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Introduction

The NAACL 2022 Workshop on Deep Learning Approaches for Low-Resource Natural Language Pro-
cessing (DeepLo) takes place on Thursday, July 22, in Seattle Washington, USA, immediately after the
main conference.

Natural Language Processing is being revolutionized by deep learning. However, deep learning re-
quires large amounts of annotated data, and its advantage over traditional statistical methods typically
diminishes when such data is not available. Large amounts of annotated data simply do not exist for
many low-resource languages. Even for high-resource languages it can be difficult to find linguistically
annotated data of sufficient size and quality to allow neural methods to excel; this remains true even as
few-shot learning approaches have gained popularity in recent years.

This workshop aims to bring together researchers from the NLP and ML communities who work on lear-
ning with neural methods when there is not enough data for those methods to succeed out-of-the-box.
Specifically, it will provide attendees with an overview of new and existing approaches from various
disciplines, and enable them to distill principles that can be more generally applicable. We will also
discuss the main challenges arising in this setting, and outline potential directions for future progress.

Our program covers a broad spectrum of applications and techniques. It is augmented by invited tal-
ks from Yulia Tsvetkov, Sebastian Ruder, Graham Neubig, and David Ifeoluwa Adelani.

We would like to thank the members of our Program Committee for their timely and thoughtful re-
views.

Colin Cherry, Angela Fan, George Foster, Gholamreza (Reza) Haffari, Shahram Khadivi, anyun (Violet)
Peng, Xiang Ren, Ehsan Shareghi, Swabha Swayamdipta
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Abstract

The lack of resources for languages in the
Americas has proven to be a problem for the
creation of digital systems such as machine
translation, search engines, chat bots, and more.
The scarceness of digital resources for a lan-
guage causes a higher impact on populations
where the language is spoken by millions of
people. We introduce the first official large
combined corpus for deep learning of an indige-
nous South American low-resource language
spoken by millions called Quechua. Specifi-
cally, our curated corpus is created from text
gathered from the southern region of Peru
where a dialect of Quechua is spoken that has
not traditionally been used for digital systems
as a target dialect in the past. In order to make
our work repeatable by others, we also offer
a public, pre-trained, BERT model called Qu-
BERT which is the largest linguistic model ever
trained for any Quechua type, not just the south-
ern region dialect. We furthermore test our
corpus and its corresponding BERT model on
two major tasks: (1) named-entity recognition
(NER) and (2) part-of-speech (POS) tagging
by using state-of-the-art techniques where we
achieve results comparable to other work on
higher-resource languages. In this article, we
describe the methodology, challenges, and re-
sults from the creation of QuBERT which is on
on par with other state-of-the-art multilingual
models for natural language processing achiev-
ing between 71 and 74% F1 score on NER and
84–87% on POS tasks.

1 Introduction

With the availability of online digital resources
for computation and data storage, the capability
for executing natural language processing (NLP)
tasks such as named-entity recognition (NER), part-
of-speech (POS) tagging, and machine translation
(MT) on low-resource languages, languages with

few digital resources available, has increased. The
processing power and data available for experimen-
tation are unsurpassed in history and research (Ed-
wards, 2021) has shown that in the current decade
we are on track to overcome previous methods,
such as Moore’s law (Schaller, 1997), for predict-
ing computing time of experiments. This finding
is better observed on high-resources languages like
English and French where the amount of data that
exists is more than enough to take advantage of
the latest computing architectures. Unfortunately,
for other low-resource languages like Quechua, an
indigenous language spoken by millions in Peru,
South America, it is more difficult to create statisti-
cally significant NLP models due to the amount of
data needed (typically on the order of millions of
sentences). Therefore, it is critical to create public-
facing mechanisms for low-resource languages like
Quechua to help provide research collaboration
which will improve the quality for low-resource
language NLP systems. We aim to improve the
digital resources available for Quechua by curating
a large monolingual corpus for southern Quechua,
a dialect of Quechua spoken in the southern region
of Peru not commonly found in most literature.

The initiative we present in this article can be
considered a major contribution and advancement
as means to improve the quality of NLP tasks for
the Quechua language. We outline the multiple
innovations and contributions provided below.

1. A considerably large, curated, monolingual
corpus of southern Quechua consisting of
nearly 450K segments.

2. A normalization technique applied to the cor-
pus based on finite-state transducers (FSTs)
(Rios, 2015; Rios and Göhring, 2016; Ortega
et al., 2020a).
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3. Several tokenization techniques applied to
the corpus, each made available for down-
load, including byte-pair encoding (BPE)
(Sennrich et al., 2015), BPE-Guided (Or-
tega et al., 2020a), and Prefix-Root-Postfix-
Encoding (PRPE) (Chen and Fazio, 2021;
Zuters et al., 2018).

4. A pre-trained transformer model based on
RoBERTa (Liu et al., 2019) called QuBERT
that uses the corpus along with the best per-
forming normalization and tokenization tech-
niques from items 2 and 3 above.

5. A comparison of the performance of the tech-
niques introduced in items 2 and 3 above on a
NER classification task.

6. A comparison of the performance of the tech-
niques introduced in items 2 and 3 above on a
POS classification task.

In order to cover our innovations and contribu-
tions, we highlight the details in several sections.
First, in Section 2, we describe the latest work
on Quechua and other techniques related to low-
resource NLP tasks such as the ones we introduce
on NER and POS. Next in Section 3, we provide
more background on the Quechua language by cov-
ering morphological, phonological, and other im-
portant grammatical details. Then, we describe
how we curated our corpus in Section 4. In Section
5, we provide details on the parameters and config-
uration for our models and tokenization techniques
which leads way to the experimental evaluation and
results from the NER and POS tasks in Section 6.
Finally, we wrap up with a few proposed lines of
future work and a conclusion in Section 7.

2 Related work

In this section we present several works that can be
considered state-of-the-art at this time for Quechua.
Since we are introducing several new contributions,
we briefly cover the most recent work and how it
related to each contribution mentioned.

First, concerning the introduction of the corpus,
we discuss work where corpora have been intro-
duced for public use. Like many low-resource NLP
projects, one of the several corpora that is often
used is the Opus1 (Tiedemann, 2012) corpus. It
contains text similar to ours in southern Quechua

1http://opus.nlpl.eu

(Quechua II, see more details on Quechua vari-
ants in Section 3); however, it contains biblical
text only. Other work (Ortega et al., 2020a) intro-
duced the JW300 corpus (Agić and Vulić, 2019);
their corpus was for one domain also. The corpus
we present contains entries from several diverse
sources while at the same time including Opus and
the JW300. Ortega et. al (Ortega et al., 2020a)
also presented a magazine selection known as Hi-
nantin which contained 250 non-biblical Quechua—
Spanish sentences found on-line2. While the Hi-
nantin magazine was a more diverse domain than
other Quechua corpora previously introduced, our
corpus is the largest and most diverse compiled
currently available.

Our second contribution consists of a normaliza-
tion technique used in previous work (Rios, 2015;
Rios and Göhring, 2016; Ortega et al., 2020a). The
work presented in this article uses the same normal-
ization technique (described further in Section 5)
but, to our knowledge, this is the first time that the
normalization technique has been used on a corpus
of this size for southern Quechua.

Thirdly, for Quechua, there has not been a tok-
enization comparison similar to the one presented
here. There are two works (Chen and Fazio, 2021;
Ortega et al., 2020a) that present approaches called
BPE-Guided and PRPE separately but their work
did not compare on such a varied corpus for named-
entity recognition or part-of-speech tasks, both of
their works for the machine translation task only.

The fourth, fifth, and sixth contributions are all
related to the first-time presentation of a deep learn-
ing transformer model for Quechua that is used
for NER and POS classification tasks. One of the
works that presented deep learning approaches for
Quechua is a shared task (Mager et al., 2021a)
from the first workshop on NLP for indigenous
languages of the America (Mager et al., 2021b).
Another work called indt5 (Nagoudi et al., 2021)
used an encoder-decoder model transformers based
on T5 (Raffel et al., 2020). Both models were
mainly used for translation and the data did not
contain nearly as much Quechua–Spanish text as
ours. (Ortega et al., 2020a) applied a deep learning
approach where quality was low due to the use of
the Opus corpus for training and Hinantin for test –
their deep learning approach was for machine trans-
lation also. Other work (Zheng et al., 2021; Liu
et al., 2020) has presented large corpora with trans-

2http://hinant.in
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former architectures but did not include Quechua as
one of the low-resource languages. The one work
that can be considered closest to ours in size and
technique is the work by Wongso et. al (Wongso
et al., 2021), they pre-trained mono-lingual models
on GPT-2 (Radford et al., 2019), BERT (Devlin
et al., 2019), and RoBERTa (Liu et al., 2019). Like
our work, they used a monolingual corpus which
consisted of a variety of text and evaluated the mod-
els on a sentiment classification task for Sudanese.
The main difference between their work and our
work is that our tasks are slightly different and are
based on Quechua. In order to better understand
why NLP tasks for Quechua can be more complex
than for other languages, we present more details
in the next section on the language.

3 Quechua language

Quechua is an indigenous language native to
several regions in South America, mainly Peru,
Ecuador, and Bolivia, and is spoken by nearly 8
million people. It is known (Pinnis et al., 2017;
Kann, 2019; Karakanta et al., 2018) to be a highly
inflective language based on its suffixes which ag-
glutinate. Due to its morphology, Quechua has
been found to be similar to other languages like
Finnish (Ortega et al., 2021, 2020b; Ortega and
Pillaipakkamnatt, 2018).

Linguistically, Quechua can be considered a
unique and even complex language due to the
highly polysynthetic nature and phonology. Slight
changes in morphemes (small sub-word units)
can modify a word’s meaning drastically. Since
Quechua is the South American language with the
highest amount of native speakers and those speak-
ers tend to introduce diverse accentuated tones on
different words depending on the locality, one can
assume that the combination of morphological and
tonal rules that cause inflection can make tasks like
the ones presented in this article (NER and POS)
difficult due to the high likelihood of non-common
meanings for sub-words and letters. For example,
by adding an accent to the letter ‘o’ in Quechua,
words become plural.

Quechua synthesis, or the synthetic index (Green-
berg, 1963) – the average number of morphemes
per word, is about two times larger than English.
English typically has around 1.5 morphemes per
word and Quechua has about 3 morphemes per
word. This high morphological complexity has
been described in detail in the past (Muysken,

1988); few have been able to overcome the chal-
lenges that low-resource languages like Quechua
present for digital processing. Quechua’s phonol-
ogy uses three vowels for the most part: a, i, and
u. Consonants, on the other hand, are numerous
and depending on the region where it is spoken,
Quechua can have up to 14 constants (Ortega et al.,
2020a). Generally speaking, lexemes are mono-
syllabic or bi-syllabic having two vowels (VV) or
two consonants (CC) that do not concur in the same
syllable. From a phonological perspective, the
scheme of any Quechua root is: (C)V(C)-CV(C)
(Cerrón-Palomino, 1994).

The region where Quechua is spoken can be con-
sidered important. Alfredo Torero (Torero, 1964)
reported that there are two main divisions of the
language (Quechua I and Quechua II). Quechua II
is mostly spoken in regions such as Ayacucho, Peru
and is considered a “southern” language. There are
several more dialects spoken and others (Adelaar,
2004) report several divisions for Quechua II; but,
in this article we focus specifically on the southern
version at a high-level.

A lot of the Quechua morphology has been doc-
umented in previous works (Rios et al., 2008; Rios,
2015; Muysken, 1988; Monson et al., 2006; Torero,
1964); however, there is not a clear consensus to
resolve all morphology issues that may arise. In
order to statistically determine which branch of
morphemes a verb phrases falls under can be diffi-
cult with Quechua since there are so few resources.
A short example sentence of how complex mor-
pheme determination can be is depicted in Table
1. In some cases, there are hundreds of options to
choose from when choosing which suffix to use for
a given Quechua word.

4 Corpus details

4.1 Monolingual
We consider the introduction of our monolingual
corpus on southern Quechua the largest corpus of
its kind to date. Table 4 gives a precise overview of
all of the corpora that we have combined in October
2021 in order to present our corpus publicly online3.
We have created the corpus from several sources.
The majority of corpora combined to create the
final corpus is a compilation of 50 monolingual
corpora from different sources on the web includ-
ing OSCAR (Suárez et al., 2019), JW300 (Agić and

3https://huggingface.co/datasets/
Llamacha/monolingual-quechua-iic
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Test sentence: Chantapis Biblianejta qotuchakuynejta ima yanapallawanchejtaj

Stemmed Morpheme Potential Suffixes
Chanta –pis –s
Biblia –niq –ta
qutachu –ku –y –niq –ta
ima
yanapa –lla –wa –nchik –ta
yanapalla –wa –nchik –ta

Table 1: The sub-segment suffix choices of a short sentence for a Quechua sentence. (Ortega et al., 2020a)

Vulić, 2019), and CC-100 (Conneau et al., 2020;
Wenzek et al., 2020). To our knowledge, these cor-
pora have not yet been introduced as one southern
Quechua corpus to the wider research community.
Additionally, our corpus contains other corpora
mentioned below (see Table 4 for a complete list)
that are not easily found on-line.

The introduction of our corpus is part of a larger
project called Llamacha4 focused on helping under-
resourced communities . In Llamacha, the authors
have begun to use the corpus directly as a form
of creating software tools able to help teachers
in regions of southern Peru where Quechua II is
spoken. Llamacha tools cover several use cases
such as government documents, children’s internet
tools, and more. This demand constitutes the main
reason we distribute this corpus for public use – it is
our hope that others from the research community
will get involved to help develop more tools that
can use our corpus.

With such a high demand for diverse perfor-
mance, we compiled our corpus to cover the do-
mains mentioned and more. Our compilation spans
across several domains including religion, eco-
nomics, health, social, political, justice and cul-
ture. We consulted several sources such as books
and stories from Andean narratives and the Peru-
vian Ministry of Education5 to collect data. Table
4 illustrates the entire data set which consists of
4,408,953 tokens and 384,184 sentences, including
what are known as “Chanka” and “Collao” vari-
ants, variants specific to the Quechua II branch. In
effect, we have created a corpus that is nearly ten
times larger than most widely used Quechua corpus
(Rios, 2015) until now which has eight combined
corpora, 47,547 tokens, and 3,614 sentences.

4https://llamacha.pe
5http://www.minedu.gob.pe/

4.2 Named-entity recognition and
part-of-speech

Both the NER and POS corpora were created using
the corpus introduced and are made publicly avail-
able online6. There are slight differences, nonethe-
less, between the amount of examples used that we
note in this section.

In order to create the NER and POS corpora
a team of ten annotators were selected. The an-
notators were university students and 7 of 10 of
them were native Quechua speakers. Nonetheless,
they were all students of what is known as a “In-
tercultural Bilingual Education” in Peru where stu-
dents are taught coursework in both Quechua and
Spanish. Annotation was performed using Label-
Studio7 to annotate sentences for NER and POS.

The NER corpus was built using 5,450 sen-
tences using the CoNLL2003 (Sang and De Meul-
der, 2003) format. Work was reviewed to ensure
that annotations were standardized and using an
BIO format annotating only the following tags:
Person (PER), Location (LOC) and Organization
(ORG). The POS corpus was built using 4,229 sen-
tences and annotated identical to previous work on
POS Rios (2015) for Quechua. Additionally, as a
way of having a more precise tagging strategy, we
used official dictionaries of “Chanka” and “Collao”
Quechua from the Peruvian Ministry of Education
to identify POS tag correctness.

5 Experimental settings

5.1 Tokenization

Our tokenization strategy is to include the state-
of-the-art techniques currently being used for
Quechua, regardless if it is Quechua I or II (Torero,
1964). We do this as a mechanism to show that

6https://github.com/Llamacha/QuBERT
7https://labelstud.io
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Text Ismael Montes Hatun Yachay Wasi Yachachiqkunap
BPE Ismael Montes H@@atun Yachay Wasi Yachachiqkuna@@p
PRPE Ismael Monte@@s Hatun Ya@@chay Wasi Yach@@achiq@@kuna@@p

BPE-Guided Is@@m@@a@@el Mon@@t@@es Hatun Yachay Wasi Yach@@achiq@@kunap

Table 2: The use of four word-tokenization techniques for Quechua.

the corpus presented in Section 4 can be used to
achieve high performance (around 80–90% accu-
racy) for tasks similar to high-resource languages
as a recent survey (Li et al., 2020) has shown.

We use the latest tokenization techniques which
focus on sub-word segmentation. (Haddow et al.,
2021; Chen and Fazio, 2021; Ortega et al., 2020a;
Sennrich et al., 2015) Byte-pair encoding (BPE)
(Sennrich et al., 2015) can be considered one of the
most widely-used approaches and a fundamental
technique that has served as a baseline for pre-
vious research (Ortega et al., 2021, 2020a,b) on
Quechua. The BPE approach is considered the
de-facto standard tokenization algorithm for ag-
glutinative languages (Chimalamarri and Sitaram,
2021). BPE represents text at the character-level
and then merges the most frequent pairs iteratively
until a pre-determined number of merge operations
have been reached. Our BPE tokenizer was trained
on the entire collective corpus from Section 4 with
a vocabulary size of 52,000.

Alternatively, we additionally experiment with
a popular extension of the BPE technique called
BPE-Guided (Ortega et al., 2020a), used for in-
creasing performance on Quechua machine transla-
tion. BPE-Guided is similar to the BPE approach in
that it iteratively “discovers” sub-word segmenta-
tion by jointly learning a vocabulary and character-
level segmentation. The extension offered by BPE-
Guided is that it introduces Quechua knowledge in
a a-priori manner by using the BPE algorithm for
excluding common suffixes found on Wikimedia8

before learning a vocabulary or segmentation. In
our experiments, we use the list of Quechua suf-
fixes introduced previously (Ortega et al., 2020a).

Another tokenization technique that has been
shown to perform better than BPE and BPE-
Guided on Quechua texts (Chen and Fazio, 2021)
is known as the Prefix-Root-Postfix-Encoding
(PRPE) (Zuters et al., 2018) technique. The PRPE

8https://en.wiktionary.org/wiki/
Category:Quechua_suffixes

algorithm separates words into three main divi-
sions: (1) a prefix, (2) a root, and (3) a postfix.
It completes this separation by first learning a sub-
word vocabulary through detecting potential pre-
fixes and post-fixes based on a heuristic. It then
aligns the prefixes and post-fixes into sub-strings of
a word to find potential roots. Once the roots have
been located, the text is segmented into sub-words
according to their statistical probability. Table 2
shows an example southern Quechua sentence tok-
enized by the three approaches mentioned.

Lastly, all text with exception of one experiment
(Text and BPE in Table 3) is normalized with the
Quechua toolkit (Rios, 2015) that uses finite-state
transducers (Mohri, 1997) to determine if words
belong to the same category and can be merged
into one. Rios (2015)[Section 2.5] describe their
normalization methodology which contains four
models that are based on morphology, the “normal-
ization” technique used in our experiments follows
their work which includes all four models.

5.2 Model Architecture

We call our model QuBERT because it is a trans-
former model based on BERT (Devlin et al., 2019).
More specifically, our model has been trained using
the RoBERTa (Devlin et al., 2018) enhancement to
BERT which can be considered higher-performing
for NER and POS tasks (Li et al., 2020). An exam-
ple of the model architecture is shown in Figure 1
which shows how our model produces NER classi-
fications given a Quechua sentence.

Our model has been first pre-trained with south-
ern Quechua text on 384,184 sentences. Then, we
fine tuned the model with 4,360 sentences for the
NER task and 3,383 sentences for the POS task.
For the training process, we used 6 hidden layers.
Each layer was 768 dimensions, giving us a total
of 84 million parameters. For optimization, we
used the Adam optimizer with hyper-parameter val-
ues of β1=0.9 and β2 = 0.99 along with a learning
rate of 2.7e-06. Lastly, we incorporated a weight
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Figure 1: Model architecture based on Bert (Devlin
et al., 2019).

decay factor of 0.1 to prevent overfitting. The pre-
training was for two epochs and a batch size of 64
with 12k iterations, before being fine-tuned on the
downstream task for 10 epochs and a batch size of
32. Initial development was done on a Google Co-
lab9 notebook, while models used for final testing
were pre-trained and fine-tuned on a single 16GB
NVIDIA Tesla V100 GPU.

6 Results

The results presented in this section show how well
QuBERT performs on two main tasks: NER and
POS. We feel that the contributions presented in
Section 1 are sufficient to warrant wider use of
our work; however, it is our intention to show that
the corpus, model, and experiments could provide
easy access for future work. We cover each task
(NER and POS) as separate sections below in or-
der to provide better insight into how the model
performs in different scenarios, specifically for the
different tokenization and normalization (called
“norm.” in Table 3) techniques mentioned in Sec-
tion 5. Nonetheless, we provide precision, recall,
and F1 scores in Table 3 for both tasks as an aggre-
gate to get an overall sense of how well our base
model performs on both tasks.

6.1 Named Entity Recognition
Figure 2 illustrates the accuracy from our model
on the NER task. We note that the accuracy scores

9https://colab.research.google.com
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Figure 2: An accuracy comparison of tokenization
techniques on southern Quechua (Quechua II) using
a RoBERTa (Liu et al., 2019) model for named-entity
recognition (NER).

.

are somewhat lower than the state-of-the-art for
high-resource languages on the NER task (Li et al.,
2020). However, our F1 scores seems to be inline
with other newly published work on low resources
(Bouabdallaoui et al., 2022) (69–70%) for various
deep learning models). In future work, we plan
on adapting our model to more complex architec-
tures such as those found in SemEval-2022 Task
11 (Malmasi et al., 2022).

To further investigate the findings we report the
following findings10 based on these NER tags: B-
LOC, B-ORG, B-PER, I-LOC, I-ORG, I-PER, O.
When text was normalized and then tokenized with
BPE we noticed that I-ORG and I-PER were the
highest amount of true positives (227 and 196 re-
spectively) when compared to other tokenization
techniques. However, BPE without normalization
performed worse than other techniques on I-PER
classification, mainly classifying them as B-LOC.
BPE-Guided generally scored similar to BPE on
NER with a trend of being slightly lower than BPE.
PRPE scored better on I-LOC and I-ORG (306 and
227 respectively) than other techniques and was
able to achieve the highest accuracy of all tech-
niques.

From the illustration in Figure 2, we believe that

10For a complete confusion matrix, please refer to Appendix
Table 5.
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Tokenization Approach
NER POS

F1 Prec Recall F1 Prec Recall

Text and BPE 0.736 0.749 0.724 0.860 0.859 0.862
Text with norm. and BPE 0.741 0.753 0.729 0.861 0.861 0.862
Text with norm. and PRPE 0.741 0.753 0.730 0.867 0.866 0.868
Text with norm. and BPE-Guided 0.716 0.726 0.707 0.843 0.843 0.843

Table 3: A comparison of tokenization techniques on southern Quechua (Quechua II) using a RoBERTa (Liu et al.,
2019) model for classification. Normalization (norm.) is applied using the Quechua toolkit (Rios, 2015). Scores are
calculated at the token level and weighted-averaged by class.

the different techniques are closely related but it
is clear that the BPE-Guided approach was not as
successful for the NER task as it has been in the
past for machine translation (Ortega et al., 2020a).
We feel that this is probably due to the amount
of data introduced in our corpus which did not
contain as many matching suffixes as was done in
the previous work (Ortega et al., 2020a). Since this
is a first-time introduction of a deep learning model
for NER in Quechua, we believe that this can serve
as a baseline for future work.

6.2 POS tagging
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Figure 3: An accuracy comparison of tokenization
techniques on southern Quechua (Quechua II) using
a RoBERTa (Liu et al., 2019) model for part-of-speech
(POS) tagging.

.

The part-of-speech task seems to be more fitted for
our model since we are able to achieve accuracy
in the high 80% range as shown in Figure 3, sim-

ilar to other high-resource tasks(Li et al., 2020).
We feel that for POS tagging our model is optimal
given the current state-of-the-art. Also, our anno-
tations, while completed by a near-native speaker
were somewhat easier to complete due to the more
rigid classification of vocabulary-based words in
Quechua, essentially the annotator could look up
words and parts of speech when there was doubt.
In the future, as with the NER task, we fill that
we can achieve higher quality with professional
translators/annotators.

For POS tagging, unlike the NER task, we were
able to discern performance from our analysis
based on terms that could be found in a dictio-
nary.11 Adjectives, verbs and adverbs were mostly
correct by all tokenization techniques. Particularly,
PRPE outperformed other techniques with the cor-
rect classification of 262 adjectives when compared
to BPE (259) and BPE-Guided (235). PRPE also
performed slightly better on POS verb identifica-
tion than other techniques. BPE-Guided, on the
other hand, performed better with determinant de-
tection finding 43 true positives as opposed to 39
by PRPE and BPE.

7 Conclusion and future work

In this article, we have introduced a novel mono-
lingual corpus, curated and compiled for southern
Quechua. We have shown that the corpus can be
used for downstream tasks such as NER and POS
tagging by creating and releasing a deep learning
model based on BERT (Devlin et al., 2019) called
QuBERT. Additionally, we experimented with
the state-of-the-art tokenization techniques for pre-
processing and normalization in order to achieve
results similar to those found on high-resource lan-
guages.

11For a complete confusion matrix, please refer to Appendix
Table 6.
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In the future, we would like to experiment with
other model architectures for more complex NER
tasks such as those presented at SemEval-2022
(Malmasi et al., 2022), of particular interest is the
work from Wang et al. (2022). We would like to
include more native Quechua speaking annotators
in order to improve the data set even more. The
introduction of two or more annotators will allows
us to introduce models for tasks such as machine
translation, question-answering, and topic model-
ing where the reference data is even more important.
We believe that our work can serve as a baseline
for future work and invite other researchers to use
the contributions presented here for further inves-
tigative lines such as the ones we are considering:
online tools for native Quechua speakers and hu-
man interaction.
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Semi-automatic quasi-morphological word segmenta-
tion for neural machine translation. In International
Baltic conference on databases and information sys-
tems, pages 289–301. Springer.

A Appendix

The figures below represent several of the indi-
vidual differences between corpora and their cor-
responding language in Table 4 and tokenization
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Corpus # Sentences # Tokens Dialect Year Dominio
jw300_2013 124,038 1,465,494 Chanka 2013 Religion
wikipedia_2021 96,560 1,009,631 Collao 2021 Miscellaneous
cc100-quechua 86,250 1,206,770 Collao 2018 Miscellaneous
jw300_2017 25,585 294,473 Collao 2017 Religion
microsoft 5,018 60,847 Collao 2021 Norma
que_community_2017 21,139 38,570 Collao 2017 Miscellaneous
tribunal_constitucional 1,148 32,974 Chanka 2021 Justice
tierra_vive 4,731 27,768 Collao 2013 Religion
conectamef 433 20,683 Collao 2016 Economy
unesco 937 16,933 Collao 2020 Program
oscar_quz 491 12,717 Collao 2020 Miscellaneous
constitucion_simplified_quz 999 12,217 Collao 1993 Norma
libro_quechua 781 11,476 Chanka 2002 Agreement
handbook_quy 2,297 11,350 Chanka 2019 Education
dw_quz 325 11,079 Collao 2009 Social
yaku_unumanta 283 10,787 Chanka 2013 Norma
uywaymanta 683 9,231 Collao 2015 Education
maria_mamani 987 9,179 Chanka 2011 Education
anta 451 8,839 Collao 2010 Education
Agreement _nacional_2014 356 8,355 Chanka 2014 Agreement
omnilife 336 8,184 Collao 2017 Health
pasado_violencia 373 8,001 Chanka 2008 Social
cosude_2009-2011_qu 536 7,959 Collao 2011 Social
fondo_monetario_internacional 291 7,227 Collao 2010 Economy
peru_suyupi 449 6,420 Chanka 2014 Education
fundacion_quz 440 5,776 Collao 2008 Social
greg_quz 185 5,505 Collao 2010 Narrative
imayna 250 5,425 Chanka 2008 Social
ahk_1968-2008_quz 391 5,186 Collao 2008 Economy
directiva 355 4,988 Chanka 2014 Resolution
achka 256 4,844 Chanka 2015 Education
cartillas 870 4,674 Chanka 2006 Education
lectura-favorita-chanka-2019 781 4,363 Chanka 2019 Education
lectura-favorita-cusco-2019 769 4,351 Collao 2019 Education
amerindia 321 4,280 Chanka 2000 Education
yachay_qipikuna 464 4,174 Collao 2009 Education
reglamento_simplified_quz 287 4,053 Collao 2008 Norma
focus_2008_quz 243 3,797 Collao 2008 Narrative
poder_judicial 154 3,347 Chanka 2021 Justice
focus_2007_quz 220 3,238 Collao 2007 Narrative
literatura 190 2,930 Chanka 1999 Culture
guia_collao 288 2,824 Collao 2015 Education
wikimedia 163 2,712 Collao 2021 Miscellaneous
docente 286 2,550 Chanka 2015 Education
convencion 115 2,548 Collao 1994 Agreement
yupaychaqa_ley 129 2,484 Chanka 2014 Norma
mikhunanchiskunamanta 127 1,925 Collao 2013 Social
tatoeba 428 1,778 Collao 2021 Miscellaneous
nanoquechua 92 1,431 Collao 2016 Culture
kallpa_qu 100 968 Collao 2019 Narrative
defensoria 60 882 Chanka 2021 Justice
yachay 62 756 Collao 2015 Culture
Total 384,184 4,408,953 - - -

Table 4: Details of each corpus included in the Southern Quechua corpus introduced.
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Tokenization Approach NER Class

B-LOC B-ORG B-PER I-LOC I-ORG I-PER O

BPE True Positive 453 81 189 300 226 162 477
False Positive 319 11 150 71 51 87 31
False Negative 64 37 79 171 80 207 82

Norm. and BPE True Positive 451 70 187 302 227 196 470
False Positive 299 8 138 83 51 94 32
False Negative 66 48 81 169 79 173 89

Norm. and PRPE True Positive 449 79 187 306 227 186 471
False Positive 304 14 135 95 53 74 28
False Negative 68 39 81 165 79 183 88

Norm. and BPE-Guided True Positive 453 71 176 299 222 156 466
False Positive 294 16 164 93 57 113 28
False Negative 64 47 92 172 84 213 93

Table 5: Breakdown of prediction results used to calculate weighted precision, recall, and F1 for the NER task .
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POS Class Algorithm

BPE Norm. and BPE Norm. and PRPE Norm. and BPE-Guided
adj. True Positive 253 259 262 235

False Positive 98 106 92 96
False Negative 143 137 134 160

verb True Positive 764 760 761 744
False Positive 77 86 72 98

False Negative 78 82 81 72
pron. True Positive 36 36 37 34

False Positive 14 13 13 18
False Negative 7 7 6 9

prep. True Positive 0 0 0 0
False Positive 0 1 0 0

False Negative 1 1 1 1
adv. True Positive 183 184 188 161

False Positive 57 53 56 51
False Negative 50 49 46 73

pron. indef. True Positive 0 1 1 1
False Positive 0 0 0 0

False Negative 2 1 1 1
adv. interr. True Positive 1 1 1 1

False Positive 0 0 0 0
False Negative 0 0 0 0

pron. interrog. True Positive 8 7 8 7
False Positive 5 2 5 2

False Negative 2 3 2 3
num. True Positive 0 0 0 0

False Positive 0 0 2 3
False Negative 5 5 5 5

conj. True Positive 7 8 8 8
False Positive 6 6 6 8

False Negative 5 4 4 4
det. True Positive 39 39 39 43

False Positive 33 36 33 38
False Negative 20 20 20 16

subj. True Positive 1380 1376 1386 1380
False Positive 138 124 131 193

False Negative 112 115 107 113
interj. True Positive 0 0 0 0

False Positive 0 0 0 5
False Negative 3 3 3 3

Table 6: Breakdown of prediction results used to calculate weighted precision, recall, and F1 for the POS task .
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Abstract

The distant supervision (DS) paradigm has
been widely used for relation extraction (RE)
to alleviate the need for expensive annotations.
However, it suffers from noisy labels, which
leads to worse performance than models trained
on human-annotated data, even when trained
using hundreds of times more data. We present
a systematic study on the use of natural lan-
guage inference (NLI) to improve distantly su-
pervised document-level RE. We apply NLI
in three scenarios: (i) as a filter for denoising
DS labels, (ii) as a filter for model prediction,
and (iii) as a standalone RE model. Our re-
sults show that NLI filtering consistently im-
proves performance, reducing the performance
gap with a model trained on human-annotated
data by 2.3 F1.

1 Introduction

Relation extraction (RE) is the task of identifying
relations between two entities in natural language
text. It has an important role in many NLP appli-
cations, such as knowledge base population and
question answering. Existing work on RE has been
focused mostly on extraction within a sentence
(Mintz et al., 2009; Zhang et al., 2017; Han et al.,
2018). However, sentence-level RE has one major
limitation: it is not designed to extract relational
facts expressed in multiple sentences.1 To address
this, recent work has explored models which use
document-level context to extract both intra- and
inter-sentence relations from text (Li et al., 2020;
Xu et al., 2021; Eberts and Ulges, 2021)

Currently, high-performance RE models require
large-scale human-annotated data, which is expen-
sive and does not scale to a large number of rela-
tions or new domains. To reduce the reliance on

∗ Work completed at Amazon Alexa. The author now
works at Thomson Reuters.

1According to Yao et al. (2019), at least 40.7% facts in
Wikipedia can only be extracted from multiple sentences.

human-annotated data, Mintz et al. (2009) intro-
duce the distant supervision (DS) approach, which
assumes that if two entities are connected through
a relation in a knowledge base, sentences that men-
tion the two entities express that relation. While
this assumption allows the creation of large-scale
training data without expensive human annotation,
it also produces many noisy labels (Riedel et al.,
2010).2 As a result, the performance of models
trained on DS datasets is considerably lower (∼5%)
than models trained on human-annotated datasets.

This paper aims to reduce the performance gap
between models trained on DS versus annotated
data through natural language inference (NLI).
NLI, also known as textual entailment, is the task of
determining whether a premise entails a hypothesis.
Recently, Sainz et al. (2021) used an NLI model as
a standalone RE model and demonstrated its effec-
tiveness for zero-shot and few-shot sentence-level
RE. In line with their work, we investigate if NLI
can also benefit document-level RE in this paper.
Specifically, we apply NLI for document-level RE
in three scenarios: (i) as a filter for denoising DS
labels, (ii) as a filter for model prediction, and (iii)
as a standalone RE model.

We experiment with DocRED (Yao et al., 2019),
the largest document-level RE dataset to date. It
consists of both DS and human-annotated datasets,
which is ideal for our study. Across all scenarios,
we find that NLI is especially effective when it
is used as a filter; we observe improvement up to
2.3 F1, reducing the gap with a model trained on
annotated data from 5.3 to 3.0 F1. However, the
gains are less significant when the model has access
to human-annotated data. Finally, we highlight
the importance of having high-quality entity type
information when using NLI as a standalone RE
model.

2For document-level RE, Yao et al. (2019) report 41% and
61% incorrect labels for intra- and inter-sentence relations in
DS, respectively.
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2 NLI for RE

We first describe the approach by Sainz et al.
(2021), which uses an NLI model as a standalone
model for sentence-level RE.

