metrics. In terms of different set-
tings, our best model shows 1.8 BLEU points im-
provement over the vanilla sequence Transformer
baseline and at least 2.9 BLEU points improve-
ment over the non-Transformer baselines on News
Commentary V11 data. For the Full data, the im-
provement is smaller but our best model is still
significantly better than vanilla sequence Trans-
former baseline in terms of BLEU points and at
least 1.0 BLEU points improvement over the non-
Transformer baselines. The results show the same
conclusion as Song et al. (2019) that AMR graphs
helps more on a low resource setting. Our AMR-

Transformer model has roughly double the parame-
ters as the baseline Transformer model due to the
graph encoder. To show the effectiveness of our
approach is not from increasing the parameter size,
we conduct experiments on Transformer baselines
with doubled parameters. Our approach still shows
better performance.

4.4.2 Results on IWST15 English-Vietnamese

Table 3 shows the results of all systems trained
on the IWST15 English to Vietnamese data. Our
best AMR-Transformer is significantly better than
vanilla sequence Transformer on tst2013 and also
better than the previous non-Transformer based
model. However, the model is not significantly
better on tst 2015, which is due to the different
data distribution between tst2013 and tst2015. Our
experiments also show that adjusting the model
dropout rate of Heterogeneous Graph Transformer
side when using fixed hyperparameter of the Se-
quence Transformer side during training can im-
prove the performance since the model dropout rate
can control how much AMR information is used to
contribute to the final predictions. Our experiments
inidcate that a high dropout rate for Heterogeneous
Graph Transformer side during low resource set-
tings can enable AMR information help sequence
to sequence model better than a low dropout rate.

17

Ablation on WMT16 English-German
NC-v11 Full

BLEU TER↓ Meteor BLEU TER↓ Meteor
AMR-Transformer, No Encoder Integration 20.9 64.1 39.5 26.4 56.5 45.4
AMR-Transformer-DI, Single Decoder 19.9 65.8 36.6 25.5 60.8 42.6
AMR-Transformer, Single Decoder 16.1 72.7 32.3 21.6 65.4 38.7
AMR-Transformer-DI 21.5 62.7 40.4 26.4 56.7 44.9
AMR-Transformer 22.1 62.0 41.1 26.5 56.4 45.2

Table 4: Model ablations TEST performance comparasion on WMT16 English-German. NC-v11 represents train-
ing only with the NC-v11 data, while Full means using the full training data.). ↓ indicates lower is better.

The improvement gap between our best model and
vanillas Transformer is smaller than the model
trained on English to German News commentary
V11 data which indicates that the size of the train-
ing data in low resource settings takes an effect
on how much AMR information can help when
incorporating into the sequence to sequence trans-
lation models. With more training data when it is
in low resource setting, the help of AMR informa-
tion increases but during high resource setting the
help of AMR information decreases. Our AMR-
Transformer model has roughly double the parame-
ters as the baseline Transformer model due to the
graph encoder. To show the effectiveness of our
approach is not because of enlarging the parameter
size in this dataset, we also double the parameters
of Transformer baselines, and the performance is
even lower than the smaller parameters baseline
due to the possible over-fitting.

5 Analysis and ablation studies

5.1 Model ablations

To verify the effectiveness of our encoder integra-
tion and decoder integration we conduct ablation
experiments on WMT16 English-German data. Ta-
ble 4 shows model ablations test performance. we
can see that compared to the best model, the perfor-
mance drops largely on the both data setting with-
out decoder integration , at least 2.2 BLEU points
drop on News Commentary V11 data and at least
2.7 BLEU drop on the full data which indicates
the decoder integration have a large contribution to
the performance improvement in both data settings.
For the encoder integration part, it shows different
situations on the two data setttings. On the News
Commentary V11 training data, without encoder
integration, the BLEU drops 1.2 points while on the
full training data, however, the BLEU score does
not drop too much which indicates that encoder
integration is more helpful in low resource settings.

Generally, the drop gap between the best model and
without decoder integration is larger than the drop
gap between the best model and without encoder
integration which indicates that decoder integration
is more helpful for the performance improvement
than the encoder integration in both data settings.

5.2 Influence of AMR parsing accuracy

To verify the influence of AMR parsing quality we
also conduct an experiment on News Commentary
V11 dataset using a previous JAMR paser (Flanigan
et al., 2016) with the best model. Table 6 shows the
result. We can see that with a lower quality AMR
parser the BLEU score drops 0.9 points but it is still
better than the vanilla sequence Transformer base-
line and previous non-Transformer based models,
which indicates that the quality of the AMR parser
influences the performance of the model. However,
even with lower quality AMR parses, our approach
can still improve upon the Transformer baseline.