Let p be an input text containing two entity men-
tions m1 and m2. We take p as the premise and
generate the hypothesis h by verbalizing each rela-
tion r using a template t, m1, and m2. For example,
the relation “capital of ” can be verbalized using
the template “{m1} is the capital of {m2}”. One
relation can be verbalized using multiple templates,
leading to multiple hypotheses. To avoid mismatch
between the entity types and the relation, a set of
allowed types for the first and the second entities
is created for each relation, e.g., the relation “date
of birth” should involve a PERSON and a DATE en-
tities. We use a function fr to determine whether
a relation r ∈ R matches the given entity types, e1
and e2:

fr(e1, e2) =

{
1 e1 ∈ Er1 ∧ e2 ∈ Er2

0 otherwise
(1)

where Er1 and Er2 are the set of allowed types
for the first and the second entities in r. We then
compute the probability of each relation r as:

Pr(p,m1,m2) = f(e1, e2)

max
t∈Tr

PNLI(p, h|t,m1,m2)
(2)

where PNLI is the entailment probability of (p, h)
given by the NLI model, and Tr is the set of tem-
plates for relation r, and h is the hypothesis gener-
ated using a template t and the two entity mentions,
m1 and m2. In practice, we only need to run NLI
inference for relation with fr(e1, e2) = 1. To iden-
tify cases when no relation exists between m1 and
m2, we apply a threshold T to Eq. 2. If none of
the relations surpasses T , then we assume there is
no relation between the two mentions, otherwise
we return the relation with the highest entailment
probability:

r̂ = argmax
r∈R

Pr(p,m1,m2). (3)

Adapting to Document-Level RE For our exper-
iments with document-level RE, we adapt the same
setup as Sainz et al. (2021) by treating the whole
document context as the premise. We apply NLI
in three scenarios: (i) as a filter to for denoising
DS labels (pre-filter), (ii) as a filter for model pre-
dictions (post-filter), and (iii) as a standalone RE

model. In the pre-filtering scenario, we verbalize
the labels (relations) identified using the DS as-
sumption and remove all labels that do not surpass
the threshold T from the DS dataset. Similarly, in
the post-filtering scenario, we verbalize the rela-
tions predicted by an RE model and remove those
which do not surpass T . In both scenarios, we
do not need to generate candidate relations (Eq. 1)
since they are provided by the DS labels or the
RE model predictions. Unlike Sainz et al. (2021)
which chooses one relation label that maximizes
the probability of the hypothesis (Eq. 3), we use
all relation labels that have entailment probability
above T .3 In our experiments, we set T = 0.5, i.e.,
taking all relations that the NLI model predicts as
entailment. Additionally, since the DS dataset is
known to be noisy, for the pre-filtering scenario,
we also experiment with higher thresholds to study
the effect of using more strict filters on the RE
performance.

We experiment with two types of NLI models: a
model that is not trained specifically for RE (zero-
shot NLI) and a model that is fine-tuned using a
small number of human-annotated RE examples
(few-shot NLI). The zero-shot NLI model simulates
a case when we do not have any annotations, while
the few-shot NLI model simulates a case when we
have a small budget for annotations. We fine-tune
the NLI model for a binary entailment task (entail
or not entail). Since DocRED annotations do not
contain negative examples (no-relation label), we
generate the non-entail examples for NLI as fol-
lows. First, we train a model using the DS dataset
and generate predictions for the human-annotated
training data. We then use the model’s incorrect
predictions as the non-entail examples. We use a
maximum N = {10, 100} examples per relation.

3 Experiments

Dataset We experiment with DocRED (Yao et al.,
2019), a document-level RE dataset created from
Wikipedia articles aligned with Wikidata. It cov-
ers six entity types (ORG, LOC, PER, TIME, NUM,
MISC) and 96 relation types. DocRED contains
101, 873 DS training documents and 5, 051 human-
annotated documents, split into training (3, 053),

3The setup of Sainz et al. (2021) most likely influenced
by their experimental dataset, TACRED (Zhang et al., 2017),
which only allows one relation per mention pair. On the other
hand, DocRED annotations may have multiple relations per
entity pair.
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development (998), and testing (1, 000). 4

RE Model For our document-level RE model,
we use JEREX (Eberts and Ulges, 2021) which
obtains comparable performance with the state-of-
the-art SSAN (Xu et al., 2021) model when us-
ing bert-base-case encoder. The model has
four main components (entity mention localization,
coreference resolution, entity classification, rela-
tion classification), which share the same encoder
and mention representations, and are trained jointly.
For the relation classifier module, we use the multi-
instance version, which predicts relation on the
mention-level. JEREX is originally designed for
end-to-end RE without the need for entity infor-
mation. However, since our main focus is on the
RE side, we use its standard RE pipeline, which
assumes that entity clusters are given.

NLI Model We use a pretrained document-level
NLI model based on DeBERTaV3 (He et al.,
2021)5, which was trained on 1.3M premise-
hypothesis pairs from 8 datasets: MNLI (Williams
et al., 2018), FEVER-NLI (Nie et al., 2019),
NLI dataset from Parrish et al. (2021), and Doc-
NLI (Yin et al., 2021) (which is curated from
ANLI (Nie et al., 2020), SQuAD (Rajpurkar et al.,
2016), DUC20016, CNN/DailyMail (Nallapati
et al., 2016), and Curation (Curation, 2020)). The
model was trained for a binary entailment task.

Training and Optimization For training JEREX
models, we use the default hyperparameters of
Eberts and Ulges (2021). We use a maximum of
10 epochs for training with the DS dataset and
40 epochs for training with the human-annotated
dataset. For NLI fine-tuning, we use a maximum of
10 epochs for the few-shot setting and one epoch
when using the full annotated data. We tune the
learning rate ∈ {1e−5, 2e−5, 3e−5}, with a batch
size of 8 and gradient accumulation steps of 4.
Each model is trained using a single V100 GPU
with 16GB memory. We train each model with
three random restarts and report the average perfor-
mance.

4We use the revised version of DocRED development set
with 998 documents after two documents were removed be-
cause they overlap with the annotated training data.

5https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-docnli-ling-2c

6https://www-nlpir.nist.gov/projects/
duc/guidelines/2001.html

Threshold zero-shot 10-shot 100-shot full

low (0.5) 73.4 71.1 66.0 65.1
med (0.95) 68.6 70.1 56.4 48.4
high (0.99) 59.0 69.1 38.8 12.3

Table 1: Percentages of triples left in the DS data after
pre-filtering with NLI.

Model Precision Recall F1 IgnF1

Training with annotated data only (supervised)

BERT Base† - - 58.6 56.3
SSAN Biaffine† - - 59.2 57.0
JEREX 64.5 54.8 59.2 57.4

Training with DS data only (weakly supervised)

JEREX 51.5 56.5 53.9 51.0

+ pre-filter (low) 61.3 51.8 56.1 54.0
+ pre-filter (med) 62.4 50.3 55.7 53.7
+ pre-filter (high) 65.7 46.2 54.3 52.6
+ post-filter 60.8 52.3 56.2 54.1
+ double-filter 64.0 50.0 56.1 54.2

Table 2: Results on DocRED development set when
using zero-shot NLI models. Results with † are from
Xu et al. (2021). IgnF1: F1 score that ignores triples
occur in the annotated training data.

4 Results and Analysis

Zero-shot NLI Table 1 shows the percentages
of triples left in the DS dataset (out of ∼1.5M in-
stances) after pre-filtering with different thresholds
T (for other thresholds, see Appendix A). For the
zero-shot NLI, setting T to the lowest value (0.5)
leaves us with 73.4% of the original DS triples,
while setting it to the maximum value (0.99) leaves
us with 59.0% of the original DS triples.

Table 2 reports our main RE results. Our base-
line is a JEREX model trained with the DS dataset.
To understand how far NLI can help in reduc-
ing the gap between models trained using the DS
(weakly supervised) vs. human-annotated (super-
vised) datasets, we also provide results of super-
vised models using BERT base, JEREX, SSAN
(Xu et al., 2021). All of the models use the same
BERT base encoder (Devlin et al., 2019).

We find that NLI improves RE performance
in both pre-filter and post-filter scenarios. Post-
filtering with NLI achieves the best performance
with 56.2 F1, reducing the gap with the supervised
model by 2.3 F1. Looking into the other metrics,
it is evident that NLI filtering yields RE models
with higher precision but lower recall. We observe
that our most aggressive pre-filtering (high) outper-
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Model Precision Recall F1 IgnF1

10-shot NLI

JEREX 65.5 56.2 60.5 58.6

+ pre-filter (low) 64.3 58.5 61.2 59.7
+ pre-filter (high) 61.9 59.6 60.7 58.6
+ post-filter 69.0 52.7 59.8 58.2
+ double-filter 66.1 55.8 60.5 58.8

100-shot NLI

JEREX 66.3 57.8 61.7 59.8

+ pre-filter (low) 65.5 59.3 62.2 60.4
+ pre-filter (med) 66.2 56.9 61.2 59.4
+ pre-filter (high) 67.3 54.6 60.3 58.7
+ post-filter 70.3 53.3 60.6 59.1
+ double-filter 69.9 53.9 60.8 59.3

Training with DS + full annotated data

JEREX 68.0 58.3 62.7 60.9

+ pre-filter (low) 71.3 57.8 63.8 62.3
+ pre-filter (med) 70.5 56.7 62.9 61.4
+ pre-filter (high) 64.4 46.7 54.2 52.5
+ post-filter 71.0 54.1 61.4 59.9
+ double-filter 73.4 54.0 62.2 60.9

Table 3: Results on DocRED development set when
using fine-tuned RE and NLI models.

forms the precision of the supervised model. This
result suggests that pre-filtering is especially use-
ful for applications where having high precision
is preferable to recall. We also experiment with
the double-filter scenario, where we apply both our
best pre-filter (low) and post-filter. We find it has
minimal effect on the model performance.

Few-shot NLI This scenario assumes that a small
human-annotated dataset is available, so in the next
set of experiments, all RE models are trained using
the DS dataset and then fine-tuned using the small
annotated dataset.7 Unlike NLI fine-tuning, where
we limit the maximum number of examples per
relation when fine-tuning the RE models, we use
all annotations in the document since we want the
model to learn all and not just the subset of correct
triples. We fine-tune the RE models using 427 and
1,761 annotated documents for the 10-shot and the
100-shot NLI settings, respectively.

As shown in Table 3, in the few-shot settings,
we can still see improvement by using NLI as a
pre-filter. However, the improvements are not as
large as in the DS-only training.8 We also see 1.2

7The DS training followed by fine-tuning setup yields the
best model performance on DocRED (Xu et al., 2021).

8We only experiment with low and high for the 10-shot ex-
periments since the medium filtering yield very similar training
data distribution (Table 1).

NLI Model Precision Recall F1 IgnF1

Coarse-grained types

Zero-shot 3.1 68.0 5.9 5.2
10-shot 2.5 68.4 4.8 4.2
100-shot 2.3 66.6 4.4 3.8
Full-data 2.4 68.2 4.7 4.1

Fine-grained types

Zero-shot 20.4 27.8 23.5 20.5
10-shot 15.4 28.4 20.0 16.9
100-shot 15.3 26.5 19.4 16.5
Full-data 16.6 27.6 20.7 17.7

Table 4: Results on DocRED development set when
using NLI as a standalone RE model.

F1 improvements when using the full annotated
data (∼3k documents) for fine-tuning the NLI and
RE model.

NLI as a standalone RE model We utilize the
entity type information in the DocRED annotated
training data to create the list of allowed entity
types for each relation. However, we find that this
strategy still leads us to mismatch types between
the relation and entity, which might be due to sev-
eral reasons. First, DocRED entities are annotated
with coarse-grained types (Section 3), which might
confuse the model when learning about relations
that exist between entities. For instance, frequent
location relations such as P17 (country) require
the tail entity to be a country. However, with the
generic LOC type and sometimes similar NLI tem-
plate (e.g. “{m1} is located in {m2}”), other types
of locations, such as cities, can also fit the slot for
m2 and be inferred as correct by the NLI model.
We also find that the MISC type is especially am-
biguous since it is allowed in almost all relations.
Second, DocRED relations are annotated on entity-
level, where one entity can have multiple mentions
with different types, e.g., the entity Finland has
mentions Finland (LOC) as well as Finnish (MISC).
To alleviate this, we only add entity types to a re-
lation if they co-occur more than 100 times in the
data. In addition, we also experiment using ∼500
fine-grained entity types using ReFinED (Ayoola
et al., 2022), which currently obtain state-of-the-art
performance on several entity linking datasets.

Table 4 presents our results. We observe that
using coarse-grained entity type information leads
to poor model performance. In particular, we find
that the model overpredicts the relations, as shown
by the high recall. Using finer-grained types im-
proves performance up to 23.5 F1, but it is still
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NLI Model Training F1 IgnF1

Zero-shot Annotated only 59.5 57.5
DS only 52.9 49.8
DS + NLI 55.6 53.4

Few-shot 10-shot 59.3 57.4
10-shot + NLI 61.1 58.8
100-shot 61.7 59.7
100-shot + NLI 61.8 59.9

Full-data DS + Annotated 62.0 60.0
DS + Annotated + NLI 63.4 61.5

Table 5: Results on DocRED test set.

far below the performance of a model specifically
trained for RE. This result suggests that when the
NLI model is provided with a set of noisy candidate
relations, it predicts many of them as correct. On
the other hand, when the set of candidate relations
is less noisy (given by the DS labels or RE model
predictions), the NLI model performs well and can
improve RE performance.

Results on Test Set We validate our result by
running our overall best strategy, pre-filtering by
NLI (T = 0.5) on the test set. Table 5 shows a sim-
ilar pattern as observed in the development data:
NLI filtering consistently improves performance in
all settings. We only report F1 and IgnF1 since Do-
cRED CodaLab output does not provide precision
and recall numbers.

5 Conclusion

In this paper, we presented a systematic study on
the use of NLI for distantly supervised document-
level RE, focusing on the case when human-
annotated data is not available. Our results demon-
strate that NLI is most effective when used as a pre-
filter to denoise DS labels. In the absence of human
annotations, we show that NLI filtering reduces the
gap with a model trained on human-annotated data
by 2.3 F1. We also show that NLI filtering still ben-
efits the RE model (+1.1 F1) when we have small
human-annotated data. Our experiment on using
NLI as a standalone model for document-level RE
leads to worse performance than using it as a pre-
filter, suggesting that using NLI directly as an RE
model for document-level is more challenging than
sentence-level RE.

For future work, we plan to explore other strate-
gies to better leverage the entity type information
for RE with NLI and investigate if document-level
NLI is also more challenging than sentence-level
NLI. Another potential direction is to experiment

with other DS techniques, such as integrating a de-
noising module to the RE model (Xiao et al., 2020)
or using DS-trained models as a DS filter (Zhou
and Chen, 2021).
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A Pre-filtering with NLI

Threshold zero-shot 10-shot 100-shot full

0.5 73.4 71.1 66.0 65.1
0.7 72.6 70.8 64.9 63.7
0.9 70.8 70.4 60.9 56.2
0.95 68.6 70.1 56.4 48.4
0.97 66.1 69.9 52.4 40.0
0.99 59.0 69.1 38.8 12.3

Table 6: Percentages of triples left in the DS data after
pre-filtering with NLI with different threshold values.

B DocRED NLI Templates

Relation Templates

applies to jurisdiction {head} rules {tail}.
{head} represents {tail}.
{head} works for the {tail} government.

author {head} is written by {tail}.
{head} is a story by {tail}.
{tail} is the author of {head}.
{tail} wrote {head}.

award received {head} received {tail}.
{head} won {tail}.
{head} was a recipient of {tail}.
{head} was awarded {tail}.

basin country {head} is located near {tail}.
{tail} is located in {head}.

capital of {head} is the capital of {tail}.
{tail}’s capital is {head}.

capital {head}’s capital is {tail}.
{tail} is the capital of {head}.

cast member {head}’s cast includes {tail}.
{tail} starred in {head}.
{tail} appeared in {head}.

continent {head} is located in {tail}.
country of citizenship {head} country of citizenship is {tail}.

{head} is from {tail}.
country {head} is located in {tail}.
creator {head} is created by {tail}.

{tail} is the creator of {tail}.
date of birth {head} was born {tail}.
date of death {head} died {tail}.
director {head} is a movie directed by {tail}.

{head} is a game directed by {tail}.
{tail} is the director of {head}.

Table 7: Examples of DocRED NLI Templates. Full
templates can be found in the supplementary materials.
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Abstract

Large pre-trained models are usually fine-tuned
on downstream task data, and tested on unseen
data. When the train and test data come from
different domains, the model is likely to strug-
gle, as it is not adapted to the test domain. We
propose a new approach for domain adaptation
(DA), using neuron-level interventions: We
modify the representation of each test example
in specific neurons, resulting in a counterfac-
tual example from the source domain, which
the model is more familiar with. The modi-
fied example is then fed back into the model.
While most other DA methods are applied dur-
ing training time, ours is applied during infer-
ence only, making it more efficient and appli-
cable. Our experiments show that our method
improves performance on unseen domains. 1

1 Introduction
A common assumption in NLP, and in machine
learning in general, is that the training set and the
test set are sampled from the same underlying distri-
bution. However, this assumption does not always
hold in real-world applications since test data may
arrive from many (target) domains, often not seen
during training. Indeed, when applied to such un-
seen target domains, the trained model typically
encounters significant degradation in performance.

DA algorithms aim to address this challenge by
improving models’ generalization to new domains,
and algorithms for various DA scenarios have been
developed (Daume III and Marcu, 2006; Reichart
and Rappoport, 2007; Ben-David et al., 2007; Schn-
abel and Schütze, 2014). This work focuses on
unsupervised domain adaptation (UDA), the most
explored DA setup in recent years, which assumes
access to labeled data from the source domain and

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

1Our code is available at https://github.com/
technion-cs-nlp/idani.

unlabeled data from both source and target domains.
Algorithms for this setup typically use the target
domain knowledge during training, attempting to
bridge the gap between domains through represen-
tation learning (Blitzer et al., 2007; Ganin et al.,
2016; Ziser and Reichart, 2018; Han and Eisenstein,
2019; David et al., 2020). Recently, Ben-David
et al. (2021) and Volk et al. (2022) introduced an
approach for inference-time DA, assuming no prior
knowledge regarding the test domains but still mod-
ifying the training process to their gain.

In contrast to this line of work, we assume a
more realistic scenario, in which the model was
already trained on a source domain, and encoun-
ters unlabeled data from the target domain during
inference time.

Given an example from a target domain, we
would have liked to change it to a source domain
example, so that the model would be more likely
to perform well on it. Since this is difficult to
achieve, we aim to change its representation in
a fine-grained manner, such that we modify only
information about the domain of the representa-
tion, without hurting other information. To do so,
we take inspiration from work analyzing language
models, which showed that linguistic properties are
localized in certain neurons (dimensions in model
representations) (Dalvi et al., 2019; Durrani et al.,
2020; Torroba Hennigen et al., 2020; Antverg and
Belinkov, 2022; Sajjad et al., 2021). We first rank
the neurons by their importance for identifying the
domain (source or target) of each example. Then,
we modify target-domain representations only in
the highest-ranked neurons, to change their domain
to the source domain. Since the model was trained
on examples from the source domain, we expect
it to perform better on the modified representa-
tions. We name this method as Inference-time Do-
main Adaptation via Neuron-level Interventions
(IDANI).

We follow a large body of previous work, testing
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Figure 1: The language model—which was trained on some source domain, e.g., airline—creates a representation
(CLS) for the review. Since the review is from a domain on which it was not trained, the model’s classifier
mistakenly classifies it as negative (bottom). In IDANI (top), the representation is fed into a neuron-ranking method.
The k-highest ranked neurons are modified by an intervention, to change the domain of the review, and the new
representation is fed into the classifier, which correctly classifies it as positive.

IDANI on a variety of well known DA benchmarks,
for a total of two text classification tasks (sentiment
analysis, natural language inference) and one se-
quence tagging task (aspect identification), across
52 source–target domain pairs. We demonstrate
that IDANI can improve results in many of these
cases, with some significant gains.

2 Method

Given a model M with a classification module f
and hidden dimensionality d, which was fine-tuned
on data from a source domain Ds = {Xs}, we
receive unlabeled task data Dt = {Xt} from a
target domain for inference. As s ̸= t, M ’s per-
formance is likely to deteriorate when processing
Xt compared to Xs. Thus, we would like to make
the representation of Xt more similar to that of Xs

(regardless of the labels). To do so, we apply the
IDANI intervention method:

1. We process Xs and Xt through M , produc-
ing representations Hs, Ht ⊆ Rd. We also
compute v̄s and v̄t, the element-wise mean
representations of Xs and Xt.

2. We apply existing ranking methods to rank the
representation’s neurons by their relevance for
domain information, i.e., the highest-ranked
neuron holds the most information about the
representation’s domain (§ 2.1).2

2Following previous work (Antverg and Belinkov, 2022),
our method assumes that neurons with the same index carry

3. For each ht ∈ Ht, we would ideally like to
have hs, its source domain counterpart. Since
hs is impossible to get, we create a counterfac-
tual h̃s that simulates it by modifying ht only
in the k-highest ranked neurons {n1, ..., nk},
such that ∀i ∈ {1, ..., k},

h̃sni
= htni

+ αni(v̄
s
ni
− v̄tni

) (1)

To allow stronger intervention on neurons that
are ranked higher, we scale the intervention
with α ∈ Rd, a log-scaled sorted coefficients
vector in the range [0, β] such that αn1 = β
and αnd

= 0, where β is a hyperparame-
ter (Antverg and Belinkov, 2022). We denote
the new set of representations as H̃s.

4. Representations from H̃s are fed into the clas-
sifier f—without re-training f—to predict the
labels. Since H̃s is more similar to Hs than
Ht is to Hs, we expect performance to im-
prove. That is, for some scoring metric γ, we
expect to have γ(f(H̃s)) > γ(f(Ht)).

The process is illustrated in Fig. 1.

2.1 Ranking Methods

We consider two ranking methods for ranking the
representations’ neurons (step 2):

similar information. While this is not necessarily true, we
perform extrinsic (Table 1) and intrinsic evaluations (Table 2)
that support this assumption.
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LINEAR (Dalvi et al., 2019) This method trains
a linear classifier on Hs and Ht to learn to pre-
dict the domain, using standard cross-entropy loss
regularized by elastic net regularization (Zou and
Hastie, 2005). Then, it uses the classifier’s weights
to rank the neurons according to their importance
for domain information. Intuitively, neurons with
a higher magnitude of absolute weights should be
more important for predicting the domain.

PROBELESS The second ranking method is a
simple one and does not rely on an external probe,
and thus is very fast to obtain: it only depends on
computing the mean representation of each domain
(v̄s and v̄t), and sorting the difference between
them. For each neuron i ∈ {1, ..., d}, we calculate
the absolute difference between the means:

ri = |v̄si − v̄ti | (2)

and obtain a ranking by arg-sorting r, i.e., the first
neuron in the ranking corresponds to the highest
value in r. Antverg and Belinkov (2022) showed
that for interventions for morphology information,
this method outperforms LINEAR and another rank-
ing method (Torroba Hennigen et al., 2020).

3 Experiments

3.1 Datasets
We experiment with two text classification tasks:
sentiment analysis (classifying reviews to positive
or negative (Blitzer et al., 2007)) and natural lan-
guage inference (NLI; classifying whether two sen-
tences entail or contradict each other (Bowman
et al., 2015)), and a sequence tagging task: as-
pect prediction (identifying aspect terms within
reviews (Hu and Liu, 2004; Toprak et al., 2010;
Pontiki et al., 2014)). For each task, the model is
trained on a single source domain and tested on dif-
ferent target domains. We explore a low-resource
scenario, thus we use 2000–3000 examples from
the source domain to form the training set.3 For
test, we use equivalent size data from the corre-
sponding target domain. Further data details are in
Appendix A.

3.2 Experiments
For each task and pair of source and target do-
mains, we fine-tune a pre-trained BERT-base-cased
model (Devlin et al., 2019) on the training set of

3For development data we split our training set in a ratio
of 80:20, where the smaller portion is used for development.

the source domain and evaluate its in-domain per-
formance on the dev set of the source domain.4

We intervene on representations from the last layer
of the model: word representations for the aspect
prediction task, and CLS token representation for
the other tasks. We then test the model’s out-of-
distribution (OOD) performance on the test set of
the target domain, for different k (number of mod-
ified neurons) and β (magnitude of the interven-
tion) values: We perform grid search where k is
in the range [0, d] (d = 768) and β is in the range
[1, 10]. We experiment with both ranking methods
described in § 2.1.

We consider the model’s performance at k = 0
as its initial (unchanged) OOD performance (INIT),
and report the difference between initial perfor-
mance and performance using IDANI, with either
PROBELESS (∆P ) or LINEAR (∆L) rankings. A
limitation of IDANI (which we further discuss
later) is the inability to choose the best β and k
for each domain pair. Following Antverg and Be-
linkov (2022) we report results for β = 8, k = 50
(∆8,50), as well as oracle results (the best perfor-
mance across all values, ∆O). We consider the
model’s performance when fine-tuned on the target
domain as an upper bound (UB). For all pairs, we
repeat experiments using 5 different random seeds,
and report mean INIT, ∆8,50, ∆O and UB across
seeds, alongside the standard error of the mean.

Since we assume that the model is exposed to
target domain data only during inference, we can-
not experiment with UDA methods, as they require
access to the data during training. Furthermore,
experimenting with inference-time DA approaches
(Ben-David et al., 2021; Volk et al., 2022) is also
not possible since they assume multiple source do-
mains for training.

4 Results

Overall, we have 52 source to target domain adapta-
tion experiments. Table 1 aggregates results across
all experiments in three different categories: experi-
ments where we can be confident that we improved
the initial performance (i.e., the mean result across
seeds is greater than the standard error), damaged
it (mean lower than the negative standard error) or
did not significantly affect it. Detailed results per
each source–target domain pair are in Appendix B.

4For all experimented models, we define a maximum se-
quence length value of 256 and use a training batch size of
16.
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Improved Damaged Neither AVG ∆

∆P
8,50 21 9 22 0.25

∆L
8,50 23 7 22 0.25
∆P

O 51 0 1 1.77
∆L

O 50 0 2 0.93

Table 1: Number of experiments in which IDANI im-
proved, damaged, or did not significantly affect the
initial performance. ∆P and ∆L refer to PROBELESS
and LINEAR respectively, while ∆8,50 and ∆O refer to
β = 8, k = 50 and oracle values.

As seen, IDANI provides decent performance,
improving results much more than damaging even
with default hyperparameters (∆P

8,50 and ∆L
8,50).

With oracle hyperparameters (∆P
O and ∆L

O) it im-
proves performance in almost all experiments.

Some of these gains are quite impressive: In
the aspect prediction task, we gain 18.8 and 14.4
F1 points when adapting the Restaurants source
domain to the target domains Laptops and Service,
respectively. In other domain pairs, the gain is
marginal. On average we gain 4 points with ∆P

O.
In sentiment analysis, the airline domain (A) is

quite different from the others, leading to lower
INIT (initial performance) scores when it is the
source domain. Adapting from A using IDANI
results in a gain of up to 4.9 accuracy points. When
other domains are used as source domains, we see
mostly marginal gains, as the upper bound is closer
to the initial performance, leaving less room for
improvement in this task (UB − INIT is low).

In NLI, it seems harder to improve: the room for
improvement is lower (3.3 F1 points on average),
which may imply that domain information is not
crucial for this task. Still, we do see some signif-
icant gains, e.g., an improvement of 2 F1 points
when adapting from Slate to the Telephone domain.

Generally, across all tasks and domain pairs,
PROBELESS provides better performance than LIN-
EAR as ∆P

O > ∆L
O in 47 of the 52 experiments

(Appendix B). This is in line with the insights
from Antverg and Belinkov (2022), who observed
that PROBELESS was better than LINEAR when
used for intervening on morphological attributes.

4.1 Qualitative Analysis
To analyze the benefits of IDANI, for each word in
the dataset we record the change in results when
classifying sentences containing the word (senti-
ment analysis) or when classifying the word itself
(aspect prediction). We report the words with the
greatest improvement in Table 2. When switching

Figure 2: Results for different k values, using β = 8.

from the Airline domain to the DVD domain in
the sentiment analysis task, those are mostly words
that sound negative in an airline context, but may
not imply a sentiment towards a movie (terrorist,
kidnapped). In the aspect prediction task, those
are mostly target domain related terms that are not
likely to appear in the source domain.

4.2 Default β and k are Not Optimal

While the potential for performance improvement
with PROBELESS is high, the selection of β =
8, k = 50 turns out as non optimal, as ∆P

8,50 is well
below ∆P

O across our experiments. This is also true
for ∆L

8,50 compared to ∆L
O, but to a lesser degree.

Fig. 2 shows that a milder intervention—lower
k value—would have been more ideal for the Air-
line→ DVD scenario. Modifying too many neu-
rons probably affects other encoded information—
besides domain information—damaging the task
performance. Thus, we might lean towards smaller
k values. However, this is not always the case:
Fig. 2 also shows that for the Restaurant→ Service
scenario in the aspect prediction task, PROBELESS’
performance reaches a saturation point around the
value of k = 100 neurons. Thus there is no ideal
value of k across all domain pairs. A similar phe-
nomenon with β is shown in Appendix C.

Therefore, hyperparameters should be task- and
domain-dependent, but it is unclear how to define
them for each domain pair. Yet, in most real-world
cases some labeled data should be available or
could be manually created. In such cases, the best
approach would be to grid-search over the hyper-
parameters on the available labeled data, and use
the selected values for the (unlabeled) test data.
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Airline→ DVD (Sentiment) immortal, insanely, terrorist, crossing, obsessive, buzz, kidnapped
Laptops→ Restaurant (Aspect) Food, soup, selection, sushi, food, atmosphere, menu, staff
Restaurant→ Laptops (Aspect) time, user, slot, speed, MAC, Acer, system, size, SSD, design

Table 2: Words that are part of sentences for which accuracy has improved the most (sentiment analysis), and words
for which F1 score has improved the most (aspect prediction), using IDANI.

5 Conclusion

In this work, we demonstrated the ability to lever-
age neuron-intervention methods to improve OOD
performance. We showed that in some cases,
IDANI can significantly help models to adapt to
new domains. IDANI performs best with oracle
hyperparameters, but even with the default ones
we see overall positive results. We showed that
IDANI indeed focuses on domain-related informa-
tion, as the gains come mostly from domain-related
information, such as domain-specific aspect terms.
Importantly, IDANI is applied only during infer-
ence, unlike most other DA methods.
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A Data Details

We test IDANI on three different tasks: sentiment
analysis, natural language inference, and aspect
prediction. Further details of the training, develop-
ment, and test sets of each domain are provided in
Table 3.

Sentiment Analysis We follow a large body of
prior DA work to focus on the task of binary senti-
ment classification. We experiment with the four
legacy product review domains of Blitzer et al.
(2007): Books (B), DVDs (D), Electronic items
(E) and Kitchen appliances (K). We also experi-
ment in a more challenging setup, considering an
airline review dataset (A) (Nguyen, 2015; Ziser and
Reichart, 2018). This setup is more challenging
because of the differences between the product and
service domains.

Natural Language Inference (Williams et al.,
2018) This corpus is an extension of the SNLI
dataset (Bowman et al., 2015). Each example con-
sists of a pair of sentences, a premise and a hy-
pothesis. The relationship between the two may
be entailment, contradiction, or neutral. The cor-
pus includes data from 10 domains: 5 are matched,
with training, development and test sets, and 5 are
mismatched, without a training set. Following Ben-
David et al. (2021), we experiment only with the
five matched domains: Fiction (F), Government
(G), Slate (SL), Telephone (TL) and Travel (TR).

Since the test sets of the MNLI dataset are not
publicly available, we use the original development
sets as our test sets for each target domain, while
source domains use these sets for development. Fol-
lowing prior work (Ben-David et al., 2021; Volk
et al., 2022) we explore a low-resource supervised
scenario, which emphasizes the need for a DA al-
gorithm. Thus, we randomly downsample each
of the training sets by a factor of 30, resulting in
2,000–3,000 examples per set.

Aspect Prediction The aspect prediction dataset
is based on aspect-based sentiment analysis
(ABSA) corpora from four domains: Device (D),
Laptops (L), Restaurant (R), and Service (SE).
The D data consists of reviews from Toprak et al.
(2010), the SE data includes web service reviews
(Hu and Liu, 2004), and the L and R domains con-
sist of reviews from the SemEval-2014 ABSA chal-
lenge (Pontiki et al., 2014). The task is to identify
aspect terms within reviews. For example, given

Sentiment Classification

Domain Training (src) Dev (src) Test (trg)

Airline (A) 1, 700 300 2, 000
Books (B) 1, 700 300 2, 000
DVD (D) 1, 700 300 2, 000
Electronics (E) 1, 700 300 2, 000
Kitchen (K) 1, 700 300 2, 000

MNLI

Domain Training (src) Dev (src) Test (trg)

Fiction (F) 2, 547 1, 972 1, 972
Government (G) 2, 541 1, 944 1, 944
Slate (SL) 2, 605 1, 954 1, 954
Telephone(TL) 2, 754 1, 965 1, 965
Travel (TR) 2, 541 1, 975 1, 975

Aspect

Domain Training (src) Dev (src) Test (trg)

Device (D) 2, 302 255 1, 279
Laptops (L) 2, 726 303 800
Restaurants (R) 3, 487 388 800
Service(SE) 1, 343 149 747

Table 3: The number of examples in each domain of
our four tasks. We denote the examples used when a
domain is the source domain (src), and when it is the
target domain (trg).

a sentence “The price is reasonable, although the
service is poor”, both “price” and “service” should
be identified as aspect terms.

We follow the training and test splits defined by
Gong et al. (2020) for the D and SE domains, while
the splits for the L and R domains are taken from
the SemEval-2014 ABSA challenge. To establish
our development set, we randomly sample 10% out
of the training data.

B Detailed Results

Results for all domain pairs are shown in Tables 4, 5
and 6. As described in § 4, IDANI can potentially
significantly improve performance, shown by the
results of ∆P

O. Current hyperparameter values do
not fulfill this entire potential, but still improve
performance in most cases (∆P

8,50).

C Performance for different β

While our default hyperparameter values, β = 8
and k = 50 improve performance in most cases,
they are not optimal for all cases. Fig. 3 shows
that when k = 50, the optimal β value for the
Airline→ DVD case is 5, whereas for Restaurants
→ Service it is actually better to use a greater β.
Thus, it is not possible to find one value that would
be optimal for all cases.
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A→ B A→ D A→ E A→ K B→ A B→ D B→ E

INIT 77.4± 1.3 75.5± 2.2 85.2± 1.0 84.9± 0.9 83.7± 0.7 87.9± 0.3 90.4± 0.2
UB 88.0± 0.5 89.2± 0.5 92.4± 0.4 92.4± 0.2 88.0± 0.1 89.2± 0.5 92.4± 0.4
∆P

8,50 −4.4± 4.8 −2.2± 5.4 −1.2± 2.4 −1.5± 1.9 0.5± 0.1 0.1± 0.1 −0.0± 0.0
∆L

8,50 2.0± 1.0 2.1± 1.0 1.3± 0.4 1.1± 0.5 0.2± 0.1 0.1± 0.0 −0.0± 0.0
∆P

O 3.0± 1.3 4.9± 1.8 2.3± 0.8 2.3± 1.0 0.9± 0.2 0.3± 0.1 0.1± 0.0
∆L

O 2.9± 1.3 4.2± 1.8 2.3± 0.8 2.2± 0.9 0.3± 0.1 0.1± 0.0 0.0± 0.0

B→ K D→ A D→ B D→ E D→ K E→ A E→ B

INIT 87.8± 0.4 81.5± 0.3 89.4± 0.3 90.3± 0.2 88.1± 0.5 86.3± 0.4 86.8± 0.4
UB 92.4± 0.2 88.0± 0.1 88.0± 0.5 92.4± 0.4 92.4± 0.2 88.0± 0.1 88.0± 0.5
∆P

8,50 0.1± 0.0 0.8± 0.2 0.1± 0.1 −0.0± 0.1 0.8± 0.3 0.0± 0.0 0.6± 0.2
∆L

8,50 0.1± 0.0 0.5± 0.1 0.1± 0.0 0.1± 0.0 0.2± 0.1 0.0± 0.0 0.1± 0.1
∆P

O 0.4± 0.1 1.4± 0.3 0.3± 0.1 0.3± 0.1 1.4± 0.5 0.2± 0.0 1.0± 0.3
∆L

O 0.2± 0.0 0.8± 0.1 0.2± 0.1 0.1± 0.0 0.5± 0.2 0.1± 0.0 0.3± 0.1

E→ D E→ K K→ A K→ B K→ D K→ E AVG

INIT 86.5± 0.2 93.2± 0.3 83.9± 0.4 87.0± 0.2 86.4± 0.1 92.2± 0.2 86.2± 0.7
UB 89.2± 0.5 92.4± 0.4 88.0± 0.1 88.0± 0.5 89.2± 0.5 92.4± 0.2 90.0± 0.4
∆P

8,50 0.2± 0.1 0.2± 0.2 0.7± 0.2 0.1± 0.1 0.2± 0.1 0.1± 0.0 −0.2± 1.7
∆L

8,50 −0.1± 0.1 −0.0± 0.0 0.1± 0.1 0.1± 0.0 0.0± 0.0 0.0± 0.0 0.4± 0.4
∆P

O 0.4± 0.1 0.4± 0.2 1.2± 0.3 0.2± 0.0 0.5± 0.0 0.2± 0.0 1.1± 0.6
∆L

O 0.1± 0.0 0.2± 0.1 0.5± 0.2 0.1± 0.0 0.2± 0.0 0.0± 0.0 0.8± 0.6

Table 4: Sentiment analysis results (accuracy).

F→ G F→ SL F→ TL F→ TR G→ F G→ SL G→ TL

INIT 70.2± 0.8 63.7± 0.8 67.4± 1.3 65.6± 0.8 59.9± 0.8 62.1± 0.5 64.9± 0.9
UB 73.8± 0.4 62.6± 0.9 68.3± 0.4 69.9± 0.3 67.6± 0.9 62.6± 0.9 68.3± 0.4
∆P

8,50 0.5± 0.5 0.4± 0.4 0.1± 0.4 −0.2± 0.4 0.8± 0.2 −0.2± 0.2 0.4± 0.3
∆L

8,50 0.1± 0.2 0.0± 0.1 0.3± 0.2 0.1± 0.1 0.7± 0.4 −0.2± 0.1 0.1± 0.1
∆P

O 1.2± 0.4 0.9± 0.3 0.9± 0.3 0.7± 0.2 1.8± 0.6 0.4± 0.1 1.2± 0.2
∆L

O 0.6± 0.2 0.6± 0.2 0.8± 0.3 0.5± 0.2 1.5± 0.5 0.2± 0.0 0.9± 0.2

G→ TR SL→ F SL→ G SL→ TL SL→ TR TL→ F TL→ G

INIT 68.8± 0.2 62.0± 1.6 71.1± 1.4 63.7± 1.2 67.0± 1.2 63.6± 0.5 69.7± 0.4
UB 69.9± 0.3 67.6± 0.9 73.8± 0.4 68.3± 0.4 69.9± 0.3 67.6± 0.9 73.8± 0.4
∆P

8,50 −0.0± 0.1 0.8± 0.4 −0.5± 0.2 1.1± 0.4 −0.1± 0.1 −0.6± 0.3 −1.1± 0.6
∆L

8,50 −0.1± 0.1 0.4± 0.2 0.1± 0.1 0.7± 0.1 0.1± 0.2 0.2± 0.1 −0.2± 0.1
∆P

O 0.5± 0.1 1.5± 0.4 0.3± 0.1 2.0± 0.5 0.5± 0.1 0.7± 0.2 0.7± 0.2
∆L

O 0.2± 0.1 1.4± 0.4 0.3± 0.1 1.4± 0.2 0.6± 0.1 0.6± 0.1 0.3± 0.0

TL→ SL TL→ TR TR→ F TR→ G TR→ SL TR→ TL AVG

INIT 61.6± 0.5 64.9± 0.5 60.0± 1.0 71.5± 0.7 61.3± 0.6 63.3± 1.1 65.1± 0.9
UB 62.6± 0.9 69.9± 0.3 67.6± 0.9 73.8± 0.4 62.6± 0.9 68.3± 0.4 68.4± 0.7
∆P

8,50 −0.3± 0.4 −0.5± 0.4 −0.1± 0.5 −0.1± 0.2 0.1± 0.2 0.4± 0.3 0.0± 0.4
∆L

8,50 0.5± 0.2 −0.4± 0.3 0.3± 0.5 0.3± 0.3 0.0± 0.1 0.3± 0.3 0.2± 0.2
∆P

O 1.2± 0.1 0.7± 0.1 1.7± 0.4 0.7± 0.2 0.8± 0.2 1.2± 0.3 1.0± 0.3
∆L

O 1.1± 0.2 0.6± 0.1 1.0± 0.4 0.7± 0.2 0.6± 0.2 0.8± 0.3 0.7± 0.2

Table 5: MNLI results (macro-F1).
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D→ L D→ R D→ S L→ D L→ R L→ S R→ D

INIT 50.9± 0.8 36.9± 1.1 40.5± 0.9 47.6± 0.2 35.3± 0.8 36.3± 0.5 46.2± 0.9
UB 85.5± 0.3 83.4± 0.2 81.2± 0.2 67.1± 0.5 83.4± 0.2 81.2± 0.2 67.1± 0.5
∆P

8,50 −1.2± 0.6 −3.0± 1.2 −2.2± 1.0 0.9± 0.1 3.6± 0.7 1.0± 0.3 1.3± 0.3
∆L

8,50 −0.2± 0.1 −0.4± 0.3 −0.1± 0.2 0.2± 0.1 0.3± 0.2 0.2± 0.1 0.1± 0.1
∆P

O 0.3± 0.2 0.6± 0.3 0.2± 0.2 1.4± 0.1 6.7± 1.0 1.9± 0.4 2.1± 0.5
∆L

O 0.2± 0.1 0.3± 0.2 0.4± 0.1 0.7± 0.0 1.5± 0.3 0.5± 0.2 0.7± 0.2

R→ L R→ S S→ D S→ L S→ R AVG

INIT 44.1± 1.1 33.2± 0.9 49.1± 0.3 44.9± 0.5 55.6± 0.6 43.4± 0.8
UB 85.5± 0.3 81.2± 0.2 67.1± 0.5 85.5± 0.3 83.4± 0.2 79.3± 0.4
∆P

8,50 9.5± 0.8 11.2± 0.7 0.6± 0.2 −2.1± 0.4 −4.2± 0.7 1.3± 0.7
∆L

8,50 2.2± 0.5 2.4± 0.6 0.0± 0.1 −0.5± 0.2 −0.7± 0.4 0.3± 0.3
∆P

O 14.4± 0.9 18.8± 0.9 0.9± 0.2 0.3± 0.2 0.3± 0.2 4.0± 0.5
∆L

O 5.7± 0.9 6.8± 0.7 0.3± 0.1 0.2± 0.1 0.2± 0.1 1.5± 0.4

Table 6: Aspect prediction results (binary-F1).

Figure 3: Results for different β values, using k = 50.
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Abstract
Training a tagger for Named Entity Recogni-
tion (NER) requires a substantial amount of
labeled data in the task domain. Manual label-
ing is a tedious and complicated task. Semi-
supervised learning methods can reduce the
quantity of labeled data necessary to train a
model. However, these methods require large
quantities of unlabeled data, which remains an
issue in many cases.

We address this problem by generating unla-
beled data. Large language models have proven
to be powerful tools for text generation. We use
their generative capacity to produce new sen-
tences and variations of the sentences of our
available data. This generation method, com-
bined with a semi-supervised method, is evalu-
ated on CoNLL and I2B2. We prepare both of
these corpora to simulate a low resource setting.
We obtain significant improvements for semi-
supervised learning with synthetic data against
supervised learning on natural data.

1 Introduction

Training models to solve NER tasks requires a con-
siderable amount of labeled data. In most NLP
tasks, this data needs to be related to the task do-
main and must be in the targeted language. While
English is a well-covered language, corpora are
still being built to cover new domains or expand
existing ones. For any other languages, corpora
cover fewer domains. Data in the private sector is
rarely shareable due to privacy reasons. It is also
the case in domains such as the medical domain.

Recent approaches tackle the issue of the ab-
sence of resources by leveraging knowledge or data
from other sources. Zero-shot learning is a learn-
ing paradigm trying to solve a target task without
any labeled data. It uses the knowledge of how to
predict labels of an adjacent task and applies it to
predict the unseen labels of the target task (Wang
et al., 2019). We do not aim to solve the NER prob-
lem in a situation with such strict data restrictions.

Labeling a few examples is almost always possi-
ble. Few-shot learning provides training methods
to generalize from a few labeled examples. These
methods use the labeled examples to build repre-
sentations of the class, which serve as comparison
points for inference (Dopierre et al., 2021). Trans-
fer learning leverages the knowledge learned on
tasks of the domain to improve the performance on
a specific task (Ruder, 2019). It is quite common
to see cross-lingual transfer from higher-resourced
languages where the task exists. However, the most
prominent use case of transfer learning in NLP is
the use of language models for data representa-
tion. We use this type of transfer learning to build
high-performing taggers from BERT models. Semi-
supervised learning is a paradigm where unlabeled
data is widely available. The unlabeled data is used
to improve the model’s performance by giving a
better topology of the data space.

We propose to use a semi-supervised learning
method in a context where data is scarce enough to
be fully labeled. We aim to achieve this by using
large language models to generate the necessary
unlabeled data. We test whether large language
models can generate data that make tri-training a
viable option in a low-resource context. The per-
formances of our baseline models are compared
against the performances of the ensembles of mod-
els trained with tri-training on CoNLL (Sang and
De Meulder, 2003) and I2B2 (Uzuner et al., 2011).
Significant improvements are observed using our
method on the reduced datasets.

Language modeling has already been used as
an augmentation method to generate labeled and
unlabeled examples for NER in DAGA (Ding et al.,
2020). However, our taggers overperform the tag-
gers presented on the gold standard by 30 points
at size 1000 and 9 points at full size. The semi-
supervised method used in DAGA, self-training, is
also prone to errors due to reinforcement of early
mistakes. In our case, we generate unlabeled sen-
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tences using pre-trained large language models. We
test this method with subsets of data ranging from
50 examples to 1000 examples vs. over 1000 in
DAGA.

Thus, our main contribution is using out-of-the-
box large language models as tools to obtain un-
labeled data for semi-supervised learning in NER
in a low-resource setting. The code relative to the
experiment will be available in a public repository1.

Section 2 presents state of the art related to data
augmentation, semi-supervised learning in NER,
and language modeling. Section 3 presents tri-
training (Zhou and Li, 2005), and how we fit gen-
eration into it. Section 4 touches on the technical
details of the experiments. Section 5 and 6 are the
discussion and the conclusion of the article.

2 Related Works

Learning models in a low-resource setting require
extracting every possible information from the
available data. Data augmentation is a common
technique that creates synthetic data from available
data. In Natural Language Processing, augmenta-
tion is used across various tasks to help achieve
better performances. In classification, techniques
such as back-translation (Sennrich et al., 2016) or
Easy Data Augmentation (Wei and Zou, 2019) are
used. However, in tagging, paraphrasing using
back-translation (Neuraz et al., 2018) is not bring-
ing significant improvements. Recent works show
that using language models learned on the training
data to generate labeled and unlabeled examples
can bring improvements (Ding et al., 2020).

Inductive semi-supervised learning (Van Enge-
len and Hoos, 2020) aims at improving the per-
formances of models through the addition of unla-
beled data. For Named Entity Recognition, pseudo-
labeling is a method that has been used (Chen
et al., 2019). Pseudo-labeling is one of the semi-
supervised learning methods. The unlabeled data
receives pseudo-labels from the models trained.
This pseudo-labeled data is then used alongside
labeled data to train the models. Variants of the
method exists (Yarowsky, 1995) (McClosky et al.,
2006) (Blum and Mitchell, 1998) with varying
quantities of models trained. The separation of
the data between the different models trained and
how the models are used to produce pseudo-labels
also creates variants to this method. In our case,

1https://github.com/HugoBoulanger/
Tritraining-Gen

we use tri-training (Zhou and Li, 2005), which
uses three models. This method has been used to
solve Clinical Concept Extraction in the medical
domain (Chen et al., 2019) on new data.

Semi-supervised learning methods still require
a significant amount of unlabeled data. However,
with current advances in language modeling, this
method could be improved. Transformer-based
models (Vaswani et al., 2017) have been a revo-
lution in the language modeling landscape. From
their first iterations like GPT (Radford et al., 2018)
to their more recent ones like T5 (Raffel et al.,
2020) and GPT-3 (Brown et al., 2020), transformer-
based models have become a staple of Natural
Language Processing as fine-tuning or transferring
knowledge from these models often outperforms
learning a model on the task directly. While our
taggers are based on BERT models (Devlin et al.,
2018), we otherwise use the generative power of
GPT2 (Radford et al., 2019) to provide unlabeled
data for the semi-supervised training. GPT2 has
been finetuned and used to generate unlabeled data
for classification in a high resource context (He
et al., 2021).

3 Methods

This section provides details on the tri-training pro-
cess for sentence tagging and how we levy lan-
guage modeling as an unlabeled data provider.

3.1 Tri-training

Algorithm 1 Tri-training ( (Zhou and Li, 2005),
(Ruder and Plank, 2018))

1: for i ∈ {1..3} do
2: mi ← train_model(sampling(L),mi)

3: while Any mi still learns do
4: for i ∈ {1..3} do
5: Li ← ∅
6: j, k ← {1..3} − |i|
7: for x ∈ U do
8: if mj(x) = mk(x) then
9: Li ← Li ∪ {(x,mj(x))}

10: for i ∈ {1..3} do
11: mi ← train_model(Li ∪ L,mi)

Tri-training is an inductive semi-supervised
learning (Van Engelen and Hoos, 2020) method
using an ensemble of three models. The models are
trained in a supervised learning manner on a set of
labeled and pseudo-labeled data. As we try to solve
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time = t, tagger = mi
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taggert

Figure 1: Tri-training with unlabeled data U generation.
In rectangles are the data sets, and in rounded rectangles
are the different models. The procedure is shown at
episode t for model mi. The initialization is not repre-
sented and is done by sampling with replacement from
L.

a NER task, the models we use for the ensemble
are taggers. Further description of the taggers can
be found in the experiments section. We describe
the Algorithm 1 in the following paragraphs, and
we show our additions in Figure 1.

Tri-training. Tri-training is an episodic training
method that stops when each model of the ensem-
ble has stopped improving. The most crucial fea-
ture of tri-training is the construction of the training
set of the models. This is shown from line 4 to line
9 in Algorithm 1 and in the second line of Figure 1.
For each model mi, a pseudo-labeled set Li is con-
structed. Li is composed of the unlabeled sentences
x ∈ U for which the predictions of the models mj

and mk i /∈ {j, k} are equal. These predictions
are added to Li alongside x as their pseudo-labels.
A threshold can also be used to remove uncertain
annotations. However, it was concluded that it
was not necessary for simple tri-training (Ruder
and Plank, 2018). The models are then trained on
both the natural and synthetic data L ∪ Li. L is
the labeled training data. In our case, it represents
any subset of the training corpus made for the low
resource setting as explained in section 4.2. The
operations described above are repeated until all
models have stopped learning.

Initialization. The central part of Algorithm 1 de-
scribed above assumes that models are sufficiently
trained and different to create varied pseudo-labels.

To achieve these prerequisites, we pre-train the
models. The models mi are pre-trained on differ-
ent random subsets of the labeled data L. These
subsets are made by sampling with replacement
from the training set. This operation is also re-
ferred to as bootstrap sampling in (Zhou and Li,
2005). Sampling the pre-training data is done to in-
troduce variety in the train sets of the three models
without incurring performance losses.

Inference. For inference, we obtain an ensemble
of 3 different models that can be used together
with a voting system. We keep the labels with the
highest summed score across the three models.

As a semi-supervised learning algorithm, tri-
training requires a substantial amount of unlabeled
examples. The specificity of our study is the use of
a generator to create the unlabeled examples.

3.2 Generation
Applying semi-supervised learning methods is
more complicated when there is no unlabeled data.
We used the text of the labeled data as the context
for the generation model. We use the generation
model in two different ways: (i) follow-up sentence
generation and (ii) sentence completion, as shown
in Figure 2.

The first generation method we use is follow-up
sentence generation. Large language models like
GPT-2 (Radford et al., 2019) are trained on texts
containing multiple sentences. This kind of model
should be able to generate the follow-up sentence
from the context. Using these models out-of-the-
box should work without any finetuning. We apply
follow-up sentence generation to generate new ex-
amples. With this method, we aim to generate new
sentences that are within the same domain but have
different structures.

The second method we use is sentence comple-
tion. We remove the end of the sentence and com-
plete it using the language model for this method.
We aim to generate alternative contexts to the part
of the sentence we keep with this method. While
this method might bring more variations by taking
out random portions of the sentences, it is easier to
use this way.

3.3 Evaluation
We aim at evaluating whether the data generated
with large language models is of sufficient quality
to serve as unlabeled data in a tri-training scenario.
To that end, we evaluate the performances of the
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This is an example

That would be it’s follow-up

This is the completion

Figure 2: Generation methods examples. In blue is the
initial example and in red is the generated text. The first
generated example is from sentence follow-up, and the
second is from sentence completion.

tri-trained models against the performances of a
single model trained on the same amount of labeled
natural data.

We do not reduce the size of our testing sets
as we aim to compare our method to existing re-
sults. Our evaluation is comparative between our
tri-training method and no augmentation method.
We want to see whether there are increases in per-
formance in a low-resource setting. Comparisons
are made between a tagger trained on one subset
against the ensemble of taggers obtained via our tri-
training and generation method on the same subset.
The sampling of subsets is seeded as explained in
Section 4.2. We average results over those seeds to
reduce the impact of selection biases.

4 Experiments

In this section, we describe the technical details of
the experiments and explain the variants tested.

4.1 Datasets
The task we are working on is the Named Entity
Recognition (NER) task. The goal of this task is
to find mentions associated with certain concepts
in sequences of text. In practice, this is done by
assigning labels representing the concepts and the
position within the mention to each of the tokens
of the text. The corpora we are using are CoNLL
2003 English (Sang and De Meulder, 2003) and
I2B2 (Uzuner et al., 2011). CoNLL is a corpus
of Reuters news annotated with four different con-
cepts: person, location, organization, and miscel-
laneous. The difficulties of this corpus reside in
the various types of information portrayed within.
From geopolitical news to tables of sports results,
the input format varies greatly. I2B2 is a corpus
of medical records annotated with three different
concepts: problem, treatment, and test. These cor-
pora are classic corpora for the NER task and cover

I2B2 CoNLL
Train line count 11482 14986
Test line count 27625 3683
BERT base 84.0 90.0
BERT large 85.0 92.0
BioBERT 86.6

Table 1: Reference models used as topline for our work
and viability check against current state of the art. F1

of BERT + classifier models on I2B2 and CoNLL using
different pre-trained models. Metrics computed by se-
qeval (Ramshaw and Marcus, 1995) (Nakayama, 2018).
Best model based on development set F1, trained on 50
epochs, with batch size of 32.

diverse specialty domains. These complete datasets
contain enough data to be considered an ideal case
for their respective tasks. We have tested our tagger
architecture (see 4.3) on the full-sized data in order
to verify its quality and select the best pre-trained
BERT model available. This topline can be seen in
Table 1. Our experiment focuses on low resources;
the maximum size of the training data is less than
10% of the full set. We do not expect to reach
topline results with our method at this quantity of
data. However, we have to look at how much of the
gap between topline and baseline is bridged by our
method.

4.2 Low resource setting

The purpose of our method is to be used in a low-
resource setting. We simulate such a setting by
sampling a small number of labeled examples from
the training set to create a new training set. We also
consider that the quantity of data is small enough
that all of the data is labeled. For our experiment,
we reduce the training set to a subset S1000 of size
1000 by sampling without replacement using ten
different seeds. This is where the sampling bias
is induced. S1000 contains less than 10% of each
of our sets. The seeding is done to reduce the
variability of results due to sampling biases. Most
of the results will be averaged over the ten seeds.
We cut each subset S1000 in a series of subsets:
S50 ⊂ S100 ⊂ S250 ⊂ S500 ⊂ S1000. This is
useful to evaluate the impact of the addition of new
examples. For each seed, we obtain five subsets of
labeled data.

4.3 Tagger

This section presents the architecture shared by
all the taggers we train. It is a simple BERT +
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S50 S100 S250 S500 S1000

I2
B

2 baseline 36.23±5.80 49.22±3.23 64.34±1.43 71.39±0.75 77.38±0.64
∆unique +3.93±1.89 +2.56±2.37 +1.89±1.25 +1.93±0.70 +1.28±0.84
∆ensemble +4.32±1.82 +3.08±2.38 +2.45±1.23 +2.49±0.73 +1.80±0.84

C
oN

L
L baseline 59.87±3.32 69.20±3.92 80.65±1.99 84.74±0.89 87.70±0.38

∆unique +2.33±2.01 +0.08±3.64 +1.06±1.11 +0.54±0.83 +0.27±0.37
∆ensemble +2.98±1.98 +0.84±3.68 +1.77±1.17 +1.14±0.71 +0.71±0.40

Table 2: F1 score on baseline averaged across seeds. Average of the deltas between the performances of each
individual tri-trained tagger and their respective baselines at ∆unique lines. Average of the deltas between the
performances of tri-trained ensembles and their respective baselines at ∆ensemble lines. Corpora used are I2B2 and
CoNLL.

classifier architecture. The classifier is a two-layer
feed-forward network with a hidden size of 768 and
ReLU (rectified linear unit) activation. Dropout
with p = 0.1 is applied between BERT and the
classifier during training. The model is trained
with the Adam optimizer with an initial learning
rate of 10−5. We train all taggers for tri-training
and baseline for 1000 epochs with early stopping
when the development set F1 score stops increasing
for 20 epochs (40 epochs for a subset of size 50).
The sentence batch size is 16.

While we refer to our tagger architecture as
BERT + classifier, we have tried different pre-
trained BERT models234 as shown in Table 1 and
have settled on two different models. For CoNLL,
the best results were obtained with BERT large
cased (Devlin et al., 2018), and for I2B2, with
BioBERT base cased (Lee et al., 2020).

4.4 Generation
We generate the unlabeled set U with GPT-2 (Rad-
ford et al., 2019). We use HuggingFace’s imple-
mentation5. The text from the labeled train set
is used as the context to generate entailed exam-
ples. With each labeled example, we generate five
follow-up sentences. We also use the language
model for sentence completion. In this case, we cut
the original text and complete it using the model.
Each labeled example is cut to 75%, 50%, and 25%
of its length. In each of these cases, we generate
five completed sentences. This amounts to a total
of 20 synthetic examples per natural example. It
is, in practice, slightly less than that because we

2https://huggingface.co/
bert-base-uncased

3https://huggingface.co/
bert-large-cased

4https://huggingface.co/dmis-lab/
biobert-base-cased-v1.1

5https://huggingface.co/gpt2

filter out sequences made exclusively of different
types of whitespace, newlines, and other such noise.
Generated examples can be seen in Figure 3

4.5 Tri-training

The main focus of this article is the use of tri-
training without natural unlabeled data. We use the
unlabeled data generated, as explained previously,
as the unlabeled data of tri-training. Tri-training
requires one development set and one validation
set: the first for the training of each model mi,
the second to validate the stagnation of the models
across episodes. We chose to split the corpora’s ini-
tial development set in half to fulfill each of those
purposes. As this is a first experiment, we exclude
sentences without tags from the pseudo-labeled set.
This is done to avoid a possible problem at very
low resources where the pre-trained models are not
trained enough and produce sentences with empty
tag sequences where they should not. However, our
results show that these precautions might not be
necessary. The result of the tri-training procedure
is an ensemble of three models. Inference using
this ensemble is done with a simple voting system.
Voting is done by summing the scores output of
each tag across all models and picking the highest.

4.6 Results

In this section, we present the results obtained
across the different subsets.

Baseline. Baseline are the results of models
trained in a supervised manner only on the natural
training data. For each subset Sn, it is an average
of 10 scores. The results in Table 2 show consistent
performance increases between each subset sizes.
Seqeval (Ramshaw and Marcus, 1995) (Nakayama,
2018) is used to compute the results. I2B2 F1
range from 36.2 (size 50) to 77.4 (size 1000), and
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Figure 3: Examples of generation. The three first ex-
amples are from CoNLL and the three last from I2B2.
Each series is formed of an example of completion and
two examples of sentence follow-up. The examples
were cherry-picked to show both positive and negative
aspects of generation, be of short length, and be labeled
by the models. On CoNLL’s completion example, only
a full stop was added. On I2B2’s completion exam-
ple, the context was "FOLLOW" and was too short and
generic to bring the sentence to the medical domain.
The second examples for both corpora are okay. The
third examples for both corpora happen when short for-
mulaic sentences are used as context. For CoNLL, it is
the common -DOCSTART- and for I2B2, it was a date.

CoNLL F1 range from 59.9 (size 50) to 87.7 (size
1000). As discussed in Section 3.3, smaller sizes
show a higher standard deviation with 5.8 for I2B2
and 3.3 for CoNLL at size 50.

∆unique. Tri-training produces three trained
models supposed to be used as an ensemble of mod-
els. With constraints such as memory consumption
or inference time, one might want to use a single
model for inference. For such cases, we have re-
ported the results of single models. The ∆unique
results show the deltas between each of the three
individual models mi and the baseline. For each
subset Sn, it is an average of 30 deltas.

∆ensemble. The purpose of tri-training is to ob-
tain an ensemble of three models. We report the
results of the ensembles by computing the deltas
between the performances of the ensembles and
their respective baselines. These results can be
found within Table 2 at the ∆ensemble line and in
Figure 4.

Our method obtains higher results on average
on all subsets and on both corpora. Generally, on

Figure 4: Boxplot of CoNLL and I2B2 deltas between
tri-trained ensemble and baseline (∆ensemble). For
each subset size, the left boxplot is CoNLL, the right
boxplot is I2B2.

I2B2, tri-training allows for a ∆ensemble to range
from +4.32 (S50) to +1.80 (S1000). On CoNLL, it
otherwise ranges from +2.98 (S50) to +0.71 (S1000).
The ∆unique shows, as expected, lower gains than
∆ensemble, ranging from +3.93 (S50) to +1.28
(S1000) for I2B2 and +2.33 (S50) to +0.27 (S1000)
for CoNLL.

Out of the 50 individual runs for each corpus,
one is negative for I2B2, and five are negative for
CoNLL. Impacts of the negative results are seen
on the average results of CoNLL at subset size 100.
Three seeds yield negative gains at this size, with
one having extreme (-8.6 points) negative gains.
Removing this extreme result in the average cal-
culation brings the ∆ensemble score closer to ex-
pected values (+1.89). Performances of individual
models on CoNLL are within the standard devia-
tion of negative results. This is not the case for
I2B2. These results show that using the ensemble
is a more stable solution. Overall, the method is
most consistent with subsets of size 250 plus, as
the average performance of tri-trained ensembles
is above the standard deviation of the baseline.

5 Discussion

While our low-resource setting allows us to com-
pare the impact of the training method in an other-
wise similar context, it does not fully represent the
nature of the problem. Building the development
and test set is also a low resource problem. Reduc-
ing the test set to simulate low-resource will only
make any comparison meaningless. Simulating the
development set in the low resource context is an
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improvement that could be made.
It is also to note that while the application do-

main is low resource, it is necessary to have a size-
able open-domain language model in the target
language. Trying this method in languages other
than English must be tested. Multilingual models
might be the solution to the generalization of this
method. As it stands, availability of large language
model is the hardest limitation of this method.

6 Conclusion

Leveraging pre-trained models to improve perfor-
mances on specific tasks is a common approach.
With recent improvements to language modeling,
recent models are often used directly to solve tasks.
Direct usage is the method we use to build our tag-
gers. However, we propose a new use for these
sizeable models. They can serve as unlabeled data
generators for semi-supervised learning. In particu-
lar, we have shown that we can use this method to
gain significant improvements to the performances
of taggers on NER and Clinical Concept Extrac-
tion in a low resource context. We gain between 3
and 4 points of F1 score on subsets of data of size
50. Gains are overall positive on the sizes of the
subsets we have tested. The higher the gains, the
lower the data size is. We have shown that large
language models are suitable tools to generate un-
labeled examples for semi-supervised learning for
NER.
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Abstract

Text segmentation and extraction from un-
structured documents can provide business re-
searchers with a wealth of new information on
firms and their behaviors. However, the most
valuable text is often difficult to extract consis-
tently due to substantial variations in how con-
tent can appear from document to document.
Thus, the most successful way to extract this
content has been through costly crowdsourcing
and training of manual workers. We propose
the Assisted Neural Text Segmentation (ANTS)
framework to identify pertinent text in unstruc-
tured documents from a small set of labeled
examples. ANTS leverages deep learning and
transfer learning architectures to empower re-
searchers to identify relevant text with mini-
mal manual coding. Using a real world sample
of accounting documents, we identify targeted
sections 96% of the time using only 5 training
examples.

1 Introduction

Datasets of text documents hold enormous amounts
of raw information, particularly for social scientists
and business researchers. An individual document
contains not only declarative statements and facts,
but also style, theme and sentiment information that
can be used to evaluate diverse research questions.

Researchers have spent decades developing
frameworks and techniques to distill text into fea-
tures that are easily integrated into existing research
practices. One common practice is to use vetted
word lists to compute a score for a particular topic
or theme. For example, Loughran and Mcdonald
(2011) use a vetted word list to identify the de-
gree of uncertain language used in financial doc-
uments, and count the number of occurrences as
a proxy for the amount of prospective discussion.
Dictionary approaches such as LIWC (Tausczik
and Pennebaker, 2009) match words to predefined
psycholinguistic categories, allowing researchers

to identify broad themes including "anxiety" and
"religion".

More computationally sophisticated methods
such as word embeddings (Mikolov et al., 2013)
and topic modeling algorithms (Blei et al., 2003)
provide the capability to measure prevalence of
topics within documents, as well as the relation-
ships between words and how they may shift over
time. The development of transformer models
such as BERT (Bi-directional Encoder Represen-
tations from Transformers) (Devlin et al., 2019)
have opened a new frontier of text processing, with
models trained to categorize, summarize or answer
specific questions from input text.

Despite all these advancements, valuable pieces
of information remain difficult to extract or cate-
gorize in large unstructured documents. Word lists
and dictionaries can fail to capture the immense
variety of language that can be used to talk about
a single topic. Topic modeling algorithms may
not capture a specific concept in one overarching
topic. Thus, to ensure maximum quality, many re-
searchers resort to manual methods to effectively
characterize the text data from their documents.
One approach is to begin by identifying only the
segments of interest, so that only relevant text can
be utilized by subject matter experts or computa-
tional methods. To manually select these relevant
subsets, researchers frequently work with under-
graduates or other research assistants, or they post
tasks to pools of remote workers using platforms
like Amazon’s Mechanical Turk (MTurk). In either
method, using humans to extract specific pieces
of text from large documents is costly and time
consuming.

We propose a general deep learning framework
to provide Assisted Neural Text Segmentation
(ANTS) as a way to facilitate identification of text
segments of interest for researchers. The primary
goal of this general framework aims to reduce the
amount of time subject matter experts must spend
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manually coding documents or identifying and
training effective research assistants. The ANTS
framework has four steps:

1. Label a small handful of documents indicating
the relevant section of text

2. Fine-tune a pre-trained deep transformer
model (e.g., BERT) on the labeled dataset

3. Classify new text with the fine-tuned model

4. Infer the section of interest from the model’s
classification scores combined with domain
knowledge from the research question

In this paper, we present a specific problem of ex-
tracting Human Capital Disclosure (HCD) sections
from Form 10-K filings created by corporations for
regulatory Securities and Exchange Commission
(SEC) filings. We also illustrate a few strategies
to elevate the performance of our model without
annotating additional training data. Through sim-
ilar means, we hope to provide a less costly and
time consuming pathway for researchers to iden-
tify relevant segments of text from unstructured
documents.

2 Related Work

With modern advancements in deep learning tech-
nology and the increased need for processing large
text datasets, researchers have been optimizing
the task of automated text segmentation. Com-
mon applications of this natural language process-
ing (NLP) task include information retrieval (Oh
et al., 2007; Nguyen et al., 2021), topic segmen-
tation (Arnold et al., 2019; Aumiller et al., 2021),
and document summarization (Chuang and Yang,
2000). These tasks can take either linear or hi-
erarchical approaches, with the latter taking into
account structural representation of topics within
documents (Glavaš and Swapna, 2020).

Generally, the development of neural models
from scratch for text segmentation tasks requires
large training datasets (Koshorek et al., 2018) and
high computational costs. In response, researchers
have turned to pre-trained deep transformer mod-
els such as BERT, which offers high performance
on NLP tasks and the possibility of fine-tuning
its base model towards specific domains. Various
transformer-based model architectures and linear,
hierarchical, and multilevel models have been ex-
plored and evaluated for their performance on text
segmentation.

For domain-independent models, Lukasik et al.
(2020) introduced three new BERT architectures
to segment documents and discourses by predict-
ing on break points instead of classifying every
piece of text. These novel architectures showed
that a simple cross-segment BERT model using
only local context (sequences of tokens before
and after a potential break point) can perform
as competitively as more complex hierarchical
BERT models. Yoong et al. (2021) also devel-
oped three BERT models—BERT-NSP, BERT-SEP
and BERT-SEGMENT—to perform a text tiling
task (dividing a document or dialogue into seman-
tically coherent text segments) and demonstrated
that BERT-SEP, which considers the relatedness
of adjacent sentences as well as information from
the whole document, outperformed graph-based or
bi-directional LSTM (Long Short-Term Memory)
models. Lo et al. (2021) developed a two-level
transformer framework incorporating language-
specific or domain-specific pre-trained BERT trans-
formers as sentence encoders, which outperformed
state-of-the-art text segmentation models on a se-
mantic coherence measure.