5.3 Case study

We conduct case studies for a better understand-
ing of the model performance. We compare the
outputs of the vanilla Transformer baseline and
our AMR-Transformer model with multihead at-
tention integration trained on News commentary
V11 data. Tables 5 presents these examples. In the
first example, the source sentence is in the syntax
of "someone said something" and the vanilla Trans-
former baseline model completely misses this syn-
tax which causes the incorrect translation while our
model perfectly kept the original sentence syntax
and meaning. In the second example, the vanilla
Transformer baseline model incorrectly translate
the verb "hold up" into "verteilt" which means "dis-
tributed" in German which causes meaning of the
sentence entirely different from the source sen-
tence, while our model perfectly translate it the
same as the reference sentence which indicates that
our model with AMR graphs is helpful for keeping

18

AMR: (c0 / say-01 :ARG0 (c2 / we) :ARG1 (c1 / take-01 :ARG0 c2 :ARG1 (c4 / they)
:ARG3 (c5 / city :name (c7 / name :op1 "passau")) :manner (c6 / car)) :time (c3 / once))
Src: We said at once that we would take them to Passau by car .
Ref: Wir haben gleich gesagt , wir bringen sie mit dem Auto nach Passau .
Vanilla Transformer: Sobald wir sie zu einem Auto nach Passau nehmen würden .
AMR-Transformer: Wir sagten einmal darauf , dass wir sie mit dem Auto Passau nehmen würden .
AMR: (c0 / and :op2 (c1 / hold-up-11 :ARG1 (c2 / number :mod (c4 / this)) :location (c3 / state :mod (c5 / early))))
Src: And these numbers hold up in early states .
Ref: Und diese Zahlen halten sich in frühen Staaten .
Vanilla Transformer: Und diese Zahlen sind in frühen Bundesstaaten verteilt .
AMR-Transformer: Und diese Zahlen halten an frühe Staaten fest .
AMR: (c0 / note-01 :ARG1 (c1 / it) :ARG1-of (c3 / cause-01 :ARG0 (c4 / reason :ARG1-of (c5 / personal-02))) :mod (c2 / too))
Src: It was noteworthy because of personal reasons , too .
Ref: Sie war auch aus persönlichen Gründen bemerkenswert .
Vanilla Transformer: Auch weil es aus persönlichen Gründen bemerkenswert war , war sie beachtenswert .
AMR-Transformer: Sie war auch aufgrund von persönlichen Gründen bemerkenswert .
AMR: (c0 / contrast-01 :ARG1 (c1 / hard-02 :ARG1 (c3 / find-01 :ARG1 (c7 / keep-01)) :mod (c4 / usual) :polarity -)
:ARG2 (c2 / possible-01 :ARG1 (c6 / get-03 :ARG1 (c8 / store) :ARG2 (c9 / busy-01 :ARG1 c8))))
Src: While the store can get busy , parking is usually not hard to find .
Ref: Auch wenn der Laden gut besucht ist , ist es nicht schwer , einen Parkplatz zu finden .
Vanilla Transformer: Während sich der Laden mit dem Glücksfall beschäftigt , ist es normalerweise nicht schwer, einen
Parking zu finden .
AMR-Transformer: Während der Stur Busy bekommen kann , ist Parking normalerweise nicht schwer zu finden .

Table 5: Sample system outputs

Ablation with JAMR NC-v11
BLEU TER↓ Meteor

AMR-Transformer w/ JAMR 21.2 64.4 40.3
AMR-Transformer w/ AMR-gs 22.1 62.0 41.1

Table 6: TEST performance on WMT16 English to
German NC-v11 using two different AMR pasers with
the best model. ↓ indicates lower is better.

the meaning of the verbs. In the third example, the
vanilla sequence Transformer repeatedly translates
the same meaning twice while our model correctly
translate it only once which indicates our model
can avoid the repetition of tokens in the same mean-
ing. However, there are situations that our model
performs badly. In the forth example, our model in-
correctly translates the noun word "store" while the
vanilla Transformer baseline translate it correctly
which indicates that AMRs may not be helpful
when translating nouns.

Generally from our observations, with the AMR
incorporated with our proposed model, although
there may be a problem for translation of nouns, our
system can more correctly translate the key verbs,
more easily keep the same sentence syntax with
the source sentence and avoid repetitions which
are enable the NMT system more easily to keep
the source sentence meaning and generate a better
translation quality.

6 Related Work

Several recent studies have investigated on how to
incorporate semantic information into neural ma-
chine translation (NMT) models. Marcheggiani
et al. (2018) studied the semantic role labeling
(SRL) information for NMT, which used graph
convolutional network (GCN) layers to encode the
predicate-argument structure from SRL to improve
the translation performance of the NMT model.
In line with their work, Song et al. (2019) was
the first to exploit the AMR information on NMT,
which used a graph recurrent network to encode
the AMR graph and found that AMR informa-
tion can improve attention-based sequence to se-
quence neural translation model and they only eval-
uated their model on WMT16 English to German
dataset. Nguyen et al. (2021) then examine the
effect of AMR in different sequence to sequence
machine translation models, however, they found
that their proposed single decoder Transformer
model to incorporate the AMR information per-
forms worse than the Bi-LSTM model with sim-
ple graph attention network. In this paper, we
focus on improving the performance of incorpo-
rating AMR information purely with Transform-
ers. Our proposed method of integrating vanilla
sequence Transformer and Heterogeneous Graph
Transformer model with encoder integration and
decoder integration provides a better way to incor-
porate the AMR information into NMT.

19

7 Conclusion

We combine the Transformer and the Heteroge-
neous Graph Transformer to incorporate semantics
captured in AMR graphs into neural machine trans-
lation. Experimental results show that our proposed
AMR-Transformer model robustly outperforms the
vanilla sequence Transformer baseline and previous
non-Transformer based models across two differ-
ent language pairs in both high resource setting and
low resource setting.

Acknowledgements

J.F. was supported in part by the NSF National
AI Institute for Student-AI Teaming (iSAT) under
grant DRL 2019805. The opinions expressed are
those of the authors and do not represent views
of the NSF. We are thankful for the computing
resources provided by the Pacific Research Plat-
form’s Nautilus cluster, supported by the NSF un-
der Award Numbers CNS-1730158, ACI-1540112,
ACI1541349, OAC-1826967, the University of Cal-
ifornia Office of the President, and the Univer-
sity of California San Diego’s California Institute
for Telecommunications and Information Technol-
ogy/Qualcomm Institute.

References
Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 132–140, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph

convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1957–1967, Copenhagen, Den-
mark. Association for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273–283, Melbourne, Australia. Association
for Computational Linguistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. As-
sociation for Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1936–1945, Vancouver,
Canada. Association for Computational Linguistics.

Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro
Sumita, and Tiejun Zhao. 2018. Syntax-directed at-
tention for neural machine translation. In AAAI.

Anna Currey and Kenneth Heafield. 2019. Incorpo-
rating source syntax into transformer-based neural
machine translation. In Proceedings of the Fourth
Conference on Machine Translation (Volume 1: Re-
search Papers), pages 24–33, Florence, Italy. Asso-
ciation for Computational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2019. Incorporating Source-Side Phrase
Structures into Neural Machine Translation. Com-
putational Linguistics, 45(2):267–292.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. CMU at SemEval-2016
task 8: Graph-based AMR parsing with infinite
ramp loss. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1202–1206, San Diego, California. Associa-
tion for Computational Linguistics.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

20

https://doi.org/10.18653/v1/P17-2021
https://doi.org/10.18653/v1/P17-2021
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/W19-5203
https://doi.org/10.18653/v1/W19-5203
https://doi.org/10.18653/v1/W19-5203
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.1162/coli_a_00348
https://doi.org/10.1162/coli_a_00348
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
http://arxiv.org/abs/1410.5401

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 688–697, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 486–492, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Long H. B. Nguyen, Viet H. Pham, and Dien Dinh.
2021. Improving neural machine translation with
amr semantic graphs. Mathematical Problems in En-
gineering, 2021:1–12.

Bin Ni, Xiaolei Lu, and Yiqi Tong. 2021. Synxlm-r:
Syntax-enhanced xlm-r in translation quality estima-
tion. In Natural Language Processing and Chinese
Computing, pages 27–40, Cham. Springer Interna-
tional Publishing.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the As-
sociation for Machine Translation in the Americas:
Technical Papers, pages 223–231, Cambridge, Mas-
sachusetts, USA. Association for Machine Transla-
tion in the Americas.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using AMR. Transactions of the
Association for Computational Linguistics, 7:19–31.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically guided neural machine
translation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 299–305, Berlin,
Germany. Association for Computational Linguis-
tics.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Shijing Si, Dinghan Shen, Dong
Wang, and Lawrence Carin. 2019. Syntax-infused
transformer and BERT models for machine trans-
lation and natural language understanding. CoRR,
abs/1911.06156.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In 3rd International Con-
ference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Shuangzhi Wu, Ming Zhou, and Dongdong Zhang.
2017. Improved neural machine translation with
source syntax. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI-17, pages 4179–4185.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro
Sonobe, Ken ichi Kawarabayashi, and Stefanie
Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In ICML.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for graph-
to-sequence learning. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7145–7154, Online. Association
for Computational Linguistics.

Meishan Zhang, Zhenghua Li, Guohong Fu, and Min
Zhang. 2019. Syntax-enhanced neural machine
translation with syntax-aware word representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
1151–1161, Minneapolis, Minnesota. Association
for Computational Linguistics.

Tianfu Zhang, Heyan Huang, Chong Feng, and Long-
bing Cao. 2021. Self-supervised bilingual syntac-
tic alignment for neural machine translation. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 35(16):14454–14462.

21

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P17-1064
https://doi.org/10.18653/v1/P17-1064
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.18653/v1/N18-2078
https://EconPapers.repec.org/RePEc:hin:jnlmpe:9939389
https://EconPapers.repec.org/RePEc:hin:jnlmpe:9939389
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.18653/v1/P16-2049
https://doi.org/10.18653/v1/P16-2049
http://arxiv.org/abs/1911.06156
http://arxiv.org/abs/1911.06156
http://arxiv.org/abs/1911.06156
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1410.3916
https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.18653/v1/2020.acl-main.640
https://doi.org/10.18653/v1/2020.acl-main.640
https://doi.org/10.18653/v1/N19-1118
https://doi.org/10.18653/v1/N19-1118
https://ojs.aaai.org/index.php/AAAI/article/view/17699
https://ojs.aaai.org/index.php/AAAI/article/view/17699