To develop domain-specific models, often with
limited labeled training data, researchers have
tested how transformer-based language models pre-
trained on large amounts of general-domain data
can be leveraged and adapted for a specific domain.
To extract content elements from regulatory filings
and property lease agreements, Zhang et al. (2020)
segmented documents into paragraphs and trained
BERT at the paragraph level, which achieved rea-
sonable accuracy. They also found that training
with fewer than 100 documents was sufficient to
achieve an F1 score similar to that of the same
model trained with the entire set of documents.
Araci (2019) introduced FinBERT, a fine-tuned
BERT model for the financial domain, by conduct-
ing additional pre-training and fine-tuning of BERT
using text from financial news articles. FinBERT
outperformed other pre-trained models with as few
as 250 training examples in a sentiment analysis
task involving financial phrases.

We go beyond the works mentioned that only
provided information retrieval, topic segmenta-
tion, or document summarization to extract any
targeted section that a social science researcher
needs through a quick and manual-labor saving
framework. Building on the above related works,
we focus on refining a generic transformer model
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Figure 1: An illustration of the Assisted Neural Text Segmentation (ANTS) framework. In the Training stage (top
pane), we fine-tune a pre-trained BERT model for text classification on hand-labeled documents that are separated
into pertinent (green) and non-pertinent (white) sections. We augment our collection of training examples by
creating sliding windows of tokens from the labeled sections. In the Prediction stage (bottom pane), we use our
fine-tuned model on unseen documents to compute classification scores on individual sentences. We utilize these
scores with a threshold method to identify a single, continuous section of relevant text for each document.

on a single domain-specific task to extract a tar-
geted section of text in a low-resource setting. We
use this test case to illustrate a framework that a so-
cial science researcher can use in place of training
and recruiting manual labor.

3 Data

The Securities and Exchange Commission (SEC)
requires that publicly traded companies file finan-
cial disclosures at regular intervals. The Form 10-K
is an annual report that contains information about
a company’s business operations, financial results,
and management. In November 2020, the SEC be-
gan to require its registrants to include a disclosure
of their human capital resources in their Form 10-K.
This resulting section is of interest to accounting
researchers who want to characterize how firms
discuss their human capital and whether specific
diversity metrics are divulged (Choi et al., 2022).

We use MTurk to train workers to identify the
described Human Capital Disclosures (HCD) sec-
tion in 393 Form 10-K documents filed by S&P
500 firms from November 2020 through March
2021. The HCD section is a single, continuous
segment of text located within each Form 10-K. It
appears under various titles (e.g., "Human Capital",
"Human Resources", "Talent", "Employee Engage-
ment"), which span a range of sub-section topics
(e.g., hiring, benefits and compensation, diversity,
culture) of different lengths and combinations. We
employ human labor for this extraction task due to

this lack of uniformity in the section names, con-
tent, and location of the HCD section among Form
10-K documents. We use this manually collected
data as a test case for our ANTS framework. In
later sections, we will describe how documents are
randomly sampled to obtain training and test sets
to evaluate our framework.

4 Methods

In this section, we describe the ANTS framework
(outlined in Figure 1) in more detail and how it
is used in the scope of our specific test case. Our
framework expands upon the general structure and
methodologies of machine learning systems. We
employ a few strategies within the framework to
maximize the performance of our fine-tuned model
on our task without adding more labeled docu-
ments. In training, we explore a windowing method
to expand the size of our input data. In predic-
tion, we use an approach combining the prediction
scores of individual sentences and blocks of sen-
tences to optimize our ability to locate the targeted
single, continuous HCD section. Our implementa-
tion of the methods described below can be found
at darc.stanford.edu/ants.

4.1 Label Training Data

To begin, documents are manually annotated to be
used as inputs for training (green boxes in Train-
ing panel of Figure 1). We discuss our training
inputs as documents to match how this framework
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might be used by researchers who are more famil-
iar with handling and labeling whole documents.
For our specific problem, MTurk workers manually
identified a single HCD section within Form 10-K
documents.

After manual labeling, we separate the text
within our documents into positive and negative
sections. In this case, the positive section is the
HCD section and the negative section is the rest
of the document. Since a given HCD section may
be relatively scarce in content (∼1000 tokens on
average from the collected sample), we increase
the amount of training examples in our dataset by
windowing over each section. In this approach, il-
lustrated in the Training panel of Figure 1, given a
specific window size N, we take the first N tokens
of the positive section (in green), and label that
window as 1. This is the first training example for
our model. Next, we move one token over, and
take another window of N tokens. This is repeated
until there are no more tokens in the section. We
perform the same windowing for the negative sec-
tion (in white), except with a label of 0. In our test
case, we use a window size of 34 tokens to coincide
with the median number of tokens per sentence in
our sample of documents. The window size hy-
perparameter can be varied depending on the use
case, where smaller windows might contribute too
little context for the model to learn on, while larger
windows might provide too few examples.

4.2 Fine-tune BERT

To fine-tune BERT, we use the implementation of
BERT for binary classification from Wolf et al.
(2020) We train only the final classification layer
with a batch size of 32 and a learning rate of 1e−5

for 4 epochs on a 3:1 (negative:positive) balanced
training set, selecting the best model based on the
validation set performance. All other layer weights
in the model are frozen. The training dataset was
split 9:1 for training and validation. After the train-
ing/validation split, we balance the training set with
a 3:1 ratio of negative to positive examples. This
balancing is accomplished by under-sampling neg-
ative examples to achieve the desired ratio.

We use GPU resources on Google Colab for the
initial exploration and development of our train-
ing framework, and a high performance computing
cluster for final training. We run the final training
using a single GPU on the Stanford High Perfor-
mance Computing Sherlock cluster.

To better represent the range of performance of
the fine-tuned models from our training framework
in this paper, we take a random sample of input
documents from the available set of labeled doc-
uments and fine-tune a BERT model using that
sample instead of the full set of labeled documents.
We denote a model trained on a random sample
of input documents by Modeli, for i = 1, . . . ,M ,
where M is set to 20 in our examples. For Modeli,
we randomly sample a number of training docu-
ments, and use the remaining documents as the
test set for that model. In the prediction phase, we
pick the epoch with the least validation loss during
training for every Modeli.
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Figure 2: Example of single sentence (1-block) proba-
bilistic scores (red line) generated during the prediction
phase for a single document accompanied by sample
sentence text. High scores (such as 0.9995) indicate
a strong correlation with the language of the positive
training examples and low scores (such as 0.01) indicate
the opposite. The targeted Human Capital Disclosure
(HCD) section is highlighted in green.
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4.3 Classify New Text

Now that we have a fine-tuned BERT model to iden-
tify the language we are looking for, we use that
model to classify text in unseen documents. For
each document, we tokenize the text into sentences
(Prediction panel of Figure 1) using the Python
NLTK package (Bird et al., 2009) in preparation
for prediction on the sentence-level. We choose
to predict on sentences as they represent the most
natural breaking points within a document. As an
output, the model provides a probabilistic classifi-
cation score for each sentence.

In our test case, we generate prediction scores
for both single sentences (1-block) and for larger
blocks of five sentences (5-block). In the 5-block
instance, we create blocks of 5 sentences with a
step size of 1 sentence, similar to the windowing
strategy in training. Our rationale for generating
scores for 5-blocks is to take advantage of the addi-
tional context provided by neighboring sentences to
help classify the central sentence. This way, shorter
sentences with less contextual information, but that
are still part of the target section, are more likely
to be classified properly in the method we use to
identify HCD sections from the model output. This
strategy is another demonstration of maximizing
the available information from a scarce amount of
data.

4.4 Identify Targeted Section

After running prediction and obtaining scores for
each sentence in a document, we need to make a
decision on which sentences are associated with
our section of interest. In some use cases, where
a straightforward categorization of individual sen-
tences is sufficient, a simple threshold can be cho-
sen to make this decision. This threshold can be
tuned based on the desired outcome metrics. In our
test case, where we need to find a single, contin-
uous section of text, a more complex approach is
necessary.

The choice of a section identification method is
complicated by the distribution of sentence scores
generated by the model. Figure 2 illustrates the
score distribution (in red) as a function of sentence
index for an example document. The targeted HCD
section is highlighted in green. Generally, higher
scores indicate a strong correlation with the lan-
guage of the positive training examples and lower
scores indicate the opposite. There are a few situa-
tions to consider.

First, there are sentences that are part of the tar-
geted section and should become true positive pre-
dictions. However, the distribution of scores within
the highlighted green area shows that there are in-
dividual sentences with lower scores that could end
up as false negative predictions. These may simply
be shorter sentences with less contextual informa-
tion or they could actually contain irrelevant text,
but happen to be in the targeted section. In our task
of capturing the HCD section as presented in each
Form 10-K document, we want to capture these
sentences.

Furthermore, there are sentences with relatively
high scores (such as the 0.997 example sentence
and many of the other peaks outside of the high-
lighted green area) that contain relevant content
based on the provided training examples, but are
not contained within the targeted section. This is
not unexpected in our case as companies are re-
quired to discuss their human capital resources in
Item 1 of their Form 10-K, but this does not for-
bid them from discussing related content outside
of Item 1. This situation can lead to many false
positive predictions in our case, that could actually
be relevant data in a different use case.

Finally, there are sentences with scores in the
middle (such as the 0.58 example sentence). These
could appear within or outside of the targeted sec-
tion and the chosen method must accommodate
these sentences.

In consideration of these factors, we use the com-
bined information provided by the 1-block and 5-
block scores to determine the predicted single, con-
tinuous HCD section for each test document. To
start, we calculate a threshold for which to evaluate
the output scores by compiling the 1-block scores
produced by the Modeli given a particular set of pa-
rameters and taking the median value of scores that
are less than or equal to 0.5. For each document,
we then find the longest continuous section of 1-
block scores that fall under that threshold. After
that, we seek the longest continuous section of 5-
block scores that fall under the threshold and has an
overlap with the longest 1-block section. The sen-
tence endpoints of this 5-block section determine
the predicted HCD section for each document. We
believe this approach provides the best balance in
our attempt to capture as much of the true HCD
section as possible.
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5 Results

Our results are reported using the aforementioned
sample of 393 Form 10-K documents from S&P
500 companies. We use three evaluation metrics:
precision, recall, and Jaccard index. Precision rep-
resents how well our section identification algo-
rithm captures positive sentences, penalizing the
situation where sentences outside of the true HCD
section are determined to be part of that section.
In practice, however, extraneous sentences at the
outside edges of the HCD section may be accept-
able if most of the section itself is correctly labeled.
For this, we rely on the recall score, which repre-
sents how much of the targeted section is captured.
Finally, to capture both the precision and recall
metrics together, we use the Jaccard index, which
penalizes both false positives and false negatives.

We calculate the three metrics described above
for each predicted HCD section from a document
varying the number of training documents for
each Modeli. To characterize the performance of
Modeli, we take the mean score from all predicted
documents. Documents without a predicted HCD
section receive a score of zero for each metric. The
plots in Figure 3 show these mean scores.

5.1 Training on Sentences versus Windows

To illustrate the effectiveness of the windowing
method described earlier in the labeling phase of
training, we test the ANTS framework by construct-
ing training examples using windowing and no win-
dowing (sentence-only) training datasets. For the
no windowing model, we tokenize the separated
positive and negative sections into sentences, each
of which then constitutes a single training exam-
ple for the BERT model. The training datasets
for Modeli are created from the same set of docu-
ments and the evaluation metrics are derived from
predictions on the remaining documents not used
in training. For sentence-level and window-level
approaches, the training and test sets used in train-
ing and evaluating Modeli are the same. All other
hyperparameters are held constant.

Figures 3a (sentence training) and 3b (window
training) show the three chosen evaluation met-
rics as a function of the number of training docu-
ments ranging from 1 to 19 documents with a step
size of 2 and using just the 1-block scores to pre-
dict the HCD section. In other words, we choose
the longest continuous section of 1-block scores
that fall under the threshold described earlier. For

this particular comparison, we omit the usage of
5-block scores to focus on the difference achieved
just with windowing. Each dot in the displayed
score distribution represents the performance of
Modeli for each number of training documents and
the dashed lines represent the trend of the mean
score value of all 20 Modeli’s.

A few notable differences can be seen between
Figures 3a and 3b. First, we see a sharp contrast
in the distribution of scores across Modeli’s at any
given document size. In the no windowing case,
a model’s Jaccard index for a given Modeli can
range anywhere from zero to around 0.7. Strik-
ingly, this wide spread can be observed anywhere
from a number of training documents of 7 doc-
uments all the way to 19 documents. Although
the overall mean performance (dashed line) dis-
plays an upward trend, this spread illustrates that if
the "wrong" N documents are chosen for sentence-
only training, then poor results may be observed
even with large N. The score distributions in the
windowed case are much narrower, mitigating the
impact of selecting any particular documents for
training.

Additionally, though less dramatic than the
spread, there is an overall improvement in perfor-
mance across the three metrics in the windowed
models versus the sentence-only ones. In partic-
ular, the performance of the models trained with
windows saturates after only a training input size
of about 5 documents or so. The same cannot be
said, and is also difficult to observe, in the models
trained with sentences. This is likely caused by the
substantial increase in effective training data result-
ing from the windowing method, which leads to
a lower requirement on the number of documents
needed for training.

Based on the observations above, using the win-
dowing method during training in the ANTS frame-
work is an effective way of improving the pre-
dictability and overall performance of the resulting
fine-tuned model. At the same time, it reduces the
number of manually labeled training documents
required.

5.2 Varied Number of Training Documents

We train our model on various training input sizes,
measured by the number of documents used. As
mentioned earlier, we choose document as the in-
put size unit to match how this framework might
be used by social science (particularly business)
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Figure 3: The x-axis represents the number of training documents and each dot in the graph represents a mean
score for all test documents for Modeli trained on a random subsample of the input labeled documents. The mean
Jaccard (blue), recall (red), and precision (green) scores of predicted Human Capital Disclosure (HCD) sections
are calculated across a set of test documents. Test set for Modeli consists of the remaining documents not used
for training of Modeli. The dashed lines show the trend of the mean score value for all Modeli through ModelM ,
where M = 20 at each training input size. (a) Results for training on sentences only and using just 1-block scores
to predict the HCD section. (b) Results for training on windows and using just 1-block scores to predict the HCD
section. (c) Results for training on windows and using both 5-block and 1-block scores to predict the HCD section.

researchers who are more familiar with handling
collections of documents. We use Figure 3c to
discuss our findings. Figure 3c shows the same
metrics described for Figures 3a and 3b, but using
windowing during training and the aid of 5-block
scores in finding the right section. The effective-
ness of employing 5-block scores is described in
the next section.

Based on the score distributions shown, there is
a noticeable increase in performance as a function
of the number of training documents used for fewer
than 5 documents, but then a clear saturation after
that point. This same behavior was noted for the
results in Figure 3b, but is more evident here. Fur-
thermore, the spread in the scores across Modeli’s
also reduces markedly as a function of the number
of training documents, also steadying at around 5
documents. This indicates that after a certain num-
ber of training documents, the predictability of the
model performance is quite stable, which provides
some leeway as to which training documents are
chosen.

Of particular interest from a practical perspective
is that the point of saturation for both performance
and spread is reached at only around 5 documents.
There is merely a 3.4% difference in mean Jaccard
index between training on 5 documents versus 19
documents. This somewhat unexpected result il-
lustrates that for a defined section identification
task like this one, not very much training data is
necessary in the ANTS framework for a fine-tuned
BERT model to achieve adequate classification per-
formance. Moreover, at 5 training documents, the
model already captures part of the targeted section
in 96% of the unseen documents.

5.3 Using 5-block Scores in Section
Identification

As discussed in Methods, we use a combination of
1-block and 5-block scores to optimize the predic-
tion of the HCD section for each document. The
differences in Figures 3b and 3c emphasize the va-
lidity of this approach. To start, there is a clear gap
in performance as reflected by the mean Jaccard
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index after the point of saturation (5 documents) is
reached. In the case of using only 1-block scores,
the Jaccard index ranges from 0.43 to 0.48. How-
ever, in the case of using both 1-block and 5-block
data, the Jaccard index ranges from 0.75 to 0.79.
Looking closer at the precision and recall scores,
it is clear that this dramatic difference in Jaccard
index can be attributed to the sizable improvement
in recall shown in Figure 3c. In fact, the precision
scores are higher in the case of using only 1-block
scores in Figure 3b. This means that the chosen
section identification algorithm captures more of
the targeted section during prediction, but at the
expense of falsely including sentences just outside
the edges of the section. For our test case, this
is acceptable and for other use cases, this can be
tuned.

As a result of calculating 5-block scores for this
section identification method, the overall time spent
during the prediction phase is longer. However, the
performance gains for our use case are significant
and additional annotated data is not required. The
results here further illustrate the possibility and
effectiveness of stretching out scarce text data in
this framework.

5.4 Utility of "False Positives"

The section identification scheme that we choose
de-emphasizes other sentences that have high clas-
sification scores, but lay outside of the actual HCD
section. For instance, the sentence with score 0.997
outside of the highlighted green area in Figure
2. However, these resulting "false positive" sen-
tences could be relevant content to a researcher
even though they do not fall in the targeted section.
We perform a text similarity analysis to determine
whether these sentences are indeed relevant. To do
this, we divide the sentences of each document into
3 categories:

1. Actual Positive sentences identified by work-
ers to be part of the HCD section,

2. False Positive sentences determined by the
1-block model to be positive, but did not fall
into the HCD section, and

3. Negative sentences determined by the 1-block
model not to be positive and did not fall into
the HCD section.

We remove English stop words from the text and
then compute a TFIDF matrix for each of the three

categories using the Python Scikit-learn package
(Pedregosa et al., 2011). We then calculate the co-
sine similarity between the matrices. Notably, we
find that the similarity between Actual Positive and
False Positive text is very high (0.88) relative to the
same measure between Actual Positive and Neg-
ative (0.38) text. For False Positive and Negative
text, the similarity is 0.42. This supports the idea
that the model potentially captures text relevant to
the HCD section that is ignored in the scope of
this paper, but may still be of value in a different
context.

6 Conclusions

In this paper, we propose a practical framework
to extract continuous segments of text from un-
structured documents, with a particular focus on
text-intensive research in business and social sci-
ence. The ANTS framework utilizes a pre-trained
BERT model to identify targeted sections 96% of
the time using only 5 training examples. This gen-
eral framework can enable subject matter experts
to accelerate their research by reducing the time
commitment needed to extract large amounts of
relevant text given a very small number of train-
ing examples. Our proof of concept using Human
Capital Disclosure sections of SEC filings demon-
strates that manually coding only a few documents
provides enough training data for a model to effec-
tively identify the relevant section of the remaining
documents. Furthermore, the success of this frame-
work opens a number of other valuable research
questions from the same documents. For instance,
what distinguishes the official HCD text from the-
matically similar data (as flagged by ANTS) in the
remainder of the document? Or, how did compa-
nies report human capital information prior to the
SEC’s disclosure requirement?

The ANTS framework provides the opportunity
for researchers to use additional domain knowl-
edge to integrate the sentence-level scores from a
trained model. In this report we use a section pick-
ing algorithm that is constrained to identify only
a single contiguous section to mirror the SEC fil-
ing structure. An ANTS framework that could, for
instance, identify boilerplate language from corpo-
rate charters, could be tuned based on the known
length, location and number of boilerplate sections.
The wealth of trained models also provides the
opportunity to extract or flag relevant text from
semi-structured documents (e.g., HTML), spoken
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text transcriptions or social media posts.
While our proof of concept only returns flagged

sections as an output, it suggests an application as
a successor to "word list" based research methods.
Work such as Loughran and Mcdonald (2011) de-
scribes counting words and phrases as a proxy for
an underlying theme, such as uncertainty. Using
ANTS, researchers can identify sections of inter-
est and prepare document scores from aggregat-
ing model results. Taking human capital disclo-
sures and diversity as an example, ANTS could be
trained with language on workforce diversity from
SEC filings, and then used to generate a diversity
score by counting the number of sentences dis-
cussing diversity. This work could circumvent the
technical and arduous task of building word lists,
and provide context aware metrics that can flag a
diversifying workforce without false positives from
a diversifying supply chain.

Taken together, the ANTS framework demon-
strates a rich set of avenues that can be used to
accelerate, augment and amplify the work of aca-
demic researchers in the social sciences. As deep
learning tools are released on free and reduced cost
platforms (e.g., Colab, OpenAI, HuggingFace), re-
searchers will build effective datasets from larger,
more diverse and more subtle text sources. We
hope that ANTS can be leveraged to facilitate this
growth in text data and democratize deep learning
advances in new and unexpected ways.
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Abstract

Deep learning methods have enabled task-
oriented semantic parsing of increasingly com-
plex utterances. However, a single model is
still typically trained and deployed for each
task separately, requiring labeled training data
for each, which makes it challenging to support
new tasks, even within a single business vertical
(e.g., food-ordering or travel booking). In this
paper we describe Cross-TOP (Cross-Schema
Task-Oriented Parsing), a zero-shot method for
complex semantic parsing in a given vertical.
By leveraging the fact that user requests from
the same vertical share lexical and semantic
similarities, a single cross-schema parser is
trained to service an arbitrary number of tasks,
seen or unseen, within a vertical. We show
that Cross-TOP can achieve high accuracy on
a previously unseen task without requiring any
additional training data, thereby providing a
scalable way to bootstrap semantic parsers for
new tasks. As part of this work we release
the FoodOrdering dataset, a task-oriented pars-
ing dataset in the food-ordering vertical, with
utterances and annotations derived from five
schemas, each from a different restaurant menu.

1 Introduction

Propelled by deep learning, task-oriented parsing
has made significant strides, moving away from
flat intents and slots towards more complex tree-
based semantics that can represent compositional
meaning structures (Gupta et al., 2018; Aghajanyan
et al., 2020; Rongali et al., 2020; Mansimov and
Zhang, 2021). However, most semantic parsing sys-
tems remain task-specific: they can only produce
representations with the set of intents and slots

seen during training. To support multiple tasks,
this approach requires collecting data, training, and
maintaining a model for each task separately. This
is costly when multiple tasks need to be supported,
as is usually the case for digital voice assistants
such as Alexa and Google Assistant, which may
need to support hundreds or thousands of different
tasks in a given business vertical (e.g., restaurants
in the food-ordering vertical, hotels in the travel
vertical, and so on).

In this paper we present Cross-TOP, a method
for building a single semantic parsing model that
can support an arbitrary number of tasks in a given
vertical. User requests pertaining to the same ver-
tical have lexical and semantic similarities; their
main differences lie in their unique schemas. In
the food-ordering domain, for example, a customer
may request a main dish with various options and
possibly a drink and a side. However, depending on
the specific restaurant menu, the output semantic
representations can differ greatly; see Figure 1.

Cross-TOP makes use of a powerful pre-
trained transformer-based encoder-decoder lan-
guage model, with schema-specific context added
to the input along with the utterance. In this way,
the model learns to generate parses for a new, un-
seen task, by attending to the schema in the input
rather than by needing to see it during training. We
show that this approach is quite effective and pro-
vides a quick solution to the practical problem of
bootstrapping semantic parsers for new tasks within
a vertical, using a single model in production.

The parser is trained on a number of initial tasks,
where each task has some training data available.
Moreover, we assume that every task has a unique
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Figure 1: The Cross-TOP parser processes utterances
from multiple tasks with different schemas. The light-
ning bolts represent fuzzy matching, which is used to
append schema elements to the input (cf. Section 2).

schema. That schema consists of all possible in-
tents and slots for the task at hand; both intents
and slots can be arbitrarily nested (compositional).
For every slot S, the schema also includes natural-
language phrases for the various values of S. All
schemas for the five tasks in our dataset can be
found in Appendix B. Cross-TOP uses constrained
decoding to ensure that it generates well-formed
parses that can be resolved to executable represen-
tations that can be directly used by the back end.

Most zero-shot cross-schema semantic pars-
ing work has been in the context of the Text-to-
SQL task (Zhong et al., 2020; Lin et al., 2020;
Wang et al., 2020; Rubin and Berant, 2021; Yu
et al., 2020; Gan et al., 2021). Cross-schema task-
oriented parsing introduces its own challenges. In
SQL, the schemas are database schemas, and the
parser is trained on some initial databases and then
evaluated on another database. There is a lot of
invariant structure across different tasks in the out-
put space (since output sequences are always SQL
queries), as well as common patterns in how SQL
structures tend to align with natural language. How-
ever, for the schemas defined in task-oriented pars-
ing for the food-ordering domain, the only invari-
ant structures are the parentheses and some lexical
overlap among the intents and slots. Therefore,
cross-schema parsing in general is more challeng-
ing for task-oriented parsing. However, restricting

the scope to a given vertical imposes more common
structure that can prove helpful.

To evaluate our methodology, we focus on tasks
in the food-ordering domain, where each task con-
tains examples from a restaurant with the schema
generated from its menu. Our main contributions
are as follows:

• We present a new technique for zero-shot intra-
vertical cross-schema semantic parsing that
jointly encodes utterance tokens and schema
elements.

• We release a new task-oriented parsing dataset
for food ordering to evaluate similar efforts.
The FoodOrdering dataset includes examples
from five restaurants, totaling close to 30,000
synthetically-generated training examples and
963 human-generated test utterances with la-
bels.

• We show that our method achieves up to 73%
exact match accuracy on a previously unseen
ordering task, proving the method’s viability
for effortlessly handling a new task.

2 Model

Our method trains a single schema-aware model to
serve multiple tasks and bootstrap new ones from
the same business vertical in a zero-shot setting.
It leverages the transfer learning capabilities of a
transformer-based pretrained encoder-decoder lan-
guage model.

Terminology Each task is defined by a unique
schema consisting of intents, slots belonging to
those intents, and catalogs enumerating the pos-
sible slot values for each slot. For example, in
the pizza-ordering task the TOPPING slot belongs
to the PIZZAORDER intent, and values for this slot
could be mushrooms, pepperoni, and so on. In
our predefined catalogs, multiple slot values could
refer to the same slot value entity, for example
peppers and green peppers can both be mapped
to TOPPING_PEPPERS—or perhaps TOPPING_35—
in the back end. Cross-TOP predicts parse trees that
contain slot values, which are then entity-resolved
into those unique back-end identifiers through this
many-to-1 mapping.

A task schema can optionally define invocation
keywords for each intent, to identify how these
are expressed in natural language, for example
{drink, drinks} for a DRINK_ORDER intent. This

49



is used for augmenting model input with fuzzy-
matched schema elements later on. Fuzzy string-
matching algorithms compute lexical similarity be-
tween strings. If some schema elements have a
significant overlap with certain utterance tokens,
then there is a “match” and that schema element
will be appended to the input utterance before en-
coding.

Model Inputs As just mentioned, to achieve
zero-shot cross-schema parsing, we append fuzzy-
matched schema elements to input utterances.
Given an utterance u, assume our fuzzy-matching
process (described later) determined that the intents
i1 and i2 are present in the request, with slot/slot-
values s1,1/v1,1 for i1, as well as s2,1/v2,1 and
s2,2/v2,2 for i21. The input to Cross-TOP is then
serialized into the following format:
u [I] i1 [S] s1,1 [V] v1,1 [I] i2
[S] s2,1 [V] v2,1 [S] s2,2 [V] v2,2

where markers [I], [S], [V] indicate that the
following tokens are intents, slots and slot values,
respectively. An example is given in Figure 2.

Figure 2: Cross-TOP is trained to attend to input utter-
ances augmented with fuzzy-matched schema elements.

Our format is inspired from BRIDGE (Lin et al.,
2020), but instead of table/column/column-value in
a database schema, task-oriented parsing schemas
uses intent/slot/slot-value. While the longer input
sequences increase the computation required for
inference, the latency impact is mitigated by the
parallelizability of the transformer architecture.

Model Outputs The model is trained to generate
a linearized parse tree similar to the target shown
in Figure 2, which is reminiscent of the TOP de-
coupled notation (Aghajanyan et al., 2020). TOP
decoupled is itself derived from the TOP notation
(Gupta et al., 2018) by removing tokens that are
not direct children of slot nodes. Unlike TOP de-
coupled, leaf nodes in our output semantics are
not tokens copied from the source utterance, but

1There can be more than one slot value v identified for the
same slot s, in which case the input will be of the form:
u [I] i1 [S] s1,1 [V] v1,1,1 [V] v1,1,2 . . .

instead must be valid slot values belonging to the
task’s catalogs. As exemplified in Figure 2, the
fuzzy-matched slot value for the utterance segment
large-size is the catalog entry large. It can hap-
pen that utterance token and catalog value are iden-
tical, as is the case for peppers here. By predicting
slot values instead of unresolved utterance tokens,
Cross-TOP jointly learns to perform semantic pars-
ing and entity resolution, thus eliminating the need
to train and maintain a separate entity resolution
system for every new task.

Fuzzy-Matching Details The viability of our
schema-aware encoding depends on our ability
to extract the proper schema elements. We lever-
age the fuzzy-matching method from the BRIDGE
codebase2 and compute lexical similarity scores
between an input utterance and every slot value.3

If multiple slot values representing the same en-
tity match the utterance, we pick the one with the
higher similarity score. Slots are added to the input
if at least one of their slot values was added.4 In-
tents are added to the input if at least one of their
slots is added.5

In addition, if any of the predefined intent
invocation keywords (cf. Terminology) fuzzy-
match the utterance, then that intent is added
along with the fuzzy-matched keyword, for exam-
ple adding [I] PIZZAORDER : pizza instead of
simply [I] PIZZAORDER. Given that intent names
can be arbitrary and carry little semantic content,
this design helps the pretrained language model
by bridging the gap between natural language and
back-end executable representations.

Constrained Decoding The target parses con-
tain only schema elements and parentheses. Cross-
TOP leverages constrained decoding at inference
time to generate valid catalog values and parses
according to the schema. For example, the string
(DRINK_ORDER (SIZE coke)) is not valid, as the
slot value coke is not a catalog entry for the
slot SIZE. In this work we also implement a

2https://github.com/salesforce/
TabularSemanticParsing

3This works in a vertical with small catalogs, such as
restaurant menus. To make it scale to much larger catalogs,
one could use sub-linear fuzzy string-matching algorithms and
offline parallel processing.

4Slots that are parents of other slots are also provided with
catalog entries to allow fuzzy matching. For example, a NOT
slot for negation will use {with no, without, hold the . . .}.

5A slot shared across two intents will trigger both their
inclusion, but experiments indicate that the neural parser can
learn to discard such false detection.
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parentheses-balancing constraint, as well as a set
of valid next-token constraints, where each vocab-
ulary subword has a corresponding entry in a dic-
tionary mapping it to a list of valid subwords that
may follow it. The content of such a dictionary is
task-specific but is built programmatically from the
task schema. The detailed constraints are provided
in Appendix D. Section 5 quantifies the benefits of
constrained decoding in the zero-shot setting.

3 The FoodOrdering Dataset

We release a dataset for cross-schema zero-shot
task-oriented parsing: the FoodOrdering dataset,6

comprising five food-ordering tasks for five ficti-
tious restaurants: PIZZA, SUB, BURRITO, BURGER

and COFFEE.

Dataset Construction To gauge zero-shot capa-
bilities, only three out of five tasks come with
training data. For SUB and BURRITO, the train-
ing portion of the data was synthetically generated
by sampling around 50 human-designed templates
for which slot values are themselves sampled from
predefined catalogs. The catalogs and templates
are released along with the dataset, but a couple of
examples are given in Table 4. We generated up to
10,000 unique pairs of natural language and target
parses. For PIZZA we randomly sampled 10,000
utterances out of the 2.5M provided by Arkoudas
et al. (2021). All five tasks have evaluation data
generated by humans and collected through Me-
chanical Turk; see Appendix A for details. MTurk
workers generated natural language orders, which
were then annotated internally. More examples can
be found in Appendix C.

Dataset Statistics All tasks follow a common
structure of intents and slots, but each task has a
different number of intents, slots and slot values. In
Table 1, the #SltValEntities column does not count
the total number of slot values, but rather the total
number of slot value entities, which are resolved
slot values (cf. Terminology). BURRITO has 7
distinct intents while COFFEE is a single-intent task.
The design differences between the task schemas
reflect a real-world setting: each restaurant comes
with its own preexisting back end that dictates the
design and contents of the corresponding schema.
On average there are 1.7 intents and 6.2 slots per

6https://github.com/amazon-research/
food-ordering-semantic-parsing-dataset

utterance, and an average depth7 of 3.4. Detailed
numbers are provided in Table 5 of Appendix C.

Task Schemas Each task has a unique schema,
but all schemas are governed by similar rules: only
slot nodes can be children of intent nodes, and
there is no limit on the number of intents per utter-
ance nor slots per intent. Slot nodes can be parents
either of slot values or of other slots. NOT is an ex-
ample of a generic (task-agnostic) slot that allows
us to negate any slot that admits negation, such as
TOPPING. Refer to Appendix B for the details of
the five schemas.

4 Experimental Setup

Our experimental setup reflects the practical sce-
nario of having to scale a technology to service
multiple applications under constrained production
resources. We consider a single model to serve
all tasks, so we train with synthetic data for only
three of the tasks (PIZZA, BURRITO and SUB), and
test zero-shot generalization on two unseen tasks
(BURGER and COFFEE).

Training Details In this work we use BART-
Large (Lewis et al., 2020), a transformer-based pre-
trained encoder-decoder language model. We fine-
tune the publicly available 24-layer BART-Large
checkpoint8 totaling 406M parameters, using the
transformers codebase. We expand the tar-
get vocabulary by adding special tokens for input
markers [I], [S] and [V]. The training dataset
was created by concatenating synthetic data from
the three training tasks. Models are trained for
50 epochs with early stopping patience of 4, us-
ing cross-entropy sequence loss and the AdamW
optimizer. We use the human-generated data of
the three training tasks as our development set for
early stopping and hyperparameter tuning. Hy-
perparameter tuning is described in Appendix E.
Our best model uses a batch size of 16, learn-
ing rate 1e-05 and linear learning rate scheduler
with warm-up ratio of 0.1. The hyperparameter
no_repeat_ngram_size was disabled by set-
ting it to 0.

Evaluation Details We use Unordered Exact
match accuracy (Unordered EM) to measure per-

7Queries are by design multi-intent, hence implicitly
rooted in a parent ORDER node, which is factored in the com-
putation of depth.

8https://huggingface.co/facebook/
bart-large
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Dataset #Train/Synthetic #Eval #Int #Slt #SltValEntities Example utterance

PIZZA 10,000 348 2 10 166 "Can i get one large pie with no
cheese and a coke."

BURRITO 9,982 191 7 11 34 "One carnitas quesadilla with
white rice and black beans."

SUB 10,000 161 3 8 62 "Get me a cold cut combo with
mayo and extra pickles."

BURGER 0* 161 3 9 44 "A vegan burger with onions and a
side of sweet potato fries."

COFFEE 0* 104 1 9 43 "One regular latte cinnamon iced with
one extra espresso shot."

Table 1: FoodOrdering dataset statistics: sizes of training and evaluation sets, as well as numbers of intents, slots,
and resolved slot value entities defined in each task’s schema. *BURGER and COFFEE have no training data, as they
are used to evaluate zero-shot learning.

formance. It checks for an exact match between
the golden and predicted trees, where sibling or-
der does not matter. The golden parse trees are
executable representations (ready for consumption
by an appropriate back end) that contain resolved
entity names instead of slot values identified by
utterance segments. These entities are fully de-
termined by the many-to-1 mapping mentioned in
Section 2. Validation performance is computed on
the aggregated validation sets for the three training
tasks. Test performance is reported for tasks indi-
vidually. We used a beam size of 6 for validation
and testing.

Pre-Processing and Post-Processing When ap-
pending the schema elements to the input utterance
we do not include the slot/slot-value pair NUMBER,
1 from the fuzzy matching process if it’s the only
quantity matched.9 This choice was made after ob-
serving that the slot values a/an can easily trigger
false positives in fuzzy matching. For example, in
the utterance an order of two sprites, the numeric
quantity to extract is two, but the token an would
trigger an extra unnecessary match. At inference
time, if no NUMBER was generated for an intent, we
add back (NUMBER 1) as a default to the predicted
parse tree. Before computing unordered EM scores,
all slot values are resolved into the appropriate en-
tity names using the many-to-1 mapping mentioned
earlier.

5 Results and Analysis

In the zero-shot setting, Cross-TOP achieves 73%
unordered EM on BURGER and 55% on COFFEE

9Note that we do keep those slot/slot-value pairs for quan-
tities larger than 1.

(Table 2). The rest of this section presents an anal-
ysis of our results.

Schema-aware encoding enables zero-shot trans-
fer learning. The main strength of Cross-TOP is
training and maintaining a single model that can
serve multiple tasks within the same business ver-
tical, and bootstrapping new tasks without retrain-
ing. The zero-shot results in Table 2 support the
claim that joint learning over utterance tokens and
matched schema elements achieves this objective.
For completeness, we show that the zero-shot abil-
ity does not simply come from the conjunction of
constrained decoding and BART’s extensive pre-
training: we perform an ablation exercise where
the input to BART-Large contains no schema infor-
mation at all, but constrained decoding is enabled.
As can be seen in the second row of Table 2, ac-
curacy drops precipitously, by 46 and 23 absolute
points for BURGER and COFFEE, respectively. A
manual analysis of the predictions shows that in the
overwhelming majority of cases, this model only
generates intents and slots that it has seen before
in training and thus fails to correctly parse utter-
ances that have unseen intents/slots. On a subset
of 108 BURGER utterances with at least one intent
unseen in training, the schema-oblivious approach
only gets 4% unordered EM, compared to 64% for
Cross-TOP.

Schema-aware decoding ensures proper exe-
cutable parses. Schema-aware constrained de-
coding ensures that Cross-TOP generates fully exe-
cutable parse trees. Without this component, perfor-
mance drops by 20 absolute points, as shown in the
third row of Table 2. By looking at 15 predicted ut-
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terances where the output predictions change by re-
moving constrained decoding, we found that 93.3%
of BURGER utterances and 60% of COFFEE utter-
ances contained at least one invalid slot/slot-value
combination. While using constrained decoding
on these utterances is guaranteed to rule out in-
valid combinations, this does not ensure that the
result will be correct. However, on inspection we
found that constrained decoding transforms 60%
of BURGER and 33.3% of COFFEE mismatched
utterances to be completely correct. Table 6 in Ap-
pendix D illustrates how constrained decoding can
help with specific examples.

Cross-TOP improves as more training tasks are
added. While our main result shows that train-
ing with only few tasks allows zero-shot transfer
to new tasks with no retraining, a realistic produc-
tion scenario would be to periodically retrain the
model by incorporating new training data. To quan-
tify the benefits of adding more tasks, we compare
training Cross-TOP using one, two or three tasks.
The results for training on one task are an average
over three models, one trained on PIZZA only, one
on BURRITO and one on SUB. Likewise, results
for training on two tasks are an average of three
models, one trained on PIZZA+BURRITO, one on
BURRITO+SUB and the other on PIZZA+SUB. As
shown in Table 2, going from 1 to 2 tasks doubles
performance for BURGER, and using 3 tasks almost
triples the performance for both test tasks, con-
firming that the model learns general patterns that
govern all schemas in the food-ordering vertical.

Dependency on fuzzy matching Cross-TOP re-
lies on the quality of the fuzzy-matching process
that determines which schema elements are en-
coded along with the utterance tokens. It can be
challenging to recover from a fuzzy matching fail-
ure that ends up omitting a slot value from the in-
put. In BURGER, such failures account for only
1% of all test utterances. In COFFEE that phe-
nomenon is more prominent, with 7% of test utter-
ances presenting at least one missing element from
the fuzzy-matched schema. These limitations can
be addressed by making the fuzzy-matching algo-
rithm more robust and/or by adding unrecognized
slot values as extra entries in the slot’s catalog. The
latter option is appealing, as it involves no model
retraining, but does not suffice, as there is no obvi-
ous way to automate it. We upper-bound the impact
of any candidate fix by providing an oracle schema

for all utterances, and observe in the last row of
Table 2 that it brings an absolute improvement of 2
absolute point in BURGER and 5 absolute points in
COFFEE.

Burger Coffee

Cross-TOP 73.3 ± 3.6 54.8 ± 5.7

w/o schema-augmented input 26.5 ± 1.5 31.7 ± 1.0
w/o constrained decoding 53.0 ± 4.2 33.3 ± 7.2
training only on 1 task 25.4 ± 1.6 19.9 ± 3.3
training only on 2 tasks 52.4 ± 2.7 34.0 ± 3.5
w/ oracle schema 75.6 ± 4.3 59.4 ± 7.1

Table 2: Cross-TOP zero-shot unordered EM accuracy,
averaged over 3 seeds, along with various ablations. The
± signs indicate the standard error across seeds.

6 Related Work

Slot Filling Traditionally, task-oriented parsing
for flat intents and slots has been framed as a
combination of intent classification and slot label-
ing (Sarikaya et al., 2016), possibly with an addi-
tional domain classification component. Several
authors have addressed zero-shot solutions in this
field. QASF (Du et al., 2021) is a QA-driven ap-
proach that extracts slot-filler spans from utterances
using a question-answering model. Both Bapna
et al. (2017) and Siddique et al. (2021) tag words
with slots using slot descriptions and context-aware
representations of the utterance. These solutions
don’t apply to structured (compositional) semantic
representations, or to multiple intents in a single
utterance, both of which are handled by Cross-TOP.

Task-Oriented Parsing In the more general area
of task-oriented parsing, where hierarchical repre-
sentations are featured, the authors are not aware of
other zero-shot cross-schema work. There is some
work in the few-shot setting (Chen et al., 2020),
where data from multiple domains is used during
an additional stage of fine-tuning combined with
meta-learning.

Text-to-SQL Some of the most relevant related
zero-shot work is in text-to-SQL semantic parsing.
In this area, a challenging dataset, SPIDER (Yu
et al., 2018), is the most common dataset used to
test zero-shot solutions. The GAZP (Zhong et al.,
2020) method generates synthetic training data for
the new schema environment and requires a re-
training of the neural parser, not making it as con-
venient of a zero-shot method. RAT-SQL (Wang
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et al., 2020) moves away from needing to retrain the
parser, and focuses on jointly encoding the schema
and utterance tokens. BRIDGE (Lin et al., 2020)
is the main inspiration for our work, as it encodes
the utterance and schema together, and augments
the input with anchor texts, which are database
values from tables, designed to better bridge utter-
ance tokens to database tables, columns and values.
Another notable contribution intended to bridge
the gap between natural language and machine-
executable representations is the work of Gan et al.
(2021), which leverages an intermediate represen-
tation to go from text to SQL.

7 Conclusion

We presented Cross-TOP, a zero-shot method for
cross-schema task-oriented parsing that eliminates
the need to retrain and maintain a new model for
every new task in a business vertical. We released
a new dataset illustrative of five real-world appli-
cations in the food-ordering vertical. We showed
that Cross-TOP reaches up to 73% EM accuracy in
zero-shot transfer, making it a viable technique for
quickly bootstrapping a parser for a new task.

Future work could further enrich the joint en-
coding of utterances and task schemas, while an
additional thread of work could study how to best
leverage limited annotated data that may be avail-
able for a new task.

Acknowledgments

We would like to thank Beiye Liu, Emre Barut,
Ryan Gabbard, and anonymous reviewers for pro-
viding valuable feedback on this work.

References
Armen Aghajanyan, Jean Maillard, Akshat Shrivastava,

Keith Diedrick, Michael Haeger, Haoran Li, Yashar
Mehdad, Veselin Stoyanov, Anuj Kumar, Mike Lewis,
and Sonal Gupta. 2020. Conversational semantic
parsing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5026–5035, Online. Association for
Computational Linguistics.

Konstantine Arkoudas, Nicolas Guenon des Mesnards,
Melanie Rubino, Sandesh Swamy, Saarthak Khanna,
and Weiqi Sun. 2021. Pizza: a task-oriented semantic
parsing dataset.

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero-shot frame semantic
parsing for domain scaling.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090–5100, Online. As-
sociation for Computational Linguistics.

Xinya Du, Luheng He, Qi Li, Dian Yu, Panupong Pa-
supat, and Yuan Zhang. 2021. QA-driven zero-shot
slot filling with weak supervision pretraining. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 654–664,
Online. Association for Computational Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R Woodward, John Drake, and Qiaofu Zhang.
2021. Natural sql: Making sql easier to infer from
natural language specifications. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 2030–2042.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Elman Mansimov and Yi Zhang. 2021. Semantic pars-
ing in task-oriented dialog with recursive insertion-
based encoder. arXiv preprint arXiv:2109.04500.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 5th Workshop on Structured Predic-
tion for NLP (SPNLP 2021), pages 12–21, Online.
Association for Computational Linguistics.

54

https://doi.org/10.18653/v1/2020.emnlp-main.408
https://doi.org/10.18653/v1/2020.emnlp-main.408
https://github.com/amazon-research/pizza-semantic-parsing-dataset
https://github.com/amazon-research/pizza-semantic-parsing-dataset
http://arxiv.org/abs/1707.02363
http://arxiv.org/abs/1707.02363
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2021.acl-short.83
https://doi.org/10.18653/v1/2021.acl-short.83
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/2021.spnlp-1.2


R. Sarikaya, P. A. Crook, A. Marin, M. Jeong, J.P. Ro-
bichaud, A. Celikyilmaz, Y.B. Kim, A. Rochette,
O. Z. Khan, X. Liu, D. Boies, T. Anastasakos,
Z. Feizollahi, N. Ramesh, H. Suzuki, R. Holenstein,
E. Krawczyk, and V. Radostev. 2016. An overview of
end-to-end language understanding and dialog man-
agement for personal digital assistants. In 2016 IEEE
Spoken Language Technology Workshop (SLT), pages
391–397.

AB Siddique, Fuad Jamour, and Vagelis Hristidis. 2021.
Linguistically-enriched and context-awarezero-shot
slot filling. In Proceedings of the Web Conference
2021, pages 3279–3290.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. CoRR, abs/2009.13845.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

55

https://doi.org/10.1109/SLT.2016.7846294
https://doi.org/10.1109/SLT.2016.7846294
https://doi.org/10.1109/SLT.2016.7846294
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558


Appendix

A Mechanical Turk Instructions

The instructions given to the workers were tem-
plated as shown in Figure 3. The tasks can be
described as natural language text generation with
a constrained menu. The number of responses was
limited to 3 submissions per worker in order to
balance diversity of responses and responsiveness
ratios. The respondent’s location had to be either
US or CA, and the master worker qualification was
required.10 The tasks were designed, timed and
priced to ensure that the compensation of respon-
dents lies above the US and CA minimum hourly
wages. The dataset went through an internal re-
view process to ensure it abides by the company’s
required standards. Overall we collected answers
form about 60 distinct workers for BURGER, SUB

and COFFEE and about 90 for BURRITO, for a total
of 183 unique individuals. The menus used for
each collection are given in Figure 4.

B Task Schemas

Detailed schemas for each task, describing intent
names, slot names, and slot properties, are given
as supplementary material, along with the full cat-
alog values for each slot.11 For illustration pur-
poses, Figure 5 shows the schema for BURRITO.
Note that not all schemas need to share identical
slots for similar intents. For example the BURGER

schema has a SIZE slot for the DRINK_ORDER
and SIDE_ORDER intents, while the BURRITO

task does not. This is a design choice meant to
reflect a real-life setting where the back end for
one restaurant might support such property while
another might not. This is a challenging—though
realistic—obstacle our model needs to overcome.

C Dataset Construction Details

Part of the dataset comes from the publicly avail-
able PIZZA dataset (Arkoudas et al., 2021). We
are following the conditions of use as defined by
the license12 and will release our dataset under
the same license. The collection of new data was
done through Mechanical Turk. Respondents were

10workers with high ratings according to MTurk API.
11https://github.com/amazon-research/

food-ordering-semantic-parsing-dataset
12https://github.com/amazon-research/

pizza-semantic-parsing-dataset/blob/
main/LICENSE

constrained to submit a single utterance for an
order containing potentially more than one sub-
order. Hence, some utterances contained periods
and question marks, indicating a sharp separation
between two requests. To better reflect the fact
that these users would likely have broken their re-
quest into multiple ones in an vocal interaction, we
split those utterances into pieces. Other punctua-
tion marks like commas, and non-ASCII charac-
ters, were simply removed, but utterances were
not split around them. Numerical values were
spelled out (e.g., 2 large cokes→ two large cokes).
Finally, utterance text was lower-cased. Annotation
was carried out internally by two annotators located
in the US. Utterances displaying too much ambigu-
ity for human annotators were removed. In Table
3 we provide examples of the collected utterances,
and their linearized semantics. As can be seen in
the table, utterances have varying degrees of com-
plexity, which results in linearized trees of varying
depths and widths. Synthetic data was generated
by sampling human-designed templates, illustrated
in Table 4. For SUB we used 32 templates and for
BURRITO we used 46. Some statistics on the de-
gree of compositionality of human and synthetic
orders are given in Table 5.

D Constrained Decoding Details

In what follows we list the actual constraints imple-
mented in this work in the form of allowed transi-
tions. Any element on the left of the arrow can be
followed by elements on the right:





BOS → {”(X”, X = valid intent }
”(” → { X , X = valid intent or slot}
”)” → {”)” or ”(” or EOS }
intent → {”(X”, X = a valid slot }
slot → {X , X = compatible value }
(COMPLEX → (QUANTITY

One could think of imposing more grammar-
based constraints, for example, allowing only valid
intent-slot combinations, or only allowing negat-
able slots after (NOT, since some of these—like
SIZE—cannot be negated. Examples of how con-
strained decoding helped can be found in Table 6.

E Computational Details

Hyperparameter tuning was performed on learning
rates [5e-04, 1e-05, 5e-05, 1e-06] and batch
sizes [16, 24, 48, 64] across three seeds.
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Dataset Natural Language Semantic representation after entity resolution

PIZZA
five medium pizzas with tomatoes
and ham

(PIZZAORDER
(NUMBER 5 ) (SIZE medium )
(TOPPING ham ) (TOPPING tomatoes ))

PIZZA
i’ll have one pie along with pesto and ham
but avoid olives

(PIZZAORDER
(NOT (TOPPING olives ) )
(NUMBER 1 ) (TOPPING ham ) (TOPPING pesto ))

PIZZA
i wanted to have two dr peppers three
pepsis and a sprite

(DRINKORDER
(DRINKTYPE dr_pepper ) (NUMBER 2 ))

(DRINKORDER
(DRINKTYPE pepsi ) (NUMBER 3 ))

(DRINKORDER
(DRINKTYPE sprite ) (NUMBER 1 ))

BURRITO
burrito with steak cheese guacamole sour
cream and fresh tomato salsa

(BURRITO_ORDER
(NUMBER 1 ) (MAIN_FILLING steak )
(TOPPING cheese ) (TOPPING guacamole )
(TOPPING sour_cream )
(SALSA_TOPPING fresh_tomato_salsa ) )

BURRITO i’d also like a bottled water please (DRINK_ORDER
(NUMBER 1 ) (DRINK_TYPE bottled_water ))

BURRITO i’d like a lemonade with a side of chips

(DRINK_ORDER
(NUMBER 1 ) (DRINK_TYPE tractor_lemonade )

(SIDE_ORDER
(NUMBER 1 ) (SIDE_TYPE chips ))

SUB
steak and cheese sandwich with lettuce
cucumbers and olives

(SANDWICH_ORDER (NUMBER 1 )
(BASE_SANDWICH steak_and_cheese )
(TOPPING lettuce ) (TOPPING cucumbers )
(TOPPING black_olives ) )

SUB

i will order a chicken and bacon ranch
sandwich and on that please put
american cheese chipotle southwest sauce
lettuce tomatoes pickles with a side
of doritos and two chocolate chip cookies

(SANDWICH_ORDER (NUMBER 1 )
(BASE_SANDWICH chicken_and_bacon_ranch )
(TOPPING american_cheese )
(TOPPING chipotle_southwest )
(TOPPING lettuce ) (TOPPING tomatoes )
(TOPPING pickles ) )

(SIDE_ORDER (NUMBER 1 )
(SIDE_TYPE doritos_nacho_cheese ) )

(SIDE_ORDER (NUMBER 2 )
(SIDE_TYPE chocolate_chip ) )

BURGER
hi can i have the double cheeseburger
with ketchup and onions and french fries
on the side

(MAIN_DISH_ORDER (NUMBER 1 )
(MAIN_DISH_TYPE double_cheese_burger )
(TOPPING ketchup ) (TOPPING onion ) )

(SIDE_ORDER (NUMBER 1 )
(SIDE_TYPE french_fries ) )

BURGER
veggie burger with lettuce and bacon
large curly fry and a small iced tea

(MAIN_DISH_ORDER (NUMBER 1 )
(MAIN_DISH_TYPE vegan_burger )
(TOPPING lettuce ) (TOPPING bacon ) )

(SIDE_ORDER (NUMBER 1 )
(SIZE large ) (SIDE_TYPE curly_fries ) )

(DRINK_ORDER (NUMBER 1 )
(SIZE small ) (DRINK_TYPE iced_tea ) )

COFFEE
i’d like a large hot chocolate with
whipped cream

(DRINK_ORDER
(NUMBER 1 ) (SIZE large )
(DRINK_TYPE hot_chocolate )
(TOPPING whipped_cream ) )

COFFEE

one regular latte light roast with an
extra espresso shot and honey added and
one large cappuccino with caramel syrup
in that one

(DRINK_ORDER (NUMBER 1 )
(SIZE regular ) (DRINK_TYPE latte )
(ROAST_TYPE light_roast ) (TOPPING honey )
(TOPPING (ESPRESSO_SHOT 1 ) ) )

(DRINK_ORDER (NUMBER 1 )
(SIZE large ) (DRINK_TYPE cappuccino )
(TOPPING caramel_syrup ) )

Table 3: Example utterances obtained from Mechanical Turk collection and their corresponding machine-executable
representation.

Dataset Template Example catalog values

SUB {prelude} {number} {side_type} {prelude} = i want to order
{side_type} = sunchips

SUB
{prelude} {number} {base_sandwich} with

{topping1} and {topping2}
{base_sandwich} = chicken teriyaki
{topping1} = bacon

BURRITO
{prelude} {number} {main_filling} {entity_name}
with {salsa_topping}

{main_filling} = barbacoa
{entity_name} = burrito

BURRITO
{prelude} {number} side of {side_type1} and
{side_type2} and {number} {drink_type}

{side_type1} = chips
{side_type2} = guac

Table 4: Example templates and catalog values used for sampling synthetic data.

We use the human-generated data of the three train-
ing tasks as our development set for early stop-

ping and hyperparameter tuning. Including this
and general experimentation, we estimate our total
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#Intent per
utterance

#Slots per
utterance

Avg utterance
depth

Synthetic Data

PIZZA 1.77 5.77 3.44
BURRITO 1.57 6.50 3.48
SUB 1.79 6.24 3.37

Human-generated Data

PIZZA 1.25 6.13 3.62
BURRITO 1.39 5.78 3.12
SUB 1.69 5.99 3.07
BURGER 1.97 7.17 3.04
COFFEE 1.05 5.34 3.2

Table 5: Statistics on the degree of compositionality in each task, for synthetic and human-generated data.

Dataset Natural Language Utterance Prediction w/o constraints Prediction w/ constraints

BURGER
i’ll have a hamburger topped with
bacon and ketchup along with a large
coke and large order of french fries

(MAIN_DISH_ORDER
(MAIN_DISH_TYPE hamburger )
(TOPPING bacon )
(TOPPING ketchup ))

(DRINK_ORDER
(SIZE large )
(DRINK_TYPE coke ))

(SIDE_ORDER (NUMBER large )
(SIDE_TYPE french fries ))

(MAIN_DISH_ORDER
(MAIN_DISH_TYPE hamburger )
(TOPPING bacon )
(TOPPING ketchup ))

(DRINK_ORDER
(SIZE large )
(DRINK_TYPE coke ))

(SIDE_ORDER (NUMBER a )
(SIZE large )
(SIDE_TYPE french fries ))

COFFEE
i’d like an iced cappuccino with
caramel syrup and whipped cream

(DRINK_ORDER
(STYLE iced cappuccino )
(TOPPING caramel syrup )
(TOPPING whipped cream ))

(DRINK_ORDER
(STYLE iced )
(DRINK_TYPE cappuccino )
(TOPPING caramel syrup )
(TOPPING whipped cream ))

Table 6: Example utterances where constrained decoding helps fix invalid slot/slot value combinations.

computation cost to be about 2 weeks GPU hours.
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MTurk prompt
Suppose you want to place your usual order at your favorite type of restaurant (like examples of such venues) for you, your partner, your family or your group
of friends. Your task is to enter your order exactly as you would say it, verbatim, when you place the order at that restaurant.

IMPORTANT: This restaurant has a limited menu provided below. Only order items available on the menu, but do so with the same words you usually use
when ordering these items:

*** Picture of restaurant Menu ***

Write as you would speak. Make sure that:

• you write your order exactly as you would say it

• your usual order may include many items and if so, include them all when you enter your order below

• if you complete multiple HITs, vary the type of orders you place. The orders should be usual orders you, your friends or family place, but with varying
number or types of items, toppings, sides or drinks.

Enter your order below, using the limited menu above, exactly as you would say it at the restaurant :

*** Type order here ***

Figure 3: Template prompt given to Mechanical Turk workers, common across all 4 tasks. The only significant
attribute varying across tasks was the menu to order from.

Figure 4: Menus shown to Mechanical Turk workers for each task: BURRITO (top-left), SUB (top-right), BURGER
(bottom-left) and COFFEE (bottom-right).
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1 {
2 "name": "BURRITO",
3 "intents": [
4 {"name": "BURRITO_ORDER",
5 "invocation_keywords": ["burrito", "burritos"],
6 "slots": [
7 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
8 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
9 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},

10 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
11 {"name": "TOPPING", "negatable": true, "quantifiable": true}
12 ]
13 },
14 {"name": "BURRITO_BOWL_ORDER",
15 "invocation_keywords": ["burrito bowl", "burrito bowls", "bowl", "

bowls"],
16 "slots": [
17 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
18 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
19 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
20 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
21 {"name": "TOPPING", "negatable": true, "quantifiable": true}
22 ]
23 },
24 {"name": "SALAD_ORDER",
25 "invocation_keywords": ["salad", "salads"],
26 "slots": [
27 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
28 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
29 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
30 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
31 {"name": "TOPPING", "negatable": true, "quantifiable": true}
32 ]
33 },
34 {"name": "TACO_ORDER",
35 "invocation_keywords": ["taco", "tacos"],
36 "slots": [
37 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
38 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
39 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
40 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
41 {"name": "TOPPING", "negatable": true, "quantifiable": true}
42 ]
43 },
44 {"name": "QUESADILLA_ORDER",
45 "invocation_keywords": ["quesadilla", "quesadillas"],
46 "slots": [
47 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
48 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
49 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
50 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
51 {"name": "TOPPING", "negatable": true, "quantifiable": true}
52 ]
53 },
54 {"name": "SIDE_ORDER",
55 "invocation_keywords": ["side of chip", "sides of chips"],
56 "slots": [
57 {"name": "NUMBER"},
58 {"name": "SIDE_TYPE"},
59 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true}
60 ]
61 },
62 {"name": "DRINK_ORDER",
63 "invocation_keywords": ["drink", "drinks"],
64 "slots": [
65 {"name": "NUMBER"},
66 {"name": "DRINK_TYPE"}
67 ]
68 }
69 ]
70 }

Figure 5: Task schema for the BURRITO restaurant.
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Abstract

While standard Estonian is not a low-resourced
language, the different dialects of the language
are under-resourced from the point of view of
NLP, given that there are no vast hand normal-
ized resources available for training a machine
learning model to normalize dialectal Estonian
to standard Estonian. In this paper, we crawl
a small corpus of parallel dialectal Estonian -
standard Estonian sentences. In addition, we
take a savvy approach of generating more syn-
thetic training data for the normalization task
by using an existing dialect generator model
built for Finnish to "dialectalize" standard Es-
tonian sentences from the Universal Dependen-
cies tree banks. Our BERT based normalization
model achieves a word error rate that is 26.49
points lower when using both the synthetic data
and Estonian data in comparison to training the
model with only the available Estonian data.
Our results suggest that synthetic data gener-
ated by a model trained on a more resourced
related language can indeed boost the results
for a less resourced language.

1 Introduction

Estonian itself can hardly be characterized as low-
resourced due to a variety of NLP tools (Orasmaa
et al., 2016; Kaalep et al., 2018; Laur et al., 2020)
and corpora (Kaalep et al., 2010; Altrov and Pa-
jupuu, 2012; Muischnek et al., 2016) available
for the language. What still remains a difficult
and severely under-resourced task to tackle is non-
standard dialectal language. Estonian has a rich
morphology which means that an individual word
can have several different inflectional forms. In
terms of dialects, this means that all of the different
inflectional forms of a given word can be slightly
different in different dialects of the language. This
poses a challenge for NLP methods that are mostly
trained on standard Estonian.

While the written standard is something people
follow when they write official text such as pub-

lished books or newspapers, people tend to commu-
nicate using dialect in more informal settings such
as when sending messages or emails with friends
and family or when engaging in discussion on on-
line forums. This type of an every day language
use is beyond the reach of current NLP methods
for Estonian.

For other languages such as Finnish (Partanen
et al., 2019), Swedish (Hämäläinen et al., 2020a)
and German (Scherrer et al., 2019), dialect normal-
ization has been seen as good way of dealing with
the issue of non-standard language. If a model can
normalize dialectal text to a standard norm, then
all normative language NLP models can be applied
on that data. Normalization has been shown to im-
prove results in a variety of tasks such as parsing
(van der Goot et al., 2020) and neologism retrieval
(Säily et al., 2021).

Unfortunately, Estonian does not have vast di-
alectal resources available with aligned normal-
izations with dialectal sentences. For this reason,
we establish a new methodology for producing
synthetic dialectal Estonian - standard Estonian
sentence pairs using a Finnish dialect generation
model. The data and the models presented in this
paper have been released openly on Zenodo1.

Estonian dialects are traditionally divided into
northern and southern groups, that differ on phono-
logical, morphological as well as on lexical lev-
els. According to the general Estonian dialect clas-
sification (Pajusalu et al., 2018), there are three
main dialect groups. (1) The North Estonian di-
alect group consists of the Eastern, Insular, Central,
and Western dialects. (2) The Northeastern Coastal
dialect group consists of the Northeastern and the
Coastal dialects. (3) The South Estonian group
consists of the Mulgi, Tartu, and Võru dialects.
In recent decades, the question of Seto has been
debated. The distinction between Seto and Võru
has been justified for instance on a syntactic level

1https://zenodo.org/record/6558469
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(Lindström et al., 2014). The dominant contact lan-
guages for Estonian dialects are Swedish, Russian,
Latvian, and Votic. Finnish, Ingrian and Livonian
have influenced somewhat less (Lindström et al.,
2019).

2 Related work

There have been several different approaches to
text normalization in the past (Bollmann, 2019). In
this section, we will give a quick overview of the
common approaches.

Dialectal text normalization has been tackled by
using normalization rules and heuristics (Bollmann
et al., 2011; Khan and Karim, 2012; Sidarenka
et al., 2013). Later on, algorithmic approaches
have been used for the task (Saloot et al., 2014; Re-
han et al., 2018; Poolsukkho and Kongkachandra,
2018).

Very frequently, normalization is modeled as a
character-level machine translation task. There are
several research papers that use a statistical ma-
chine translation approach with a character level n-
gram language model of varying lengths (Schlippe
et al., 2010; De Clercq et al., 2013; Schlippe et al.,
2013; Scherrer and Erjavec, 2013).

More recently, neural machine translation has
been used on a character level for the normalization
task (Bollmann and Søgaard, 2016; Ruzsics et al.,
2019; Hämäläinen et al., 2019). The approaches
consist typically of a bi-directional LSTM model
and an attention mechanism. This approach has
also been used with word2vec to extract and train
an OCR post-correction model in an unsupervised
way (Hämäläinen and Hengchen, 2019).

With the emergence of general purpose language
models, many recent papers present work on using
such models for text normalization. BERT (Muller
et al., 2019; Plank et al., 2020), BART (Bucur et al.,
2021) and RoBERTa (Kubal and Nagvenkar, 2021),
for instance, have all been use lately to solve the
task.

3 Dialect data

Since there is no dialectal corpus with standard
normalizations available for Estonian, we have to
crawl one relying on the accessible resources. The
Institute of Estonian Language has released some
dialectal dictionaries online2. Some of these con-
tain example sentences in one of the dialects and

2https://portaal.eki.ee/sonaraamatud.html

their normalization in standard Estonian. In par-
ticular, we found that the dialectal dictionaries for
Mulgi3, Kihnu4 and Hiiu5 dialects had such aligned
dialectal-standard Estonian sentence pairs.

We proceeded to crawl the aforementioned dic-
tionaries. The dictionaries do not have an index of
lemmas or any other means of browsing them apart
from search queries. For this reason, we use the
full text query the online dictionaries have to find
occurrences of a given word in anywhere within
the dictionary entries. We do this query for the
10,000 most frequent words6 recorded in the Eesti
kirjakeele sagedussõnastik (Kaalep and Muischnek,
2002) which is based on a relatively large 1 million
word corpus. This crawling approach leads to the
same texts being crawled multiple times, and for
this reason, we remove all duplicates.

Some of the dialectal example sentences have
additional annotation such as stress marked on top
of the vowels. We clean the data of any addi-
tional marking and punctuations so that we are
left with characters that are part of the Estonian
alphabets. Furthermore, we ensure that the dialec-
tal sentence and its normalization have an equal
number of words. This step is needed because
sometimes the example sentences were not normal-
ized or were not fully normalized. This way we can
clear all wrongly aligned sentences from the data.
This resulted in 14510 aligned dialectal-normative
Estonian sentences.

In Table 1, we can see examples of the data.
As we can see, sometimes the dictionary authors
had adapted a very strict normalization strategy;
on top of just normalizing the sentence to follow
the standard Estonian morphology and orthogra-
phy, they had occasionally normalized dialectal
words to completely different words that are part
of the standard language. This is different from the
vast dialect corpus available for Finnish (Kotimais-
ten kielten keskus, 2014), where the normalization
does not replace any existing words with different
ones. This fact alone makes this Estonian corpus
more difficult to normalize automatically.

We split the corpus randomly to 70% training,
15% validation and 15% testing. This split is used
for all the models we train that include Estonian
data in their training. All models are evaluated with
this test split.

3https://eki.ee/dict/mulgisuur
4http://www.eki.ee/dict/kihnu
5http://www.eki.ee/dict/hiiu
6https://www.cl.ut.ee/ressursid/sagedused/table1.txt
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Dialectal Normalized Translation
na joove kõrdamisi ütest laasist nad joovad kordamööda ühest klaasist they take turns drinking from one glass
Siis oli tiädmätä jäen ning oksõndan Siis oli teadvuse kaotanud ja oksendanud Then he had lost consciousness and vomited
ärä tettä alatude inemistege tegemist ära tee alatute inimestega tegemist don’t deal with naughty people

Table 1: Examples of the corpus

4 Dialect normalization

We train BERT-based (Devlin et al., 2018) models
to do Estonian normalization using Transformers
Python library (Wolf et al., 2020). We model the
task as a sequence to sequence task, where the
model is trained to predict a normalized version of
a sentence given a dialectal sentence. The model
consists of a BERT based encoder and decoder
models similarly to the architecture proposed in
Rothe et al. (2020).

We build our models on EstBERT7 (Tanvir et al.,
2021) which is a BERT model trained solely on
Estonian data using the Estonian National Corpus.
We train three models: one with Estonian only data,
one only with synthetic data and one with both
types of data. We train the models for 3 epochs.

4.1 Generating synthetic Finnish data

Because Finnish and Estonian are closely related
languages, we want to experiment whether synthet-
ically produced dialectal Finnish data can improve
the Estonian normalization models. Standard Es-
tonian is closer to dialectal Finnish than standard
Finnish, so it makes sense that a Finnish dialect
like data could improve the results. It is impor-
tant to note at this stage that this is not a Finnish
to Estonian translation task. Finnish and Estonian
are two very different languages and a model that
can translate between the two languages has hardly
anything to do with dialect normalization.

We use the Finnish dialect generation models
presented by Hämäläinen et al. (2020b) to convert
standard Estonian sentences into a pseudo Estonian
dialect. The dialect generation models are avail-
able through Murre Python library8. The dialect
generator supports over 20 Finnish dialects, and we
need to indicate which dialect we want to generate
when we use the model. Ideally, we would like
to pick the dialect closest to the Estonian dialectal
data, because Finland is a relatively large country
and dialects further away from Estonia are already
linguistically rather distant.

7tartuNLP/EstBERT
8https://github.com/mikahama/murre

In order to find out which Finnish dialect pro-
duces the most Estonian dialect like output, we
generate a dialectal version for each standard Es-
tonian sentence in our corpus in each Finnish di-
alect. We compare the WER (word error rate) of
each dialectal output to the correct dialectal Esto-
nian sentence in the corpus that corresponds to the
normalized sentence that was used to produce the
dialectal sentences.

The results of the experiment, as seen in Table 2,
indicate that Etelä-Karjala dialect gives an output
closest to the Estonian dialectal data. For this rea-
son, we pick this dialect to adapt sentences from
the Estonian Universal Dependencies (UD) tree-
banks to a pseudo Estonian dialect. The treebanks
have some noise, so we filter out all sentences that
contain alphabets that are not part of Estonian such
as å, ø or ω because they are an indication of non-
Estonian sentences or non-Estonian words appear-
ing in a sentence. We want the correct Estonian
data to be of a very high quality, so we ensure that
only sentences that have correct Estonian alpha-
bets are retained. We also clear the sentences from
non-alphabets such as numbers, punctuations and
emojis.

Estonian has slightly different vowels than
Finnish. The same speech sound [y] is written
y in Finnish and ü in Estonian. For this reason, we
replace ü with y before we pass it to the dialect
generation model, and then we replace ys back to
üs in the output. Estonian also has one more vowel
Finnish does not have, õ. In practice, both Esto-
nian ö and õ are mapped to a single vowel ö in
the Finnish phonetic system. We deal with this by
excluding all Estonian UD sentences that have both
ö and õ, so that the input can have either ö or õ. In
case the input has õ, it is first replaced with ö and
after the dialectal form has been generated, all ös
are replaced back to õs.

After the dialect adaptation, we do a simple post-
processing where we match the voice of plosives of
each word in the dialectal output and the standard
Estonian input. This means that if the Estonian
word contained voiced plosives d, b or g without
their unvoiced variants and if the dialectal output
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Finnish dialect WER
Etelä-Häme 0.84
Etelä-Karjala 0.80
Etelä-Pohjanmaa 0.83
Etelä-Satakunta 0.82
Etelä-Savo 0.83
Eteläinen Keski-Suomi 0.83
Inkerinsuomalaismurteet 0.81
Kaakkois-Häme 0.82
Kainuu 0.84
Keski-Karjala 0.82
Keski-Pohjanmaa 0.83
Länsi-Satakunta 0.81
Länsi-Uusimaa 0.81
Länsipohja 0.81
Läntinen Keski-Suomi 0.82
Peräpohjola 0.81
Pohjoinen Keski-Suomi 0.85
Pohjoinen Varsinais-Suomi 0.81
Pohjois-Häme 0.82
Pohjois-Karjala 0.84
Pohjois-Pohjanmaa 0.84
Pohjois-Satakunta 0.82
Pohjois-Savo 0.85

Table 2: The WER between the Finnish dialect generator
output and the Estonian dialect sentence. The lower the
WER, the closer the output is to Estonian dialect.

had the corresponding unvoiced variant t, p or k,
we replace the unvoiced consonant with the voiced
variant. For example, lambad (sheep) is dialec-
talized to lampaat, which we convert to lambaad.
This is important because Finnish dialects often
unvoice voiced consonants, whereas the Estonian
ones use voiced plosives frequently.

The generated data consists of over 336000 syn-
thetically generated samples where the source side
is in pseudo Estonian dialect produced by the
Finnish dialect generator for Etelä-Karjala dialect
and the target is clean standard Estonian from the
UD tree banks. We split this data into 85% for
training and 15% for validation.

5 Results and evaluation

In this section, we present the results of our models
using WERs. Word Error Rate9 is a commonly
used metric to assess the quality of normalization
models as it shows how far away the normaliza-
tion predicted by a computational model is from
the ground truth in terms of substitutions, inser-
tions and deletions. We also calculate a token level
accuracy which shows how many times a token
was correctly normalized in the exact position it
appeared in the sentence.

9We use the implementation from
https://github.com/nsmartinez/WERpp

WER Accuracy
No normalization 74.09 0.257
Estonian only 77.74 0.240
Synthetic data only 73.84 0.256
Synthetic data and
Estonian data

55.25 0.471

Table 3: The results of the BERT model with different
datasets

The results can be seen in Table 3. The first row
of the table shows how far away the dialectal sen-
tence is from the standard Estonian one without
applying a normalization. The WER and the accu-
racy were the best for the model that was trained on
both the synthetic data and the Estonian data. These
results are far from perfect, as even the best model
makes mistakes around half of the time. However,
the results look promising in the sense that the data
augmentation improved the results drastically. It
is interesting to see that neither the synthetic data
nor the Estonian data alone seem to take the model
too far, but when combined the results are way
better. This is probably due to the fact that the
Estonian data is rather small and training a model
solely based on it is difficult, and that the synthetic
data, while it helps the model to learn a mapping
from something that looks like Estonian to standard
Estonian, is does not represent the true difference
between real Estonian dialects and the standard
language. It is to be said, that with the amount of
data we have at hand, it is unlikely that the model
can ever learn to normalize Estonian the same way
the dictionary authors had normalized the dialectal
sentences, because then the model would need to
also learn a mapping between dialectal words and
more standard language.

6 Conclusions

We have shown that despite Estonian not having
enough data on its own to train a dialect normal-
ization model, using a Finnish dialect generator
model with some orthographic conversion rules to
produce synthetic data can boost the results. Al-
though the results were promising, the best WER
is still relatively high. This is partially due to the
normalization strategy used in the original data.
Nevertheless we believe that experimenting more
with synthetic data in the future can help us push
the WER lower.
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2019. Digitising swiss german: how to process and
study a polycentric spoken language. Language Re-
sources and Evaluation, 53(4):735–769.

Tim Schlippe, Chenfei Zhu, Jan Gebhardt, and Tanja
Schultz. 2010. Text normalization based on statis-
tical machine translation and internet user support.
In Eleventh annual conference of the international
speech communication association.

Tim Schlippe, Chenfei Zhu, Daniel Lemcke, and Tanja
Schultz. 2013. Statistical machine translation based
text normalization with crowdsourcing. In 2013
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 8406–8410. IEEE.

Uladzimir Sidarenka, Tatjana Scheffler, and Manfred
Stede. 2013. Rule-based normalization of german
twitter messages. In Proc. of the GSCL Workshop
Verarbeitung und Annotation von Sprachdaten aus
Genres internetbasierter Kommunikation.

Hasan Tanvir, Claudia Kittask, Sandra Eiche, and
Kairit Sirts. 2021. EstBERT: A pretrained language-
specific BERT for Estonian. In Proceedings of
the 23rd Nordic Conference on Computational Lin-
guistics (NoDaLiDa), pages 11–19, Reykjavik, Ice-
land (Online). Linköping University Electronic Press,
Sweden.

Rob van der Goot, Alan Ramponi, Tommaso Caselli,
Michele Cafagna, and Lorenzo De Mattei. 2020.
Norm it! lexical normalization for Italian and its
downstream effects for dependency parsing. In Pro-
ceedings of the 12th Language Resources and Evalua-
tion Conference, pages 6272–6278, Marseille, France.
European Language Resources Association.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

66

https://doi.org/10.18653/v1/D19-5539
https://aclanthology.org/L16-1390
https://aclanthology.org/L16-1390
https://doi.org/10.18653/v1/D19-5519
https://doi.org/10.18653/v1/D19-5519
https://doi.org/10.18653/v1/2020.coling-main.583
https://doi.org/10.18653/v1/2020.coling-main.583
https://aclanthology.org/2021.nodalida-main.2
https://aclanthology.org/2021.nodalida-main.2
https://aclanthology.org/2020.lrec-1.769
https://aclanthology.org/2020.lrec-1.769
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pages 67 - 79
July 14, 2022 ©2022 Association for Computational Linguistics

Exploring Diversity in Back Translation for Low-Resource Machine
Translation

Laurie Burchell and Alexandra Birch and Kenneth Heafield
Institute for Language, Cognition, and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh, EH8 9AB, UK

{laurie.burchell,a.birch,kenneth.heafield}@ed.ac.uk

Abstract
Back translation is one of the most widely
used methods for improving the performance
of neural machine translation systems. Recent
research has sought to enhance the effective-
ness of this method by increasing the ‘diversity’
of the generated translations. We argue that
the definitions and metrics used to quantify
‘diversity’ in previous work have been insuf-
ficient. This work puts forward a more nu-
anced framework for understanding diversity
in training data, splitting it into lexical diversity
and syntactic diversity. We present novel met-
rics for measuring these different aspects of
diversity and carry out empirical analysis into
the effect of these types of diversity on fi-
nal neural machine translation model perform-
ance for low-resource English↔Turkish and
mid-resource English↔Icelandic. Our findings
show that generating back translation using nuc-
leus sampling results in higher final model per-
formance, and that this method of generation
has high levels of both lexical and syntactic
diversity. We also find evidence that lexical
diversity is more important than syntactic for
back translation performance.

1 Introduction

The data augmentation technique of back transla-
tion (BT) is used in nearly every current neural
machine translation (NMT) system to reach op-
timal performance (Edunov et al., 2020; Barrault
et al., 2020; Akhbardeh et al., 2021, inter alia).
It involves creating a pseudo-parallel dataset by
translating target-side monolingual data into the
source language using a secondary NMT system
(Sennrich et al., 2016). In this way, it enables the
incorporation of monolingual data into the NMT
system. Whilst adding data in this way helps nearly
all language pairs, it is particularly important for
low-resource NMT where parallel data is scarce by
definition.

Because of its ubiquity, there has been extensive
research into how to improve BT (Burlot and Yvon,

2018; Hoang et al., 2018; Fadaee and Monz, 2018;
Caswell et al., 2019), especially in ways which in-
crease the ‘diversity’ of the back-translated dataset
(Edunov et al., 2018; Soto et al., 2020). Previous
work (Gimpel et al., 2013; Ott et al., 2018; Van-
massenhove et al., 2019) has found that machine
translations lack the diversity of human produc-
tions. This is because most translation systems
use some form of maximum a-posteriori (MAP)
estimation, meaning that they will always favour
the most probable output. Edunov et al. (2018) and
Soto et al. (2020) argue that this makes standard
BT data worse training data since it lacks ‘richness’
or diversity.

Despite the focus on increasing diversity in BT,
what ‘diversity’ actually means in the context of
NMT training data is ill-defined. In fact, Tevet and
Berant (2021) point out that there is no standard
metric for measuring diversity. Most previous work
uses the BLEU score between candidate sentences
or another n-gram based metric to estimate simil-
arity (Zhu et al., 2018; Hu et al., 2019; He et al.,
2018; Shen et al., 2019; Shu et al., 2019; Holtzman
et al., 2020; Thompson and Post, 2020). However,
such metrics mostly measure changes in the vocab-
ulary or spelling. Because of this, they are likely to
be less sensitive to other kinds of variety such as
changes in structure.

We argue that quantifying ‘diversity’ using n-
gram based metrics alone is insufficient. Instead,
we split diversity into two aspects: variety in the
word choice and spelling, and variety in structure.
We call these aspects lexical diversity and syn-
tactic diversity respectively. Here, we follow recent
work in natural language generation and particu-
larly paraphrasing (e.g. Iyyer et al., 2018; Krishna
et al., 2020; Goyal and Durrett, 2020; Huang and
Chang, 2021; Hosking and Lapata, 2021) which ex-
plicitly models the meaning and form of the input
separately. Of course, there are likely more kinds
of diversity than this, but this distinction provides
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a common-sense framework to extend our under-
standing of the concept. To our knowledge, no
other previous work in data augmentation has at-
tempted to isolate and automatically measure syn-
tactic and lexical diversity.

Building from our definition, we introduce novel
metrics aimed at measuring lexical and syntactic
diversity separately. We then carry out an empirical
study into what effect training data with these two
kinds of diversity has on final NMT performance
in the context of low-resource machine translation.
We do this by creating BT datasets using different
generation methods and measuring their diversity.
We then evaluate what impact different aspects of
diversity have on final model performance. We
find that a high level of diversity is beneficial for
final NMT performance, though lexical diversity
seems more important than syntactic diversity. Im-
portantly though there are limits to both; the data
should not be so ‘diverse’ that it affects the ad-
equacy of the parallel data.

We summarise our contributions as follows:

• We put forward a more nuanced definition of
‘diversity’ in NMT training data, splitting it
into lexical diversity and syntactic diversity.
We present two novel metrics for measuring
these different aspects of diversity.

• We carry out empirical analysis into the
effect of these types of diversity on fi-
nal NMT model performance for low-
resource English↔Turkish and mid-resource
English↔Icelandic.

• We find that nucleus sampling is the highest-
performing method of generating BT, and it
combines both lexical and syntactic diversity.

• We make our code publicly available.1

2 Methods

We explain each method we use for creating diverse
BT datasets in Section 2.1, then discuss our metrics
for diversity in Section 2.2.

2.1 Generating diverse back translation
We use four methods to generate diverse BT
datasets: beam search, pure sampling, nucleus
sampling, and syntax-group fine-tuning. The first
three were chosen because they are in common

1github.com/laurieburchell/
exploring-diversity-bt

use and so more relevant for future work. The last,
syntax-group fine-tuning, aims to increase syntactic
diversity specifically and so allows us to separate
its effect on final NMT performance from lexical
diversity. For each method, we create a diverse BT
dataset by generating three candidate translations
for each input sentence. This allows us to meas-
ure diversity whilst keeping the ‘meaning’ of the
sentence as similar as possible. In this way, we
measure inter-sentence diversity as a proxy for the
diversity of the dataset as a whole. We discuss our
datasets in detail in Section 3.1.

Beam search Beam search is the most common
search algorithm used to decode in NMT systems.
Whilst it is generally successful in finding a high-
probability output, the translations it produces tend
to lack diversity since it will always default to the
most likely alternative in the case of ambiguity (Ott
et al., 2018). We use beam search to generate three
datasets for each language pair, using a beam size
of five and no length penalty:

• base: three million input sentences used to
generate one output per input (BT dataset
length: three million)

• beam: three million input sentences used to
generate three outputs per input (BT dataset
length: nine million)

• base-big: nine million input sentences used
to generate one output per output (BT dataset
length: nine million)

Pure sampling An alternative to beam search
is sampling from the model distribution. At each
decoding step, we sample from the learned distri-
bution without restriction to generate output. This
method means we are likely to generate a much
wider range of tokens than restricting our choice
to those which are most likely (as in beam search).
However, it also means that the generated text is
less likely to be adequate (have the same meaning
as the input) as the output space does not necessary
restrict itself to choices which best reflect the mean-
ing of the input. In other words, the output may be
diverse, but it may not be the kind of diversity that
we want for NMT training data.

We create one dataset per language pair
(sampling) by generating three candidate transla-
tions for each of the three million monolingual
input sentences. This results in nine-million line
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BT dataset. We set our beam size to five when
generating.

Nucleus sampling Nucleus or top-p sampling
is another sampling-based method, introduced by
Holtzman et al. (2020). Unlike pure sampling,
which samples from the entire distribution, top-p
sampling only samples from the highest probability
tokens whose cumulative probability mass exceeds
the pre-chosen threshold p. The intuition is that
when only a small number of tokens are likely, we
want to limit our sampling space to those. However,
when there are many likely hypotheses, we want to
widen the number of tokens we might sample from.
We chose this method in the hope it represents a
middle ground between high-probability but repet-
itive beam search generations, and more diverse but
potentially low-adequacy pure sampling generation.
We create one dataset per language pair (nucleus)
by generating three hypothesis translations for each
of the three million monolingual input sentences.
Each dataset is therefore nine million lines long.
We set the beam size to five and p to 0.95.

Syntax-group fine-tuning For our analysis in
this paper, we want to generate diverse BT in a way
which focuses on syntactic diversity over lexical di-
versity, so that we can separate out its effect on final
NMT performance. We therefore take a fine-tuning
approach for our final generation method. To do
this, we generate the dependency parse of each
sentence in the English side of the parallel data
for each language pair using the Stanford neural
network dependency parser (Chen and Manning,
2014). We then label each pair of parallel sentences
in the training data according to the first split in the
corresponding syntactic parse tree. We then create
three fine-tuning training datasets out of the three
biggest syntactic groups.2 Finally, we take NMT
models trained on parallel data alone and restart
training on each syntactic-group dataset, resulting
in three NMT systems which are fine-tuned to pro-
duce a particular syntactic structure. We are only
able to create models this way which translate into
English, as good syntactic parsers are not available
for the other languages in our study.

To verify this method works as expected, we
translated the test set for each language pair with
the model trained on parallel data only. We then

2For English–Turkish, we combine the third and fourth
largest syntactic groups to create the third fine-tuning dataset,
as the third-largest syntactic group alone was not large enough
for successful fine-tuning.
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Figure 1: The count of the top-ten syntactic groups
produced by the parallel-only Turkish→English NMT
model compared to the number of those productions
produced by a Turkish→English NMT model fine-tuned
on the second-most common syntactic group (S ->
PP NP VP .). The fine-tuned model produces more
examples of the required syntactic group. Input data is
the combined WMT test sets.

translated the same test set with each fine-tuned
model and checked it was producing more of the
required syntactic group. We did indeed find that
fine-tuning resulted in more candidate sentences
from the required group. Figure 1 gives an example
of the different pattern of productions between the
parallel-only model and a model fine-tuned on a
particular syntactic group (S -> PP NP VP .)

2.2 Diversity metrics

We use three primary metrics to measure lexical
and syntactic diversity: i-BLEU, i-chrF, and tree
kernel difference. As mentioned in Section 2.1,
we generate three output sentences for each input
to our BT systems and measure inter-sentence di-
versity as a proxy for the diversity produced by
the system. Due to compute time, we calculate
all inter-sentence metrics over a sample of 30,000
sentence groups rather than the whole BT dataset.

i-BLEU Following previous work, we calculate
the BLEU score between all sentence pairs gener-
ated from the same input (Papineni et al., 2002),
take the mean and then subtract it from one to give
inter-sentence or i-BLEU (Zhu et al., 2018). We be-
lieve that lexical diversity as we define it is the main
driver of this metric, since BLEU scores are calcu-
lated based on n-gram overlap and so the biggest
changes to the score will result from changes to the
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words used (though changes in ordering of words
and their morphology will also have an effect). The
higher the i-BLEU score, the higher the diversity
of output.

i-chrF Building from i-BLEU, we introduce i-
chrF, which is generated in the same way as i-
BLEU but using chrF (Popović, 2015). Since chrF
is also based on n-gram overlap, we believe it will
also mostly measure lexical diversity. However, i-
chrF is based on character rather than word overlap,
and so should be less affected by morphological
changes to the form of words than i-BLEU. We
calculate both chrF and BLEU scores using the
sacreBLEU toolkit (Post, 2018).

Tree kernel difference We propose a novel met-
ric which focuses on syntactic diversity: mean tree
kernel difference. To calculate it, we first gener-
ate the dependency parse of each candidate sen-
tence using the Stanford neural network depend-
ency parser (Chen and Manning, 2014). We replace
all terminals with a dummy token to minimise the
effect of lexical differences, then we calculate the
tree kernel for each pair of parses using code from
Conklin et al. (2021), which is in turn based on
Moschitti (2006). Finally, we calculate the mean
across all pairs to give the mean tree kernel differ-
ence for each set of generated sentences.

We are only able to calculate the tree kernel
metric for the English datasets due to the lack of
reliable parsers in Turkish and Icelandic, though
this method could extend to any language with a
reasonable parser available. The higher the score,
the higher the diversity of the output.

Summary statistics We calculate mean word
length, mean sentence length, and vocabulary size
over the entire generated dataset as summary statist-
ics. We use the definition of ‘word’ as understood
by the bash wc command to calculate all metrics,
since we are only interested in a rough measure to
check for degenerate results.

3 Experiments

Having discussed the methods by which we gener-
ate diverse BT datasets and the metrics with which
we measure the diversity in these datasets, we now
outline our experimental set up for testing the ef-
fect of training data diversity on final NMT model
performance.

3.1 Data and preprocessing

We carry out our experiments on two language
pairs: low-resource Turkish–English and mid-
resource Icelandic–English. These languages
are sufficiently low-resource that augmenting the
training data will likely be beneficial, but well-
resourced enough that we can still train a reason-
able back-translation model on the available paral-
lel data alone.

Data provenance The Turkish–English parallel
data is from the WMT 2018 news translation task
(Bojar et al., 2018). The training data is from the
SETIMES dataset, a parallel dataset of news art-
icles in Balkan languages (Tiedemann, 2012). We
use the development set from WMT 2016 and the
test sets from WMT 2016–18.

The Icelandic–English parallel data is from the
WMT 2021 news translation task (Akhbardeh
et al., 2021). There are four sources of training
data: ParIce (Barkarson and Steingrímsson, 2019),
filtered as described in Jónsson et al. (2020); Parac-
rawl (Bañón et al., 2020); WikiMatrix (Schwenk
et al., 2021); and WikiTitles3. We use the develop-
ment and test sets provided for WMT 2021.

The English monolingual data is made up of
news crawl data from 2016 to 2020, version 16 of
news-commentary crawl,4 and crawled news dis-
cussions from 2012 to 2019.5 The Turkish mono-
lingual data is news crawl data from 2016 to 2020.6

The Icelandic monolingual data is made up of news
crawl data from 2020, and part one of the Icelandic
Gigaword dataset (Steingrímsson et al., 2018).

Data cleaning Our cleaning scripts are adapted
from those provided by the Bergamot project.7

The full data preparation procedure is provided in
the repo accompanying this paper. After cleaning,
the Turkish–English parallel dataset contains 202
thousand lines and the Icelandic–English parallel
dataset contains 3.97 million lines. The English,
Icelandic, and Turkish cleaned monolingual data-
sets contain 487 million, 39.9 million, and 26.1
million lines respectively. We select 9 million lines
of each monolingual dataset for BT at random since
all the monolingual datasets are the same domain
as the test sets.

3data.statmt.org/wikititles/v3
4data.statmt.org/news-commentary/v16
5data.statmt.org/news-discussions/en
6data.statmt.org/news-crawl
7github.com/browsermt/students/tree/

master/train-student
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Figure 2: Mean BLEU score on WMT test sets
for English↔Turkish and English↔Icelandic models
trained on different BT datasets. For English↔Turkish,
we give the mean score on WMT 16, WMT 17, and
WMT 18 test sets. For English↔Icelandic, we give the
score on the WMT 21 test set.

Text pre-processing We learn a joint BPE model
with SentencePiece using the concatenated training
data for each language pair (Kudo and Richardson,
2018). We set vocabulary size to 16,000 and char-
acter coverage to 1.0. All other settings are default.
We apply this model to the training, development,
and test data. We remove the BPE segmentation
before calculating any metrics.

3.2 Model training

Model architecture and infrastructure All
NMT models in this paper are transformer mod-
els (Vaswani et al., 2017). We give full details
about hyper-parameters and infrastructure in Ap-
pendix A.2.

Parallel-only models for back translation For
each language pair and in both directions, we
train an NMT model on the cleaned parallel data
alone using the relevant hyper-parameter settings in
Table 5. We measure the performance of these mod-
els by calculating the BLEU score (Papineni et al.,
2002) using the sacreBLEU toolkit (Post, 2018)8

and by evaluating the translations with COMET
using the wmt20-comet-da model (Rei et al.,
2020).

Generating back translation For each language
pair and in each direction, we use the trained
parallel-only models to generate back translation

8BLEU|nrefs:1|case:mixed|eff:no|
tok:13a|smooth:exp|version:2.0.0
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Figure 3: Mean COMET score on WMT test sets
for English↔Turkish and English↔Icelandic models
trained on different BT datasets. For English↔Turkish,
we give the mean score on WMT 16, WMT 17, and
WMT 18 test sets. For English↔Icelandic, we give the
score on the WMT 21 test set.

datasets as described in Section 2.1. We translate
the same three million sentences of monolingual
data each time for consistency, translating an addi-
tional six million lines of monolingual data for the
base-big dataset.

Training final models We train final models for
each language direction on the concatenation of
the parallel data and each back-translation data-
set (back-translation on the source side, original
monolingual data as target). We measure the fi-
nal performance of these models using BLEU and
COMET as before.

4 Results and Analysis

4.1 Final model performance

Figures 2 and 3 show the mean BLEU and COMET
scores achieved by the final models trained on the
concatenation of the parallel data and the different
BT datasets. In most cases, adding any BT data to
the training data results in some improvement over
the parallel-only baseline for both scores. However,
augmenting the training data with BT produced
with nucleus sampling nearly always results in the
strongest performance, with mean gains of 2.88
BLEU or 0.078 COMET. This compares to mean
gains of 2.24 BLEU or 0.026 COMET when using
the baseline BT dataset of three million lines trans-
lated with beam search. Pure sampling tends to
perform similarly but not quite as well as nucleus
sampling. Based on this result, we suggest that
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Dataset base-big beam sampling nucleus

Sent. len. 12.23 12.21 13.11 12.74
Word. len. 8.19 8.17 8.37 8.28

Vocab 1.6M 1.0M 5.6M 3.4M

i-BLEU - 38.11 86.69 83.27
i-chrF - 17.91 58.84 53.95

Table 1: Diversity metrics for the Turkish BT datasets
(original language: English) used to train the Tr→En
models. Inter-sentence metrics are calculated on a
sample of 30k triplets. ‘M’ = million.

Dataset base-big beam sampling nucleus

Sent. len. 15.65 14.79 14.92 14.73
Word len. 6.54 6.91 7.33 7.15

Vocab. 1.3M 0.82M 11M 5.6M

i-BLEU - 30.89 86.41 79.67
i-chrF - 16.09 66.06 57.83

Table 2: Diversity metrics for the Icelandic BT datasets
(original language: English) used to train the Is→En
models. Inter-sentence metrics are calculated on a
sample of 30k triplets. ‘M’ = million.

future work generate BT with nucleus sampling
rather than pure sampling.

4.2 Diversity metrics
We give the diversity metrics for each language
pair and each generated dataset in Tables 1 to 4.9

Sentence and word lengths are comparable across
the same language for all generation methods, sug-
gesting that each method is generating tokens from
roughly the right language distribution. However,
the vocabulary size is much larger for nucleus com-
pared to base or beam, and sampling is around
twice that of nucleus. Examining the data, we find
many neologisms (that is, ‘words’ which do not
appear in the training data) for nucleus and more
still for sampling. We note that the syntax-groups
dataset has a much smaller vocabulary again; this
is what we would hope if the generation method is
producing syntactic rather than lexical diversity as
required. We give representative examples of gen-
erated triples in Appendix A.1, along with some
explanation of how the phenomena they demon-
strate fit into the general trend of the dataset.

Effect on performance With respect to the inter-
sentence diversity metrics (i-BLEU, i-chrF, and tree
kernel scores), we see that the sampling dataset has
the highest diversity scores, followed by nucleus,

9We omit base for reasons of space and because its differ-
ent length to the other datasets makes comparison difficult (3
million lines compared to 9 million for the others).

Dataset base+ beam sampl. nucleus syntax

Sent. len. 16.98 17.03 17.85 17.54 17.28
Word len. 6.05 6.04 6.25 6.11 6.06

Vocab 0.89M 0.54M 4.9M 2.5M 0.64M

i-BLEU - 30.74 83.52 78.92 42.26
i-chrF - 16.28 57.16 51.82 23.32

Kernel - 72.20 97.33 95.91 83.43

Table 3: Diversity metrics for the English BT datasets
(original language: Turkish) used to train the En→Tr
models. Inter-sentence metrics are calculated on a
sample of 30k triplets. ‘M’ = million.

Dataset base+ beam sampl. nucleus syntax

Sent. len. 20.45 22.75 21.34 21.13 18.29
Word len. 5.83 5.83 6.33 6.08 5.89

Vocab. 0.66M 0.41M 12M 5.6M 0.49M

i-BLEU - 22.75 92.31 88.86 77.17
i-chrF - 11.95 72.20 67.16 56.90

Kernel - 65.72 99.35 98.74 99.40

Table 4: Diversity metrics for the English BT data-
sets (original language: Icelandic) used to train the
En→Is models. Inter-sentence metrics are calculated on
a sample of 30k triplets. ‘M’ = million.

then syntax, then beam. Taken together with the
performance scores and the summary statistics, this
suggests that NMT data benefits from a high level
of diversity, but not so high that the two halves of
the parallel data no longer have the same meaning
(as shown by the very high vocabulary size for
sampling).

Metric correlation There is a high correlation
between i-BLEU, i-chrF, and tree kernel score for
the beam, sampling, and nucleus datasets. This is
not entirely unexpected: it is likely to be difficult if
not impossible to disentangle lexical and syntactic
diversity, since changing sentence structure would
also affect the word choice and vice versa.

This correlation is much weaker for the syntax-
groups dataset: whilst the tree-kernel scores are
comparable to the sampling and nucleus datasets,
there is a much smaller increase in the other (lex-
ical) diversity scores. This suggests that this gener-
ation method encourages relatively more syntactic
variation than lexical compared to the other di-
verse generation method, as was its original aim
(see paragraph on syntax-group fine-tuning in sec-
tion 2.1). The fact that the final model trained on
this BT dataset has lower performance compared
to other forms of diversity suggests that lexical di-
versity is more important than syntactic diversity
when undertaking data augmentation. We leave it
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to future work to investigate this hypothesis further.

4.3 Data augmentation versus more
monolingual data

The right-most cross in each quadrant of Figures 2
and 3 gives the performance of base-big, the data-
set where we simply add six million more lines of
new data rather than carrying out data augmenta-
tion. Interestingly, pure and nucleus sampling both
often outperform base-big. This may be because
the model over-fits to too much back-translated
data, whereas having multiple sufficiently-diverse
pseudo-source sentences for each target sentence
has a regularising effect on the model.

To further support this hypothesis, Figure 4 gives
training perplexity for the first 50,000 steps of train-
ing for the final Icelandic→English models, which
are representative of the results for the other lan-
guage pairs. We see that the base-big dataset has
the lowest training perplexity at each step, sug-
gesting this data is easier to model. Conversely,
the model has highest training perplexity on the
sampling and nucleus datasets, suggesting generat-
ing the data this way has a regularising effect.

0 10000 20000 30000 40000 50000
Step

100

6×10−1

2×100

3×100

Tr
ai

ni
ng

pe
rp

le
xi

ty

Training perplexity for final English to Turkish models

sampling
nucleus
beam
syntax-groups
base
base-big

Figure 4: Mean training perplexity for the first 50 thou-
sand steps of training for final English→Turkish mod-
els. The model has highest training perplexity on the
sampling then nucleus datasets. The lowest training
perplexity is on the beam and base-big datasets.

4.4 Translationese effect
Several studies have found that back-translated text
is easier to translate than forward-translated text,
and so inflates intrinsic metrics like BLEU (Edunov
et al., 2020; Graham et al., 2020; Roberts et al.,
2020). To use a concrete example, the WMT test
sets for English to Turkish are made up of half nat-
ive English translated into Turkish, and half native

Turkish translated into English. We want models
that perform well when translating from native text
(in this example: the native English side), as this is
the usual direction of translation. However, half the
test set is made up of translations on the source side.
The translationese effect means that the model will
usually get higher scores on this half of the test set,
potentially inflating the score. Consequently, the
intrinsic metrics could suggest choosing a model
that does not actually perform well on the desired
task (translating from native text).

We investigate this effect in our own work by
examining the mean BLEU scores for each model
on each half of the test sets, giving the results in
Figure 5. Each bar indicates the mean percent-
age change in BLEU scores over the parallel-only
baseline model for the models trained on the dif-
ferent BT datasets, so a larger bar means a better
performing model. The left-hand bars in each quad-
rant show the performance of each model on the
back-translated half of the test set (to native) and
the right-hand bars give the performance of each
model on the forward-translated half of the test set
(from native).

We see a significant translationese effect for all
models, as the percentage change in scores over the
baseline are much higher when the models translate
already translated text (the left-hand side bars are
higher than the right-hand ones). However, it ap-
pears that the nucleus dataset is less affected by the
translationese effect than the other datasets, since
it shows less of a decline in performance when
translating native text. This may be due to a sim-
ilar regularising effect as discussed previously, as
it is more difficult for the model to overfit to BT
data when it is generated with nucleus sampling. A
direction for future research is how to obtain the
benefits of using monolingual data (as BT does)
without exacerbating the translationese effect.

5 Related work

Improving back translation The original paper
introducing BT by Sennrich et al. (2016) found
that using a higher-quality NMT system for BT led
to higher BLEU scores in the final trained system.
This finding was corroborated by Burlot and Yvon
(2018), and following work has investigated further
ways to improve NMT. These include iterative
BT (Hoang et al., 2018), targeting difficult words
(Fadaee and Monz, 2018), and tagged BT (Caswell
et al., 2019). Section 3.2.1 of Haddow et al. (2021)
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Figure 5: The mean percentage change in BLEU score for each model on the test set(s) over the parallel-only
models, separated by language direction. The left-hand side (to native) has translated text on the source side and
native text on the target side of the test set (back translation). The right-hand side (from native) has native text on
the source side and translated text on the target side of the test set.

presents a comprehensive survey of BT and its vari-
ants as applied to low-resource NMT.

Diversity in machine translation Most of the
work on the lack of diversity in machine-translated
text are in the context of automatic evaluation
(Edunov et al., 2020; Graham et al., 2020; Roberts
et al., 2020). As for diversity in BT specifically,
Edunov et al. (2018) argue that MAP prediction,
as is typically used to generate BT through beam
search, leads to overly-regular synthetic source sen-
tences which do not cover the true data distribution.
They propose instead generating BT with sampling
or noised beam outputs, and find model perform-
ance increases for all but the lowest resource scen-
arios. Alternatively, Soto et al. (2020) generate di-
verse BT by training multiple machine-translation
systems with varying architectures.

Generating diversity Increasing diversity in BT
is part of the broader field of diverse generation, by
which we mean methods to vary the surface form of
a production whilst keeping the meaning as similar
as possible. Aside from generating diverse trans-
lations (Gimpel et al., 2013; He et al., 2018; Shen
et al., 2019; Nguyen et al., 2020; Li et al., 2021),
it is also used in question answering systems (Sul-
tan et al., 2020), visually-grounded generation (Vi-

jayakumar et al., 2018), conversation models (Li
et al., 2016), and particularly paraphrasing (Mallin-
son et al., 2017; Wieting and Gimpel, 2018; Hu
et al., 2019; Thompson and Post, 2020; Goyal and
Durrett, 2020; Krishna et al., 2020). Some recent
work such as Iyyer et al. (2018), Huang and Chang
(2021), and Hosking and Lapata (2021) explicitly
model the meaning and the form of the input sep-
arately. In this way, they aim to vary the syntax
of the output whilst preserving the semantics so
as to generate more diverse paraphrases. Unfor-
tunately, these methods are difficult to apply to a
low-resource scenario as they require external re-
sources (e.g. accurate syntactic parsers, large-scale
paraphrase data) which are not available for most
of the world’s languages.

6 Conclusion

In this paper, we introduced a two-part framework
for understanding diversity in NMT data, split-
ting it into lexical diversity and syntactic diversity.
Our empirical analysis suggests that whilst high
amounts of both types of diversity are important
in training data, lexical diversity may be more be-
neficial than syntactic. In addition, achieving high
diversity in BT should not be at the expense of ad-
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equacy. We find that generating BT with nucleus
sampling results in the highest final NMT model
performance for our systems. Future work could in-
vestigate further the affect of high lexical diversity
on BT independent of syntactic diversity.

Acknowledgements

This work was supported in part by the UKRI
Centre for Doctoral Training in Natural Lan-
guage Processing, funded by the UKRI (grant
EP/S022481/1) and the University of Edinburgh,
School of Informatics and School of Philosophy,
Psychology & Language Sciences. It was also sup-
ported by funding from the European Union’s Ho-
rizon 2020 research and innovation programme un-
der grant agreement No 825299 (GoURMET) and
funding from the UK Engineering and Physical Sci-
ences Research Council (EPSRC) fellowship grant
EP/S001271/1 (MTStretch).

The experiments in this paper were performed
using resources provided by the Cambridge Ser-
vice for Data Driven Discovery (CSD3) operated
by the University of Cambridge Research Com-
puting Service (www.csd3.cam.ac.uk), provided
by Dell EMC and Intel using Tier-2 funding from
the Engineering and Physical Sciences Research
Council (capital grant EP/P020259/1), and DiRAC
funding from the Science and Technology Facilities
Council (www.dirac.ac.uk).

Finally, the authors would like to thank our an-
onymous reviewers for their time and helpful com-
ments, and we give special thanks to Henry Conklin
and Bailin Wang for their help with tree kernels
and many useful discussions.

References
Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-

dalena Biesialska, Ondřej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina España-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Phil-
ipp Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1–88, Online. Association for Computational Lin-
guistics.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale ac-
quisition of parallel corpora. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4555–4567, Online. Asso-
ciation for Computational Linguistics.

Starkaður Barkarson and Steinþór Steingrímsson. 2019.
Compiling and filtering ParIce: An English-Icelandic
parallel corpus. In Proceedings of the 22nd Nordic
Conference on Computational Linguistics, pages 140–
145, Turku, Finland. Linköping University Electronic
Press.

Loïc Barrault, Magdalena Biesialska, Ondřej Bojar,
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A Appendix

A.1 Representative examples from
back-translated datasets (translated from
Icelandic)

Original Þjóðverjar hafa tekið forræðið og stefnt
er að stofnun stórríkis.

Beam
• The Germans have taken custody and are

aimed at the establishment of a large state.

• The Germans have taken custody and are
aimed at the creation of a large state.

• The Germans have taken custody and are
aimed at establishing a large state.

Comment: Only one or two words differ between
sentences (underlined).

Sampling
• The Germz governmentregluru has committed

suicide, intending to organise a major state.

• The Germano had ensured that British com-
manders in France would be aides of theærd
rapidly.

• And the need to defend and establish theseUC-
tions are all organized intomissions from Ir-
aqéttihe.

Comment: Sentences show large variation in
structure and vocabulary, but they contain many
non-dictionary words (underlined) and adequacy is
low.

Nucleus
• Germany has taken custody and aimed to es-

tablish a large country.

• The German government initiated a group op-
eration, to establish capital city.

• The Germany has managed to make an ex-
ample of their full widowed demands.

Comment: There is a moderate amount of vari-
ation between sentences in terms of syntax and
vocabulary, but no non-dictionary words. Some
phrases lack adequacy (underlined).

Syntax-groups
• The Germans have taken custody and are

aimed at the establishment of a large state.

• The Icelandic Institute of Natural History

• As a result, the Germans have taken control
of the country and are aimed at establishing a
large state.

Comment: The second and third sentences con-
tain hallucinations, presumably in order to generate
according to the syntactic templates (underlined).

A.2 Model architecture and infrastructure
All NMT models in this paper are transformer mod-
els (Vaswani et al., 2017). We conducted a hyper-
parameter search for each language pair, training
English↔Turkish and English↔Icelandic NMT
models and using the BLEU score as the optim-
isation metric. We give the settings which differ
to transformer-base in Table 5. We use the same
hyper-parameter settings for all models trained for
the same language pair.

We use the Fairseq toolkit to train all our NMT
models (Ott et al., 2019). We train on four NVIDIA
A100-SXM-80GB GPUs and use CUDA 11.1 plus
a Python 3.8 Conda environment provided in the
Github repo. We generate on one GPU, since to
our knowledge the Fairseq toolkit does not support
multi-GPU decoding. We use Weights and Biases
for experiment tracking (Biewald, 2020).

tr–en is–en
Dropout 0.6 0.3

Activation dropout 0.1 0
Attention dropout 0.1

Learning rate 0.001
L.R. scheduler Inv. square root

Optimiser Adam
Optimiser parameters 0.9, 0.98

Label smoothing 0.1
Shared embeddings all

Batch size 64
Update frequency 16

Patience 15

Table 5: Hyper-parameter settings for NMT transformer
models trained for each language pair. All other settings
are the default for transformer-base.
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Abstract

Automatic Speech Recognition (ASR) systems
typically produce unpunctuated transcripts that
have poor readability. In addition, building
a punctuation restoration system is challeng-
ing for low-resource languages, especially for
domain-specific applications. In this paper,
we propose a Spanish punctuation restoration
system designed for a real-time customer sup-
port transcription service. To address the data
sparsity of Spanish transcripts in the customer
support domain, we introduce two transfer-
learning-based strategies: 1) domain adaptation
using out-of-domain Spanish text data; 2) cross-
lingual transfer learning leveraging in-domain
English transcript data. Our experiment results
show that these strategies improve the accuracy
of the Spanish punctuation restoration system.

1 Introduction

Automatic Speech Recognition (ASR) systems play
an increasingly important role in our daily lives,
with a wide range of applications in different do-
mains such as voice assistant, customer support
and healthcare. However, ASR systems usually
generate an unpunctuated word stream as the out-
put. Unpunctuated speech transcripts are difficult
to read and reduce overall comprehension (Jones
et al., 2003) . Punctuation restoration is thus an im-
portant post-processing task on the output of ASR
systems to improve general transcript readability
and facilitate human comprehension.

Punctuation restoration for transcripts of
Spanish-speaking customer support telephone dia-
logue is a non-trivial task. First, real-world human
conversation transcripts have unique characteristics
compared to common written text, e.g., filler words
and false starts are common in spoken dialogue.
Moreover, further challenges arise when address-
ing noisy ASR transcripts in a specific domain, as
the lexical data distribution can be quite different
compared to public Spanish datasets. Examples of

Spanish sentences from different sources are shown
below:

• Written text in Wikipedia: El español o
castellano es una lengua romance procedente
del latín hablado, perteneciente a la familia
de lenguas indoeuropeas. (Spanish or Castil-
ian is a Romance language derived from spo-
ken Latin, belonging to the Indo-European
language family.)

• Written text in customer support: Mire,
quería ver si me podían ayudar. (Look, I
wanted to see if you guys could help me)

• Noisy ASR transcript in customer support:
Mire, este, es que, que- quería ver si me
podían ayudar. (Look, well, so I, I wanted
to see if you could help me)

Recent advances in transformer-based pre-
trained models have been proven successful in
many NLP tasks across different languages. For
Spanish, available pre-trained resources include
multilingual models such as multilingual BERT
(mBERT) (Devlin et al., 2019) and XLM-RoBERTa
(XLM-R) (Conneau et al., 2020), as well as mono-
lingual models such as BETO (Cañete et al., 2020).
However, large pre-trained models are trained on
various written text sources such as Wikipedia and
CommonCrawl (Wenzek et al., 2019), which are
very distant from what we are trying to address
in noisy ASR transcripts in the customer support
domain. While Spanish is not usually considered
a low-resource language in many NLP tasks, it
is much more challenging to acquire sufficient
training data in Spanish for our domain-specific
task, since most of the publicly-available Spanish
datasets do not come from natural human conver-
sations, and have little coverage in the customer
support domain.

In addressing the challenge of in-domain data
sparsity we make the following contributions:
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1. We propose a punctuation restoration system
dedicated for Spanish based on pre-trained
models, and examine the feasibility of various
pre-trained models for this task.

2. We adopt a domain adaptation approach uti-
lizing out-of-domain Spanish text data.

3. We implement a data modification strategy
and match in-domain English transcripts with
Spanish punctuation usage, and propose a
cross-lingual transfer approach using English
transcripts.

4. We demonstrate that our proposed transfer
learning approaches (domain adaptation and
cross-lingual transfer) can sufficiently im-
prove the overall performance of Spanish
punctuation restoration in our customer sup-
port domain, without any model-level modifi-
cations.

2 Background

Punctuation restoration is the task of inserting ap-
propriate punctuation marks in the appropriate po-
sition on the unpunctuated text input. A variety of
approaches have been used for punctuation restora-
tion, most of which are built and evaluated on
one language: English. The use of classic ma-
chine learning models such as n-gram language
model (Gravano et al., 2009) and conditional ran-
dom fields (Lu and Ng, 2010) are common in early
studies. More recently, deep neural networks such
as Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) and transformers
(Vaswani et al., 2017) have been adopted in (Tilk
and Alumäe, 2015) and (Courtland et al., 2020).

Punctuation conventions differ between Spanish
and English. Namely, in addition to the equiv-
alents of English and Spanish periods, commas,
terminating question marks and terminating ex-
clamation marks, we must also account for the
inverted question marks (¿) and inverted exclama-
tion marks (¡) used to introduce these respective
clauses in Spanish. There has been limited work
done in Spanish punctuation restoration and in most
cases Spanish is covered as part of the multilin-
gual training. (Li and Lin, 2020) proposed a mul-
tilingual LSTM including the support for Spanish.
(González-Docasal et al., 2021) uses a transformer-
based model with both lexical and acoustic inputs
for Spanish and Basque.

Transfer learning has been widely studied and
applied in NLP applications for low-resource lan-
guages (Alyafeai et al., 2020). Domain adapta-
tion and cross-lingual learning both fall under the
category of transductive transfer learning, where
source and target share the same task but labeled
data is only available in source (Ruder et al., 2019).
Data selection is among the data-centric methods
used in domain adaptation, which aims to select
the best matching data for a new domain (Ram-
poni and Plank, 2020). (Fu et al., 2021) uses data
selection to improve English punctuation restora-
tion with out-of-domain datasets. Recent advances
in multilingual language models such as mBERT
and XLM-R have shown great potential in cross-
lingual zero-shot learning, wherein a multilingual
model can be trained on the target task in a high-
resource language, and afterwards applied to the
unseen target languages by zero-shot learning (Hed-
derich et al., 2021). (Wu and Dredze, 2019) and
(Pires et al., 2019) demonstrate the effectiveness of
mBERT as a zero-shot cross-lingual transfer model
in various NLP tasks, such as classification and
natural language inference.

3 Methods

3.1 System Description
Pre-trained transformer-based models have been
widely adopted for various NLP tasks since the in-
troduction of BERT (Devlin et al., 2019). Publicly
available pre-trained models for Spanish include
the multilingual models mBERT and XLM-R and
the BERT-like monolingual model BETO. In this
work, we evaluate all three pre-trained models in
our experiments and compare their performance in
both proposed domain adaptation and cross-lingual
transfer approaches.

Using pre-trained models as a starting point, we
formulate the Spanish punctuation restoration prob-
lem as a sequence labeling task, where the model
predicts one punctuation class for each input word
token. Instead of covering all possible Spanish
punctuation marks, we only include nine target
punctuation classes that are commonly used and
important in terms of improving transcript readabil-
ity:

• OPEN_QUESTION: ¿ should be added at the
start of this word token.

• CLOSE_QUESTION: ? should be added at
the end of this word token.
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Figure 1: Our punctuation restoration system, showing the process of predicting “en qué le puedo ayudar” as “¿En
qué le puedo ayudar?” (How can I help you?).

• FULL_QUESTION: ¿ and ? should be added
at the start and end of this word token respec-
tively.

• OPEN_EXCLAMATION: ¡ should be added
at the start of this word token.

• CLOSE_EXCLAMATION: ! should be
added at the end of this word token.

• FULL_EXCLAMATION: ¡ and ! should be
added at the start and end of this word token
respectively.

• COMMA: , should be added at the end of this
word token.1

• PERIOD: . should be added at the end of this
word token.

• NONE: no punctuation should be associated
with this word token.

The input to the Spanish punctuation restoration
system is a transcribed utterance emitted by the
ASR system. The ASR system outputs an utter-
ance if an endpoint (long pause or speaker change)

1The insertion of commas as decimal separators is not
included here.

is detected in the audio. The length of a given
utterance can vary, each utterance can contain mul-
tiple sentences, meaning that there can be multiple
terminating punctuation marks – period, question
mark and exclamation mark – in a single utterance.

The punctuation restoration model structure is il-
lustrated in Figure 1. We add a token classification
layer on top of the pre-trained models. Raw model
prediction results are also post-processed by a set of
simple heuristics to mitigate the error caused by un-
matched predictions for paired punctuation marks.
For instance, a predicted OPEN_QUESTION class
will be changed to NONE if there is no matched
CLOSE_QUESTION prediction in the same utter-
ance. 2

3.2 Datasets

It is essential to acquire in-domain manual tran-
scripts that come from real customer support sce-
narios to build a punctuation restoration model that
fits the customer support domain. However, only
around 5,000 in-domain transcribed Spanish utter-
ances from call recordings could be obtained at
this early product development stage. Addition-

2This post-processing step may not always produce the cor-
rect result, but the overall prediction accuracy was improved
by adding this post-processing in our experiments.
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Spanish out-of-domain (LDC) examples
Ah, qué bueno, yo conozco mucho cubano pero más que todo en Filadelfia. (Ah, how good, I know
many Cubans but especially in Philadelphia.)
Bueno, mira, eh, ¿sus papás, cuántos años llevan casados? (Well, look, uhm, your parents, how
long have they been married?)

Spanish out-of-domain (OpenSubtitle) examples
Sé que lo que estoy pidiéndote es difícil. (I know that what I’m asking you is hard.)
Sí, da un poco de tristeza. (Yes, it makes you a little bit sad.)

Spanish in-domain examples
Buenas tardes, ¿cómo le puedo ayudar? (Good afternoon, how can I help you?)
Pues no me funciona y lo he intentado varias veces. (So, it doesn’t work and I’ve tried several
times)

English in-domain examples
I don’t find this app very helpful, I’m calling to cancel my subscription.
Hi, this is Tom, how can I help you today?

Table 1: Examples of Spanish and English utterances.

ally, there are around 200,000 in-domain manually
transcribed English utterances from our call center
product.

We supplemented this in-domain Spanish data
with the Linguistic Data Consortium (LDC) Fisher
Spanish Speech and Fisher Spanish Transcripts cor-
pora (Graff et al., 2010). These corpora consist of
audio files and transcripts for approximately 163
hours of telephone conversations from native Span-
ish speakers. These recordings are a good match to
the acoustic properties of our telephone conversa-
tions, but the transcripts, which are mostly social
calls with predefined topics, do not match the do-
main of customer support conversations.

The Spanish portion of the OpenSubtitle cor-
pus (Lison and Tiedemann, 2016) also contains
a variety of human-to-human conversation, albeit
from movies rather than from spontaneous con-
versational speech. Spanish OpenSubtitle offers
179 million sentences from 192,000 subtitle files,
and can provide our models with good exposure to
exclamation marks, which are not included in the
LDC dataset. However, the movie topics are gen-
erally distant from our business-specific, customer
support domain.

Some examples from both in-domain and out-
of-domain data sources are illustrated in Table 1.
External out-of-domain datasets usually have var-
ious Spanish punctuation marks outside our sup-
ported range as described in 3.1. After reviewing
the datasets from a linguistic perspective, we first
apply a set of conversion rules to those unsupported
punctuation marks without affecting the readability

and semantic meanings: we delete quotation marks,
replace colons and semicolons with commas, and
replace ellipses with periods.

3.3 Domain Adaptation
Many machine learning applications have the as-
sumption that training and testing datasets follow
the same underlying distribution. But for our target
task in the customer support domain, we mostly
have to rely on external data such as LDC and Span-
ish OpenSubtitle during the training process, due
to the lack of in-domain Spanish data. This will
therefore cause a mismatch between our training
and testing data in terms of its distribution, and con-
sequently, performance will drop in our target task.
Therefore, to mitigate this distribution mismatch,
we apply domain adaptation on external Spanish
datasets from two directions: data selection and
data augmentation.

3.3.1 Data Selection
As described in 3.2, Spanish OpenSubtitle has a
total of over 179 million sentences, which is much
larger than our other data sources. However, the
vast majority of the data in the Spanish OpenSubtile
corpus are fundamentally distinct from our target
customer support domain, and randomly sampling
from out-of-domain datasets could hurt the model
performance. Thus, following the procedure in
(Fu et al., 2021), we first train a 4-gram language
model using our Spanish in-domain data, and then
sample the 100,000 utterances from the OpenSub-
title corpus with lowest perplexity (i.e. the highest
language model similarity to the in-domain data).
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(a) in-domain

(b) LDC-before augmentation (c) OpenSubtitle-before augmentation

(d) LDC-after augmentation (e) OpenSubtitle-after augmentation

Figure 2: Comparison of number of terminating punctuations per utterance distribution in in-domain, LDC and
OpenSubtitle datasets, before and after data augmentation.

Since the telephone conversation transcripts
in the LDC corpora are closer to our target do-
main and there are only 130,000 utterances in this
dataset, we do not perform further data selection
on the LDC data for training purposes.

3.3.2 Data Augmentation
Most of the data in LDC and OpenSubtitle datasets
is segmented into single sentences. However, as de-
scribed in 3.1, the input to our punctuation restora-
tion system will be composed of larger blocks of
utterances rather than single sentences. To illustrate
this difference, we investigate how many terminat-
ing punctuation marks occur in each input from
external datasets and in-domain data, respectively.

As shown in Figure 2(a)(b)(c), our in-domain

data has a much wider distribution in terms of the
number of terminating punctuation marks in a sin-
gle utterance. However, the majority of samples
in both LDC and OpenSubtitle consist of only one
sentence each. It is necessary to augment the out-
of-domain datasets to cover the wider spread of dis-
tribution exhibited in our in-domain data, based on
the fact that this will affect how many terminating
punctuation marks the model tends to predict per
input utterance. We therefore apply data augmen-
tation by concatenating sentences in these corpora,
in proportion to the spread seen in our in-domain
dataset, so that the overall terminating punctua-
tion distribution in out-of-domain datasets matches
our in-domain data. As Figure 2(d)(e) shows, the
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(a) (b)

(c)

Figure 3: Diagram of three proposed fine-tuning strategies. (a) ES->EN, (b) EN->ES, (c) Joint EN, ES

augmented results for the LDC and OpenSubtitle
corpora more closely match the distribution of our
in-domain Spanish data.

3.4 Cross-lingual Transfer

Multilingual language models such as mBERT and
XLM-R advanced zero-shot cross-lingual transfer
learning for low-resource languages (Hedderich
et al., 2021). Instead of using cross-lingual trans-
fer as zero-shot, we utilize our English in-domain
data (described in 3.2) to fine-tune multilingual pre-
trained models in addition to our available Span-
ish datasets to improve our Spanish punctuation
restoration system. However, punctuation conven-
tions differ between languages; to better leverage
cross-lingual transfer learning, we first convert the
punctuation usage in the source language to appro-
priately match the punctuation conventions in the
target language.

Since this study involves matching English punc-
tuation to Spanish, the task is not insurmountable:
most of the punctuation marks and their usages are
the same across these two languages. Periods are

used to terminate a declarative sentence in both lan-
guages, and the usage of commas to separate words
or phrases is very similar. Therefore, no modifica-
tions are required for these two punctuation marks.

One more significant challenge for this task is
the fact that question marks and exclamation marks
do work somewhat differently in Spanish writing
than in English. Namely, in addition to the termi-
nating role played in both languages by standard
question marks (to denote the end of an interroga-
tive sentence) and standard exclamation marks (to
denote the end of an exclamatory sentence), Span-
ish writing conventions also require the addition
of an inverted question mark or an inverted excla-
mation mark, which occur at the beginning of the
clause that contains the question or exclamation.
For example:

• English: Hi, how are you today?

• Spanish: Hola, ¿cómo estás hoy?

For each question mark and exclamation mark in
our English training data, we add an open question
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Training Data BETO mBERT XLM-R
LDC 51.3% 50.2% 51.8%

LDC + Selected OpenSubtitle 52.1% 51.5% 53.2%
Augmented (LDC + Selected OpenSubtitle) 53.7% 52.1% 54.7%

Table 2: F1 score performance comparison using the LDC and OpenSubtitle datasets, before and after our domain
adaptation approaches.

mark or exclamation mark, respectively, at the start
of the word chunk that the terminating question or
exclamation mark is in.

For example, consider the following English ut-
terance:

“OK, how can I help you?”
For cross-lingual transfer training, it will be mod-

ified to:
“OK, ¿how can I help you?”
By doing this conversion, the model will learn

to predict punctuation as it should occur in Spanish
contexts during the fine-tuning phase, even though
what it actually sees are English utterances with
Spanish punctuation.

To determine the best way to transfer the in-
domain distribution from English (EN) to Spanish
(ES) in the punctuation restoration task, we inves-
tigate three fine-tuning strategies for cross-lingual
transfer learning:

1. Fine-tune the pre-trained models in two
steps, Spanish first then English. Noted as
“ES->EN”.

2. Fine-tune the pre-trained models in two
steps, English first then Spanish. Noted as
“EN->ES”.

3. Fine-tune the pre-trained models in one step,
with joint English and Spanish data. Noted as
“Joint EN, ES”

Diagrams of three fine-tuning strategies are il-
lustrated in Figure 3. Note that our objective is to
build a model for Spanish, but it is still worth exper-
imenting with “ES->EN” setting to establish the
impact of more in-domain data albeit in a different
language.

4 Evaluation

4.1 Evaluation Setup

We evaluate our proposed transfer learning ap-
proaches using the datasets described in 3.2. Us-
ing the model architecture shown in Figure 1, we

fine-tune pre-trained models using various data
combinations and fine-tuning strategies to demon-
strate the effectiveness of our proposed approaches.
Pre-trained models including both monolingual
(BETO) and multilingual (MBERT and XLM-R)
are explored and evaluated.

The Spanish punctuation restoration system is
intended to operate in real-time so that customer-
support agents can review prior information com-
municated by a customer and to provide the input
to product features such as automatically retrieving
information to assist the agent. As shown in (Fu
et al., 2021), reducing the number of layers from
deep pre-trained models does not significantly im-
pact accuracy for the punctuation restoration task.
To reduce the computation time during inference,
we take only the first six layers from the pre-trained
models as our starting point.

To evaluate the model accuracy in our target
customer support domain, we split our in-domain
Spanish manual transcripts into three parts: the
training set (60%), the validation set (10%) and the
test set (30%). The Spanish in-domain training set
is over-sampled to make the size comparable to the
other datasets. The performance of every model is
evaluated on the in-domain test set after being fine-
tuned on various combinations of training sources
and processes.

4.2 Performance with Domain Adaptation
We evaluate the F1 score performance before and
after the domain adaptation approaches proposed
in 3.3. Pre-trained models are fine-tuned using the
combinations of LDC and selected OpenSubtitle
datasets only, and then evaluated on our in-domain
test set. The results are shown in Table 2. Both data
selection and data augmentation improve the over-
all F1 score performance for all three pre-trained
models, which demonstrates the effectiveness of
our domain adaptation approaches for the Spanish
punctuation restoration task. Among three differ-
ent models, XLM-R shows the best performance
under this setup, and outperforms the monolingual
BETO model after domain adaptation.
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Training data and strategy BETO mBERT XLM-R
ES only (no cross-lingual transfer) 62.8% 61.5% 62.9%

ES->EN N/A 59.1% 60.7%
EN->ES N/A 62.0% 63.5%

Joint EN,ES N/A 62.4% 64.4%

Table 3: F1 score performance comparison with and without cross-lingual transfer. ES: the combination of Spanish
datasets including (1) Augmented (LDC + Selected OpenSubtitle) as described in Table 2; (2) Spanish in-domain
transcripts. EN: English in-domain transcripts.

Gold
Prediction CLOSE_QUESTION PERIOD

CLOSE_QUESTION 223 106
PERIOD 37 2177

Table 4: Confusion matrix of CLOSE_QUESTION and PERIOD on test set, using best performing XLM-R in 4.3

4.3 Performance with Cross-lingual transfer

To understand the effect of cross-lingual transfer,
we use all the available data sources described in
3.2. We separate the Spanish datasets (LDC, se-
lected OpenSubtitle and Spanish in-domain tran-
scripts) from the English one (English in-domain
transcripts), and fine-tune the pre-trained models
using three different strategies described in 3.4
(“ES->EN”, “EN->ES” and “Joint EN, ES”) as
shown in Figure 3.

Table 3 shows our results on cross-lingual
transfer learning: multilingual models (mBERT
and XLM-R) both show performance gain with
“Joint EN, ES” and “EN->ES” training. However,
“ES->EN” training actually results in lower ac-
curacy than models trained without cross-lingual
transfer. As for the comparison with the monolin-
gual model (BETO) which is not feasible for the
direct cross-lingual transfer, XLM-R produces sim-
ilar results as BETO without cross-lingual transfer,
but XLM-R outperforms BETO by 1.5% F1 score
after joint training with both Spanish and English
datasets. mBERT becomes comparable to BETO
after cross-lingual transfer as well.

5 Future Work

When analysing the prediction errors, we found that
many CLOSE_QUESTION classes are predicted as
PERIOD by the model, as shown in Table 4. This
is a common behavior across all three pre-trained
models, and is possibly due to the linguistic prop-
erties of Spanish. Because Spanish clauses do not
require an overt subject noun phrase, and because
Spanish has considerable variability in constituent

order, it is often the case that there is no structural
indication of whether an utterance should be inter-
preted as a declarative or as a question. Instead,
intonation is used to make this distinction. For ex-
ample, "hablan español" ("they speak Spanish" or
"do they speak Spanish") becomes a question with
rising intonation. Future work in this area might
focus on incorporating such acoustic information
into punctuation restoration tasks.

6 Conclusion

For this study, we trained and tested a Spanish punc-
tuation restoration system for the customer sup-
port domain based on pre-trained transformer mod-
els. To address in-domain data sparsity in Spanish,
transfer learning approaches were applied in two
directions: domain adaptation and cross-lingual
transfer. We explored and fine-tuned three different
pre-trained models with our transfer learning ap-
proaches for this task; our results demonstrate that
the domain adaptation method improves the accu-
racy of all three pre-trained models. Cross-lingual
transfer with joint training of English and Spanish
datasets improves the performance of both multi-
lingual pre-trained models. XLM-R substantially
outperforms the monolingual BETO after cross-
lingual transfer and achieves the best F1 score in
our Spanish punctuation restoration task.
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Unsupervised cross-lingual representation learning.
In Proceedings of ACL 2019, Tutorial Abstracts,
pages 31–38.

Ottokar Tilk and Tanel Alumäe. 2015. LSTM for punc-
tuation restoration in speech transcripts. In Proc.
Interspeech 2015, pages 683–687.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2019. CCNet: Ex-
tracting high quality monolingual datasets from web
crawl data. CoRR.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.
In Proceedings of the 2019 Conference on Empirical

88

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.iwslt-1.33
https://doi.org/10.18653/v1/2020.iwslt-1.33
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.wnut-1.19
https://doi.org/10.18653/v1/2021.wnut-1.19
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6377
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6377
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6377
https://doi.org/https://doi.org/10.35111/s30q-sn19
https://doi.org/https://doi.org/10.35111/s30q-sn19
https://doi.org/10.1109/ICASSP.2009.4960690
https://doi.org/10.1109/ICASSP.2009.4960690
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.21437/Interspeech.2020-2052
https://doi.org/10.21437/Interspeech.2020-2052
https://doi.org/10.21437/Interspeech.2020-2052
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/D10-1018
https://aclanthology.org/D10-1018
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.21437/Interspeech.2015-240
https://doi.org/10.21437/Interspeech.2015-240
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/1911.00359
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077


Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 833–844, Hong
Kong, China. Association for Computational Linguis-
tics.

89



Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pages 90 - 101
July 14, 2022 ©2022 Association for Computational Linguistics

Pre-training Data Quality and Quantity for a Low-Resource Language:
New Corpus and BERT Models for Maltese

Kurt Micallef1

kurt.micallef@um.edu.mt
Albert Gatt2,3

a.gatt@uu.nl
Marc Tanti3

marc.tanti@um.edu.mt

Lonneke van der Plas4,3

lonneke.vanderplas@idiap.ch
Claudia Borg1

claudia.borg@um.edu.mt

1Department of Artificial Intelligence, University of Malta
2Information and Computing Sciences, Utrecht University

3Institute of Linguistics and Language Technology, University of Malta
4Idiap Research Institute

Abstract

Multilingual language models such as mBERT
have seen impressive cross-lingual transfer to
a variety of languages, but many languages re-
main excluded from these models. In this paper,
we analyse the effect of pre-training with mono-
lingual data for a low-resource language that
is not included in mBERT – Maltese – with a
range of pre-training set ups. We conduct eval-
uations with the newly pre-trained models on
three morphosyntactic tasks – dependency pars-
ing, part-of-speech tagging, and named-entity
recognition – and one semantic classification
task – sentiment analysis. We also present a
newly created corpus for Maltese, and deter-
mine the effect that the pre-training data size
and domain have on the downstream perfor-
mance. Our results show that using a mixture of
pre-training domains is often superior to using
Wikipedia text only. We also find that a frac-
tion of this corpus is enough to make significant
leaps in performance over Wikipedia-trained
models. We pre-train and compare two models
on the new corpus: a monolingual BERT model
trained from scratch (BERTu), and a further pre-
trained multilingual BERT (mBERTu). The
models achieve state-of-the-art performance
on these tasks, despite the new corpus being
considerably smaller than typically used cor-
pora for high-resourced languages. On average,
BERTu outperforms or performs competitively
with mBERTu, and the largest gains are ob-
served for higher-level tasks.

1 Introduction

Language Models have become a core component
in many Natural Language Processing (NLP) tasks.
These models are typically pre-trained on unla-
belled texts, and then further fine-tuned using la-
belled data relevant to the target task. Transformer-
based (Vaswani et al., 2017) contextual models

such as BERT (Devlin et al., 2019) have gained
success since the fine-tuning step is relatively inex-
pensive, while attaining state-of-the-art results in
various syntactic and semantic tasks.

While the bulk of work with the BERT family of
models focuses on English, there have been some
monolingual models developed for other languages
as well (Martin et al., 2020; Polignano et al., 2019;
Antoun et al., 2020; de Vries et al., 2019; Virtanen
et al., 2019; Agerri et al., 2020; inter alia). These
monolingual models have been trained on large
volumes of data, typically amounting to billions of
tokens. In contrast, it is challenging to find pub-
licly available corpora of this size for low-resource
languages. The evaluation benchmarks for down-
stream tasks on these languages are also limited,
and tend to be dominated by low-level structural
tagging tasks.

To counteract the lack of large volumes of mono-
lingual corpora for low-resource languages, a num-
ber of multilingual models have been released, such
as mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020). These multilingual models were
pre-trained on more than one language at a time
by combining corpora from different languages,
usually sourced from Wikipedia. Several works
have demonstrated the efficacy of these multilin-
gual models, especially for languages without a
language-specific model (Kondratyuk and Straka,
2019; Wu and Dredze, 2019). Benchmark results
have improved for many languages by leveraging
cross-linguistic features learnt by these multilin-
gual models (Conneau et al., 2020).

However, the gains with multilingual models
may vary depending on the language being con-
sidered. The “curse of multilinguality” limits the
language-specific features that these models can
learn, since the limited model capacity has to be
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shared between multiple languages (Conneau et al.,
2020). Models such as mBERT use WordPiece
tokenisation (Johnson et al., 2017), which splits
words into various sub-tokens, thereby reducing
the number of unknown tokens. However, the vo-
cabulary representations for multilingual models
tend to be sub-optimal for specific languages, be-
cause words tend to be split into a higher num-
ber of sub-tokens (Rust et al., 2021). Moreover,
these models may still be biased in favour of over-
representing sub-tokens common to a certain subset
of languages over others. Due to the data imbal-
ance across languages, lower-resourced languages
tend to be disadvantaged, as there is relatively less
pre-training data available compared to the other
languages considered in the multilingual model
(Wu and Dredze, 2020).

Apart from the tension between languages in a
multilingual model, other factors are at play as well.
Most prominently, many languages are never seen
by these multilingual models (Muller et al., 2021),
since these are typically trained on the largest-
available corpora (e.g. mBERT was pre-trained on
the 104 languages with the greatest Wikipedia pres-
ence). Such criteria exclude many of the world’s
languages, including Maltese, the focus of this pa-
per. This issue is exacerbated even further when the
language uses a script which is either different to
its closely related languages (Muller et al., 2021),
or which is never seen during pre-training, thereby
encoding most of the input with out-of-vocabulary
tokens (Pfeiffer et al., 2021). In fact, Muller et al.
(2021) show that the language transfer capability
of a multilingual model to an unseen language is
dependent on the degree to which the target lan-
guage is related to languages already included in
the multilingual model.

In this work we focus on the Maltese language,
an official EU language spoken primarily in Malta
and in some small communities around the world
(Brincat, 2011). It is the only Semitic language
written exclusively with a Latin script, containing
a few additional characters with diacritic marks (ċ,
ġ, h, ż). The language also has strong influences
from Romance languages such as Italian, as well as
English. The Semitic influence is largely exhibited
in the grammatical structure through complex mor-
phological characteristics, whilst the non-Semitic
aspect is predominantly observed in its vocabulary,
with extensive lexical borrowing from Italian and
English.

In the context of NLP, Maltese is a low-resource
language (Rosner and Borg, 2022) and is not part of
the languages covered by either mBERT or XLM-
R. Muller et al. (2021) find that mBERT under-
performs non-contextual baselines on Maltese, but
benefits when pre-trained further on raw Maltese
data. Similarly, Chau et al. (2020) further pre-train
mBERT but impute the 99 unused tokens present
in the model with language specific tokens, yield-
ing better results. This confirms previous findings
by Wang et al. (2020), who also extend mBERT’s
vocabulary to accommodate unseen languages, but
do so by extending the vocabulary and model di-
mensionality, hence increasing its footprint.

Motivated by the limitations of existing multilin-
gual models and the deficiency of publicly avail-
able corpora for Maltese, we set out to pre-train
a new monolingual language model for Maltese
and compare it to the alternative strategy of further
pre-training an existing multilingual model. We
study, in particular, the impact that the pre-training
data size and domain has on the performance in
downstream tasks. The main contributions of this
work are as follows:

1. We develop a new corpus of Maltese text.

2. Using this new data, language models for Mal-
tese are pre-trained.

3. We compare the newly pre-trained models and
find that both models improve the state-of-the-
art on three structural tagging tasks – depen-
dency parsing, part-of-speech tagging, and
named-entity recognition – and one semantic
classification task – sentiment analysis.

4. We demonstrate that in a low-resource setting,
pre-training using text from varied domains
is often superior to solely using Wikipedia,
and that matching the domain to target task is
beneficial when this is available.

5. We also provide an analysis on the effects of
the pre-training size, shedding new light on
how much pre-training data is needed to attain
significant improvements in performance.

We make this new corpus, the newly pre-trained
language models, and the code publicly available1.

1The corpus and the language models are available
at the Hugging Face Hub at https://huggingface.
co/datasets/MLRS/korpus_malti, https:
//huggingface.co/MLRS/BERTu, and https:
//huggingface.co/MLRS/mBERTu. The code is
available at https://github.com/MLRS/BERTu.
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2 Corpus

In this work, we build a new unlabelled text corpus,
which we call the Korpus Malti v4.0 (KM). This
builds on and extends an existing corpus, Korpus
Malti v3.02, which is approximately half the size.

Rather than scraping the web randomly for Mal-
tese text, we collect text data from specific sources,
including both online and offline. Although this
does incur additional effort in data collection, and
results in a smaller dataset compared to large-scale
web-scraping initiatives, it has the benefit of result-
ing in a less noisy dataset, while offering greater
control over sources. For comparison, the Maltese
portion of the OSCAR data (Ortiz Suárez et al.,
2019), which is sourced entirely from the web, con-
tains texts which, to a native speaker, suggest that
they are automatically generated through the use of
a low-quality machine translation system, a com-
mon pitfall of web-scraping for low-resource lan-
guages (Kreutzer et al., 2022). We also expect to
find a small proportion of code-switched texts, as
this is a pre-dominant phenomenon for Maltese
in domains such as social media or transcribed
speech. In addition, the data is separated into dif-
ferent domains, and the source for each document
is available as part of the metadata. This allows
data users to select data subsets which are more
appropriate for their particular use-case, such as
domain-adaptive pre-training (Lee et al., 2019; Gu-
rurangan et al., 2020; inter alia), whilst enabling
tracing back to the original source, or omission in
case unforeseen ethical or privacy issues come to
light. In short, the goal was to build a good quality
training dataset, while avoiding at least some of
the pitfalls identified with opportunistic, web-scale
data initiatives (Bender et al., 2021; Rogers, 2021).

Data is collected from a variety of sources, in-
cluding online news sources, legal texts, transcripts
of speeches and debates, blogs, Wikipedia, etc. Be-
fore texts are included in the corpus, we filter non-
Maltese sentences using language identification
using LiD (Lui and Baldwin, 2014), and perform
de-duplication using Onion (Pomikálek, 2011).

The resulting data, split into 19 different do-
mains, is summarised by Table 1.

To the best of our knowledge, there is no corpus
of this size available for Maltese. We also note that
this data is a significant increase over Wikipedia
data, which is what is usually available and used in
low-resource scenarios. The Wikipedia data makes

2See: https://mlrs.research.um.edu.mt

up less than 1% of the entire corpus in terms of
both tokens and sentences.

Despite this substantial increase in data, we em-
phasise that a corpus of under 500M tokens is
still substantially smaller than is typically used
for higher-resourced languages. For example, De-
vlin et al. (2019) pre-train BERT using a combined
corpus of 3.3B words for English (approximately
16GB). Larger models have since exceeded these
pre-training sizes by a wide margin – for exam-
ple, RoBERTa is pre-trained on 161GB of text (Liu
et al., 2019). Monolingual models for languages
other than English, typically use smaller corpora
than English models, but their size is still signif-
icantly larger than ours – for example AraBERT
was pre-trained on a corpus of 24GB (Antoun et al.,
2020) and BERTje was pre-trained on a corpus of
12GB (de Vries et al., 2019).

3 Language Models

Using this new corpus, two new language models
are pre-trained for Maltese: a monolingual model
(BERTu) and a multilingual model (mBERTu).
In both cases, pre-training is performed using the
Masked Language Modelling Objective (MLM)
only, since the Next Sentence Prediction (NSP) ob-
jective was found to be detrimental to downstream
performance (Joshi et al., 2020; Liu et al., 2019).
Other than that, pre-training largely follows the
pre-training setup of BERT (Devlin et al., 2019).
This allows for a better comparison with already
available models. The pre-training data from all do-
mains is combined, shuffled, and split into 85% and
15% for training and validation sets respectively.

BERTu We pre-train a monolingual BERT model
from scratch on the new unlabelled data, using the
BERTBASE architecture with 12 transformer lay-
ers, a hidden size of 768, and 12 attention heads.
The vocabulary is initialised with 52K tokens. Pre-
training is done across 1M steps, with a sequence
length of 128 for the first 90% of the steps and
a sequence length of 512 for the remaining 10%
steps. A batch size of 512 is used, which amounts
to approximately 30 epochs in total, and a warmup
of 1% of the total number of steps. We use mixed-
precision training to ease memory requirements.
Training was performed on 8 A100 GPUs for the
first 90% steps and 16 A100 GPUs for the remain-
ing 10% steps, taking approximately 53 hours.
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data subset documents sentences tokens size
belles_lettres 195 299 762 4 454 906 21.82MB
blogs 25 436 807 628 14 562 039 74.45MB
comics 62 2 413 44 768 233.22KB
court 2 663 694 227 11 881 638 61.91MB
eu_docs 2 974 5 099 564 135 811 945 773.25MB
government_gazette 2 974 1 881 034 39 771 556 203.61MB
gov_docs 272 120 209 1 900 842 10.79MB
law_eu 71 4 433 235 98 582 031 541.13MB
law_mt 2 596 401 118 7 631 651 38.84MB
legal 3 4 784 83 581 490.67MB
nonfiction 2 177 208 763 3 902 436 20.01MB
parliament 6 198 3 935 906 82 294 520 433.09MB
press_eu 5 483 413 317 9 774 919 55.73MB
press_mt 46 782 713 886 17 679 904 93.15MB
speeches 62 2 067 51 259 286.63MB
theses 19 11 545 310 243 1.63MB
umlib_oar 11 688 963 606 21 235 949 106.11MB
web_general 2 685 873 14 741 525 75.22MB
wiki 3 469 79 134 1 885 661 9.73MB
all 131 429 20 758 071 466 601 373 2.52GB

Table 1: Korpus Malti v4.0 corpus distribution. belles_lettres is largely composed of literary works; the govern-
ment_gazzette consists of text from the official newsletter of the Maltese government; umlib_oar is a miscellaneous
collection of previously published non-fiction texts, available in the public domain via the University of Malta
Library Open Access Repository.

mBERTu Similar to Chau et al. (2020) and
Muller et al. (2021) we also pre-train mBERT fur-
ther on Maltese. Since the embedding weights
are not randomly initialised, as is the case for the
monolingual model, we follow Rust et al. (2021)
and pre-train for 250K steps. A sequence length
of 512 is used throughout, keeping the rest of the
hyper-parameters the same as the monolingual pre-
training. To better fit the Maltese language, the
mBERT vocabulary is augmented with Maltese
tokens following the procedure from Chau et al.
(2020), by replacing the unused tokens reserved
in the original vocabulary. Specifically, we train a
tokeniser with a vocabulary size of 5 000 tokens on
the data and choose the set of 99 tokens which re-
duce the number of [UNK] tokens the most in the
target data. Training was performed on 32 A100
GPUs, and took around 46 hours to complete.

4 Evaluation

An evaluation for the language models described
in Section 3 is presented here. mBERT without
any additional pre-training is used as one of the
baselines. In addition, we pre-train two language

models on the Maltese Wikipedia data as additional
baselines. This allows us to analyse the limitations
that could be faced when following the common
practice of using Wikipedia data, for the specific
case of low-resource languages with a compara-
tively small Wikipedia footprint.

Following the same setup of the main models, a
monolingual model (BERTu Wiki) and a multilin-
gual model (mBERTu Wiki) are pre-trained. The
same hyper-parameters described in Section 3 are
used, but the batch size and number of steps are
decreased to prevent overfitting due to the smaller
data size. To this end, the batch size is set to 64 and
the total number of steps set to 30 500 and 7 600
steps for the monolingual and multilingual models,
respectively. This was deemed appropriate since it
would amount to the same number of epochs as the
models pre-trained on the entire corpus.

4.1 Tasks

The language models are fine-tuned on the follow-
ing downstream tasks. A summary of the datasets
and fine-tuning architectures used is given below.
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Dependency Parsing (DP) The Maltese Univer-
sal Dependencies Treebank (MUDT) (Čéplö, 2018)
is used for this task using the provided training,
validation, and testing splits. The data is com-
posed of 2 074 human-annotated sentences from
4 different high-level domains. Similar to Chau
et al. (2020), Muller et al. (2021), and Chau and
Smith (2021), we use a Biaffine graph-based pre-
diction layer (Dozat and Manning, 2017) and use
the Labelled Attachment Score (LAS) as the main
evaluation metric, but also report the Unlabelled
Attachment Score (UAS).

Part-of-Speech Tagging (POS) The MLRS POS
data (Gatt and Čéplö, 2013), is used for this task.
This data is composed of 6 167 human-annotated
sentences – 426 of which overlap with the MUDT
data (Čéplö, 2018) – and are stratified into 8 do-
mains. We combine the data from the different
domains, shuffle it, and split the data into 80%,
10%, and 10% for training, validation, and testing
sets, respectively. The annotations are language-
specific tags (using the XPOS scheme) and we
follow the tag mapping in MUDT (Čéplö, 2018) to
also produce tags in the Universal Part of Speech
tagset (UPOS). To evaluate tagging with these two
tagsets, we use a linear layer, and use accuracy as
the evaluation metric.

Named-Entity Recognition (NER) The Maltese
annotations for the WikiAnn data (Pan et al., 2017)
are used for this task, using the data splits from
Rahimi et al. (2019). The data is made up of 300
sentences derived from Wikipedia. Following Chau
and Smith (2021), a Conditional Random Field
layer is used for this task, and we use F1 as the
evaluation metric.

Sentiment Analysis (SA) We use the Maltese
sentiment analysis dataset by Martínez-García et al.
(2021), which is a collection of 815 sentences, us-
ing the provided training, validation, and testing
splits. The texts in this data originate from com-
ments on news articles and social media posts, and
are a combination of two datasets from Cortis and
Davis (2019) and Dingli and Sant (2016). A linear
prediction layer is used, and we use the macro-
averaged F1 score as the evaluation metric.

We largely use the hyper-parameters from Chau
and Smith (2021), but optimise the learning rate,
batch size, and dropout on the validation set of each
task. Table 2 shows the chosen hyper-parameters.
Fine-tuning is performed for at most 200 epochs,

Name DP POS NER SA
Learning Rate 5e-4 5e-4 5e-4 1e-4
Batch Size 128 128 64 32
Dropout 0.3 0.3 0.2 0.5

Table 2: Fine-tuning hyper-parameters

with an early stopping of 20 epochs on the valida-
tion set.

4.2 Results

The results on all tasks are summarised in Table 3.
Consistent with the results reported by Muller et al.
(2021) and Chau and Smith (2021), BERTu Wiki
generally underperforms mBERT, and mBERTu
Wiki performs better than mBERT. Whilst they
show this for Dependency Parsing, Part-of-Speech
tagging, and Named Entity Recognition, we demon-
strate that this also holds for Sentiment Analysis.

Our baseline results diverge slightly from previ-
ous results on the Named-Entity Recognition task,
where BERTu Wiki performs slightly better than
mBERT. We suspect that this is due to a slightly dif-
ferent pre-training setup than that used by Muller
et al. (2021) and Chau and Smith (2021)3, but we
analyse this further in Section 5.1. However, these
results remain consistent with regards to BERTu
Wiki not performing as well as mBERTu Wiki.

Both language models pre-trained with the KM
data perform significantly better than all the other
baselines, on all tasks except for Named-Entity
Recognition, where the trend is similar, but does
not reach statistical significance. This underlines
the value of this new corpus. When compared to the
Wikipedia language models, the most noticeable
improvements can be seen between the BERTu
models, across all tasks. A more detailed analysis
on this is presented in Section 5.2, but intuitively
this finding makes sense since mBERTu models are
exposed to significantly more data, making them
less specific to Maltese.

The gap in performance between the BERTu
and mBERTu models is much less for the KM pre-
trained models than it is for the Wikipedia pre-
trained models. In fact, on average, the BERTu
KM model performs better than the mBERTu KM
model on all tasks except Part-of-Speech tagging.

3Muller et al. (2021) pre-train for at most 10 epochs whilst
Chau and Smith (2021) pre-train for at most 20 epochs (choos-
ing the best performing model on based on the validation set).
Both use a smaller-sized BERT architecture with 6 layers and
pre-train with a maximum sequence length of 128.
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Data Model UAS LAS

Wiki
BERTu 80.95 ± 0.25 74.16 ± 0.20

mBERTu 88.74 ± 0.11 82.59 ± 0.19

N/A mBERT 84.83 ± 0.31 77.22 ± 0.34

KM
BERTu 92.31 ± 0.15 88.14 ± 0.21
mBERTu *92.10 ± 0.14 *87.87 ± 0.18

(a) Dependency Parsing

Data Model span F1

Wiki
BERTu 67.96 ± 2.20

mBERTu *85.01 ± 2.92

N/A mBERT 65.41 ± 2.06

KM
BERTu 86.77 ± 3.55
mBERTu *86.60 ± 2.49

(b) Named Entity Recognition

Data Model UPOS XPOS

Wiki
BERTu 97.27 ± 0.11 97.01 ± 0.07

mBERTu 97.95 ± 0.13 97.83 ± 0.08

N/A mBERT 97.26 ± 0.15 97.20 ± 0.14

KM
BERTu 98.58 ± 0.02 *98.54 ± 0.03

mBERTu 98.66 ± 0.03 98.58 ± 0.04

(c) Part-of-Speech tagging

Data Model macro-F1

Wiki
BERTu 53.95 ± 2.70

mBERTu 56.05 ± 3.24

N/A mBERT 55.99 ± 3.63

KM
BERTu 78.96 ± 1.95
mBERTu *76.79 ± 1.79

(d) Sentiment Analysis

Table 3: Experimental results, grouped by the underlying language model and additional pre-training data used. All
figures shown are the mean and standard deviations over 5 runs with different random seeds. The best performing
models for each metric are bolded. Values marked with * are not found to be significantly worse than the best
model (using a 1-tailed t-test with a p-value = 0.05 with Bonferroni correction).

For Part-of-Speech tagging we also note that the
baseline results are already quite high, probably
due to the relatively larger labelled data, which
may partially mask the effects of the KM models.

Overall, Sentiment Analysis is the task where the
most gains are made with respect to the baselines.
The KM-trained models are over 20 F1 points
higher than the best performing baseline. This find-
ing provides evidence that, unlike syntactic tasks,
where structural information could potentially be
shared across related clusters of languages, seman-
tic tasks such as Sentiment Analysis will benefit
much more from language-specific embeddings.

5 Analysis

In this section we build on the results presented in
Section 4.2, and analyse the effect that the pre-
training data has on performance on the down-
stream tasks.

5.1 Data Domain
In this subsection we take advantage of the fact
that the data is stratified by domains. Here, we
analyse the impact of pre-training using data from
different domains, compared to a single domain,
namely Wikipedia, which is commonly used in
multilingual models and low-resource settings. For
this purpose, we consider the BERTu Wiki and
mBERTu Wiki baselines from Section 4 as single-
domain models. We compare them to language
models pre-trained with the same amount of data

but from different domains, which are referred to
as “Mixed” in this discussion.

We determine the size using the number of sen-
tences, since this would directly effect the num-
ber of epochs and allows us to keep an identical
pre-training setup as the Wikipedia-trained mod-
els. Since the Maltese Wikipedia data is composed
of 79 134 sentences, the Mixed language models
are also pre-trained with the same amount of sen-
tences, split into training and validation sets as the
Wikipedia models. A comparison of the down-
stream task performance for these language models
is plotted in Figure 1.

At this small scale of data, both Wiki and Mixed
mBERTu models consistently perform better than
the mBERT models, owing to the multilingual rep-
resentation power of these models. The Mixed
models perform better than their Wikipedia coun-
terparts on Part-of-Speech tagging and Sentiment
Analysis. On Dependency Parsing, there is a slight
improvement on the mBERTu model but a slight
degradation on the BERTu model.

For Named-Entity Recognition, the Wikipedia
models perform better than the Mixed ones. Since
the dataset for this task originates from Wikipedia
as well, this indicates that matching the pre-training
data domain to the target domain boosts perfor-
mance, supporting the findings by Gururangan et al.
(2020). In fact, mBERTu Wiki surpasses mBERT,
and proves to be a competitive baseline, as shown
in Table 3b. On the other hand, mBERTu Mixed
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Figure 1: Downstream task performance with different pre-training data domains. All values are the mean over 5
runs with different random seeds. The standard deviation is represented by the corresponding error bars and shaded
area.

performs worse than mBERT.
The opposite is true for Sentiment Analysis, as

BERTu Mixed turns out to be a more competi-
tive baseline than mBERT. The improvement is
so pronounced for this task that the BERTu Mixed
model not only performs better than the BERTu
Wiki counterpart, but also better than mBERTu
Wiki. Even though this dataset contains texts ex-
hibiting stylistic features expected in social me-
dia text, a mixture of domains is helpful, probably
since Wikipedia texts tend to be quite structured
and neutral in terms of the writing style and tone.
The results on sentiment analysis suggest that pre-
training on a diversity of domains contribute to
more effective learning of features relevant to dis-
course semantic tasks, compared to tasks involving
morpho-syntactic tagging. We leave further inves-
tigation of this, on a broader range of semantically-
oriented tasks, for future work.

Overall, these results emphasise the importance

of having pre-training data from sources close to
the target data, even for low-resource settings.

5.2 Data Size

From Table 3, it is clear that the KM corpus trans-
lates to better performance on downstream tasks,
regardless of whether a monolingual or a multilin-
gual model is used. To better understand the re-
lationship between the data size and performance,
we pre-train several language models with varying
data sizes.

We do this by fixing the desired data propor-
tion and scaling the pre-training data to satisfy this
proportion, keeping the original training and vali-
dation split. In tandem, the original 1M and 250K
steps and batch size used in Section 3 are scaled
down with the data size to pre-train for the same
number of epochs as the models with the entire
data. Language models at 10% intervals are pre-
trained, with 100% being the original models from
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Figure 2: Downstream task performance as the pre-training data size grows. All values are the mean over 5 runs
with different random seeds. The standard deviation being represented by the corresponding shaded area.

Section 3. In this analysis, we also include the
BERTu Mixed and mBERTu Mixed models from
Section 5.1, which use 0.38% of the data, estimated
as a proportion of sentences.

After pre-training, each language model is fine-
tuned on each of the downstream tasks in the same
setup considered in Section 4. These results are
visualised in Figure 2.

As expected, the performance generally im-
proves with more pre-training data. Surprisingly,
the performance gap between the monolingual and
multilingual models is drastically reduced with just
10% of the data. With this little data all config-
urations outperform mBERT. For Named-Entity
Recognition this is also the case but it takes around
70% of the data for BERTu and mBERTu to start
achieving very close performance.

It is also noticeable that the gradual increase
is not monotonic, although it is more stable for
Dependency Parsing and Part-of-Speech tagging.
Suprisingly, BERTu with 70% of the data performs

better than with 100% of the data on Sentiment
Analysis. Similarly, mBERTu with 50% of the
data performs better than with 100% of the data
on Named-Entity Recognition. One possible expla-
nation may be due to the relationship between the
number of steps and batch size chosen, but further
investigation is warranted.

On Sentiment Analysis, BERTu is consistently
better than mBERTu with 10% or more of the data,
and is at times significantly better. This finding
gives some evidence that monolingual representa-
tions seem better suited for fine-tuning on semantic
tasks in a specific language.

6 Conclusion

In this work we analyse the impact of pre-training
data on downstream task performance in a low-
resource setting, specifically focusing on Maltese.
We present a newly developed corpus of around
500M tokens, which allows us to study how the pre-
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training data size and domain translates in down-
stream performance differences. Using BERT as
our architecture, we compare a monolingual lan-
guage model, pre-trained from scratch, to a further
pre-trained multilingual model, in a number of pre-
training configurations. We conduct an evaluation
on a both syntactic and semantic tasks.

In line with previous findings on domain pre-
training (Gururangan et al., 2020; inter alia), we
find that matching the pre-training domain to the
target task domain, results in improvements. More-
over, we demonstrate that pre-training language
models with varied domains is often beneficial
over pre-training solely with Wikipedia. These ad-
justments were in certain cases enough to surpass
mBERT, underlining the importance of having pre-
training data more suited to the target task, even at
a small scale.

Whilst we show that further pre-training data
does improve downstream performance, the gains
are linear with exponential increases in data. In fact,
substantial improvements are observed with a small
proportion of the pre-training data, over language
models trained with Wikipedia-sized data. This
echoes the findings made by Martin et al. (2020)
with a small pre-training subset, although our re-
duced data setup is considerably smaller.

Using the whole corpus, we also pre-train two
new language models: BERTu, a monolingual
BERT model, trained from scratch, and mBERTu,
which is the result of further pre-training mBERT.
These models demonstrate state-of-the-art results
in Dependency Parsing, Part-of-Speech Tagging,
Named-Entity Recognition, and Sentiment Anal-
ysis. Moreover, we show that in general, BERTu
performs better than mBERTu, as well as other
baselines. Through this, we also demonstrate that
language-specific pre-training is most beneficial
for higher-level tasks.

Despite these considerable improvements, the
pre-training setups used in this work are as close
as possible to the baselines, to allow for a more
controlled comparison. Hence, in the future, we
plan to experiment with more language-specific
tuning to push the state-of-the-art even further.

Even though this new corpus will undoubtedly
improve the state of resources available for Maltese,
the language is by no means a highly-resourced one.
The corpus we use is significantly smaller than typ-
ically used corpora for higher-resourced languages.
We also remark that the quantity of labelled data

is still scarce, and at times non-existent for certain
tasks. Although we include a semantically-oriented
task in our evaluation, future work should investi-
gate the efficacy of these models in more complex
Natural Language Understanding scenarios.

We make this corpus and the models publicly
available to foster further work and improvements
for various NLP applications for Maltese. We also
hope that this work inspires work in other low-
resource languages, since we show that the amount
of data needed to achieve considerable improve-
ments, does not need to be overly ambitious.
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Abstract

Supervised event extraction models require a
substantial amount of training data to perform
well. However, event annotation requires a lot
of human effort and costs much time, which
limits the application of existing supervised
approaches to new event types. In order to
reduce manual labor and shorten the time to
build an event extraction system for an arbitrary
event ontology, we present a new framework to
train such systems much more efficiently with-
out large annotations. Our event trigger label-
ing model uses a weak supervision approach,
which only requires a set of keywords, a small
number of examples and an unlabeled corpus,
on which our approach automatically collects
weakly supervised annotations. Our argument
role labeling component performs zero-shot
learning, which only requires the names of the
argument roles of new event types. The source
codes of our event trigger detection1 and event
argument extraction2 models are publicly avail-
able for research purposes. We also release a
dockerized system connecting the two models
into an unified event extraction pipeline3.

1 Introduction

Supervised event extraction models require suffi-
cient training data to achieve a good performance.
However, event annotation is a challenging task
costing a lot of time and manual effort due to the
sparsity of event mentions in natural language and
the potentially large number of emergent event
types that human annotators need to keep in mind
during annotation. Therefore, annotation becomes
a bottleneck that slows down the development of
supervised event extraction systems whenever a

⇤These authors contributed equally to this work.
1https://github.com/Perfec-Yu/

efficient-event-extraction
2https://github.com/zhangzx-uiuc/

zero-shot-event-arguments
3https://hub.docker.com/repository/

docker/zixuan11/event-extractor

new scenario of interest emerges with new event
types in need of new data.

In order to meet the needs of fast development
of event extraction systems for emergent new event
types, we present a novel framework that can train
event extraction systems with very few resources.
Our proposed framework includes a weakly su-
pervised approach to train a event trigger labeling
model and a zero-shot model for argument role la-
beling. Our proposed weakly supervised event trig-
ger labeling model only requires a few keywords
and a small number of example event mentions. In
our experiments on the ACE 2005 English dataset,4

we use 4.9 keywords and 7.3 example mentions per
event type on average, which are all extracted from
the ACE annotation guidelines. We also propose a
zero-shot argument role labeling model that only
requires the argument role names of new event
types to perform the task. Since such informa-
tion is typically included in the target ontology and
annotation guidelines, we believe this required in-
put costs much less than human annotations. Our
framework can be applied to any new event types.
Our trigger labeling component outperforms exist-
ing few-shot and zero-shot methods (Huang et al.,
2018; Li et al., 2021; Feng et al., 2020) on ACE
2005 English dataset.

2 Approach

Our framework includes two components: a trigger
labeling model trained from a few keywords and
example mentions per each new event type and an
unlabeled corpus; and a zero-shot argument role
labeling model which only needs the corresponding
argument role names for extraction.

2.1 Event Trigger Labeling
As shown in Figure 1, our framework requires
a list of keywords {k1, . . . , kM} for each target

4https://catalog.ldc.upenn.edu/
LDC2006T06
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event type and a set of event mentions as in-
put. Our goal is to annotate an unlabeled corpus
C = {s1, s2, . . . , sN}, which is a collection of sen-
tences si, and train a model on the weakly super-
vised annotations. The corpus for weak supervision
is disjoint from the evaluation corpus.

Keyword Representation For each keyword ki,
we first find all its occurrences (including morpho-
logical inflection) in the corpus and summarize the
semantics of each keyword into distributed repre-
sentations by aggregating the hidden representation
of each keyword occurrence using a large-scale lan-
guage model M inspired by Meng et al. (2020).
M functions as a sentence encoder to transform
tokens in a sentence into hidden representations. A
keyword occurrence consists of a sentence sj 2 C
and a token offset (bij , eij) indicating the starting
and ending offsets of ki. We average the token
hidden representations from the language model
M within the token span as the representation for
the j-th occurrence, and use the mean vector of all
occurrences as the keyword representation ki. This
process is shown in the top right corner of Figure 1.

Keyword Clustering and Annotation Since
some keywords have similar meanings, we pro-
pose an additional clustering step to group similar
keywords together to find mentions of novel trigger
words not in the keyword list. We show an exam-
ple in Figure 1 for the Attack event. We apply
spherical KMeans (Lloyd, 1982) to acquire a set of
cluster centers for an event type{c1, c2, . . . , cm}.
Letting t denote the representation of a token in
an unlabeled sentence according to M, we com-
pute the score S(t) of the token being an event
trigger as the cosine similarity with the closest clus-
ter representation for all the event type’s clusters:
S(t) = maxi cos_sim(ci, t). We accept a token as
an event trigger of this type if the score S(t) ex-
ceeds a threshold value. We select the threshold for
which this annotation procedure achieves the best
trigger labeling F1 score on example sentences.

Training with Example-based Denoising At
each minibatch training step, let Bw be a sampled
batch from the weakly supervised data. We fur-
ther sample a batch Be from the example mentions
(from the human annotation guidelines). We com-
pute the information consistency between Bw and
Be as d = I(r✓L>

Be
r✓LBw > 0) where I is the

indicator function, L is the loss with respect to ei-
ther the example batch or the weakly supervised

batch, and ✓ is the set of model parameters. If
d = 0, the training gradient has deviated far from
the example gradient, in which case we discard
the training data for loss computation. The overall
loss is LB = d�LBw + (1� d�)LBe , where � is a
hyperparameter that interpolates joint training on
example data and weakly supervised data.

2.2 Event Argument Role Labeling
Our zero-shot event argument extraction model
only requires the event argument role names (usu-
ally single words or phrases) for each event type
(e.g., the event argument role names Giver, Benefi-
ciary, Recipient and Place for event type Transac-
tion: Transfer-Money). Note that our model does
not require any detailed information such as nat-
ural language descriptions, example annotations
or external resources (Zhang et al., 2021). Our
model is trained on existing event argument roles
with annotations, and is using zero-shot learning to
generalize well to any new argument roles.

Zero-shot Training and Classification Inspired
from many typical zero-shot learning tasks such as
zero-shot image classification (Xian et al., 2018;
Liu et al., 2018b), we take a similar approach
to build a shared embedding space for both role
label semantics and the contextual text features
between triggers and arguments. Given an
input sentence, we first perform named entity
recognition (NER) with Spacy5 to extract all entity
mentions in a sentence. After that, given the event
role names {r1, r2, · · · , rR} for a certain event
type, we first obtain the semantic embeddings
{r1, r2, · · · , rR} using the pretrained language
model BERT (Devlin et al., 2019). We also use
BERT to get the representation vectors for all
extracted event triggers ti and entity mentions ei

within the sentence, and concatenate the vectors
as [ti, ei] to represent a trigger-entity pair. The
intuition here is to learn two separate neural
network projection functions to map each role
label and trigger-entity pair into a single shared
embedding space, where each trigger-entity
pair stays near its correct roles and far from all
other event argument roles. During training,
we minimize the cosine distance between each
[ti, ei] and its role label ri, while maximizing the
distance between [ti, ei] and all other role labels.
Specifically, if we use R to represent the set of all
argument role embeddings and use xi = [ti, ei]

5https://spacy.io/api/entityrecognizer
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Figure 1: The weakly supervised event trigger labeling framework

to represent trigger-entity pairs, the training
objective is to minimize the hinge loss Li =P

j 6=i,rj2R max (m� C(xi, ri) + C(xi, rj)) ,

where C(x, r) denotes the cosine similarity. In
this way, the trigger-entity pair representations
tend to be centered around their argument role
labels. During testing, we directly classify each
trigger-entity pair as its nearest role label.

3 Evaluation

3.1 Dataset
We evaluate our models with the English portion
of the ACE 2005 dataset. It contains 33 event types
with 22 event argument role types. We use the train-
ing split as the weak supervision corpus, while in
zero-shot event argument role labeling, we follow
previous work (Huang et al., 2018; Zhang et al.,
2021) and use the 10 most frequent event types
as training types and other event types along with
their role types for testing.

Dataset Split #Sents #Ents #Events

ACE05-E
Train 17,172 29,006 4,202
Dev 923 2,451 450
Test 832 3,017 403

Table 1: Dataset statistics.

3.2 Results
Event Detection. We evaluate event detection per-
formance on two tasks. The first is the traditional

trigger labeling. The model detects trigger spans
from sentences and predicts an event type for each
span. The second task is sentence level event de-
tection (Feng et al., 2020), where the model pre-
dicts whether a sentence contains a mention of each
event type. We evaluate both of the tasks with the
F1 score. To further evaluate the impact of weak
supervision, we compare with the Example base-
line, which uses the same architecture but is trained
only with example mentions in the human anno-
tation guidelines. We also show ablation results
for the keyword clustering step and example-based
denoising step. As an efficient approach for event
detection, we also compare with other zero-shot
and few-shot methods for each task, as specified
next below. We provide more implementation de-
tails in the Appendix.

We show the performance of our framework on
trigger labeling in Table 2. We compare with the
reported performance using two zero-shot methods:
ZSL (Huang et al., 2018) and TapKey (Li et al.,
2021). Our framework has the best performance
among all the methods. We also show some incon-
sistent weakly supervised annotations (d = 0 in the
denoising step in Section 2.1) from the denoising
component in Table 3 to demonstrate the effective-
ness of the denoising component. To further under-
stand the effect of weak supervision, we compare
the weakly supervised results with supervised mod-
els trained on varying percentages of training data
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Full ACE Ontology (33 Types) P R F

TapKey (Li et al., 2021) - - 52.1

Example 57.2 63.0 59.8
Ours 65.6 60.8 63.1

w/o denoising 62.2 61.1 61.6
w/o clustering 61.3 59.7 60.4

ACE Subset (23 Types) P R F

ZSL (Huang et al., 2018) 75.5 36.3 49.1
Ours 66.3 60.5 63.3

Table 2: Trigger labeling performance (in %). Huang
et al. (2018) evaluated on a 23-event-type subset of the
complete ACE event ontology. We compute our model’s
performance on these types for comparison. The slots
with “-” are unreported results.
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Figure 2: Supervised performance with respect to train-
ing data portion. Dotted lines indicate the performance
of the weakly supervised methods.

in Figure 2. For sentence-level detection, we com-
pare with the best few-shot (9-shot) results (Feng
et al., 2020) in Table 4. Our weakly supervised
approach has improved the performance.

Error Inconsistent Weak Supervision

False Positive ... a minute fraction of the sum of
money[Transfer-Money] ...

False Negative ... concerns our ability to
travel[Transport].

Table 3: Inconsistent weakly supervised annotations
from the denoising step.

Method P R F

9-shot (Feng et al., 2020) 54.5 57.0 61.8

Example 66.4 68.0 66.9
Ours 66.2 74.2 69.9

Table 4: Sentence level event detection result (%).
Event Argument Extraction. In our experiments
of event argument extraction, we use the top 10

Models / Role Types Prec Rec F1

Our Model 39.6 49.7 41.5
(Huang et al., 2018) - - 14.7

Start-Position:Entity 48.5 76.2 59.3
Justice:Defendant 55.0 44.0 48.9

Justice:Agent 45.5 45.5 45.5

Table 5: Event argument role labeling performance on
ACE dataset. We report both overall scores and also
top-3 scores on specific event argument roles.

frequent event types in ACE dataset for training
and the other 23 types for testing. We report the
precision, recall, and F1 scores on the test split of
ACE dataset as shown in Table 5.

4 Related Work

Supervised Event Detection Event detection un-
der supervised settings has been widely studied (Ji
and Grishman, 2008; Chen et al., 2015; Feng et al.,
2016; Liu et al., 2017, 2018a, 2019a; Lu et al.,
2019; Ding et al., 2019; Yan et al., 2019; Tong
et al., 2020; Du and Cardie, 2020; Li et al., 2021).
Other methods on joint information extraction (Li
et al., 2013; Wadden et al., 2019; Lin et al., 2020)
also include event detection as a subtask. How-
ever, supervised methods heavily rely on human
annotations to perform well.

Weakly Supervised Event Extraction Some
previous weakly supervised event extraction meth-
ods aim at augmenting data for existing event types.
Ferguson et al. (2018) propose a semi-supervised
method which requires a strong supervised event
extractor for data collection. Chen et al. (2017) pro-
pose a distant supervision based framework using
Freebase Compound Value Types (CVTs). Wang
et al. (2019) follow Chen et al. (2015) and intro-
duce a novel adversarial training method to denoise
the noisy training data for event extraction.

Zero-shot Event Argument Extraction In zero-
shot learning (Zhang and Saligrama, 2015; Romera-
Paredes and Torr, 2015; Zhang et al., 2017), the
model is required to make predictions on types that
are not observed during training. Such a problem
setting has also been widely explored in Computer
Vision, especially for zero-shot image classifica-
tion (Gu et al., 2021; Hanouti and Borgne, 2022).
In terms of zero-shot event extraction, Huang et al.
(2018) propose a semantic similarity based learning
method, and more recently, Zhang et al. (2021) fur-
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ther use resources from external corpus as weakly-
supervised example annotations.

5 Conclusions

In this work we present an efficient event extraction
framework that can be trained with only a few key-
words and example event mentions per new event
type. We use weak supervision for trigger labeling
and apply a zero-shot framework for argument role
labeling. Our framework can collect training data
and build models for emergent new event types in
a significantly shortened time without needing to
acquire large-scale human annotations.
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A Implementation Details

A.1 Spherical KMeans for Keyword
Clustering

Compared with traditional KMeans (Lloyd, 1982),
there are two modifications in spherical KMeans.
Firstly, the cluster assignment at each iteration step
is decided according to the cosine similarities to
the cluster centers instead of the Euclidean dis-
tance. Besides, after computing the cluster cen-
ters as the mean vectors of those keyword repre-
sentations that are assigned to the corresponding
clusters, we add an additional normalizing step
to make all cluster centers have unit norm. We
use the implementation in https://github.
com/jasonlaska/spherecluster for ex-
periments.

A.2 Implementation Details for Trigger
Labeling

We adopt a sequence labeling model for trigger la-
beling. Since we observe very few consecutive trig-
ger spans, we use a simplified ’IO’ tagging method
instead of ’BIO’ tagging. Specifically, we assign
each token in a sentence a label ’I-<Event_type>’
if it is in a trigger span of the corresponding event
type. For the model architecture, we use Roberta-
Large (Liu et al., 2019b) to encode each token in
the sentences into a hidden representation. Then
we adopt an additional linear layer to classify each
token into one of the tags. We use training batch
size of 8 sentences. We truncate sentences to con-
tain at most 96 tokens. For optimization, we use
AdamW (Loshchilov and Hutter, 2019) optimizer

with initial learning rate 10�5. We also use a linear
warmup with 1200 warmup steps. We run experi-
ments with 4 random seeds and report the average
score.

A.3 Implementation Details for Sentence-level
Event Detection

We use a Roberta-Large model finetuned on
MultiNLI (Williams et al., 2018) dataset for textual
entailment. The input to the model consists of a
candidate sentence and an event-type-specific en-
tailment sentence, such as Agent attacked Target
for Attack event. The complete list of used entail-
ment sentences can be found in the supplementary
materials. The model outputs scores for the three
labels: se for entailment, sn neutral and sc contra-
diction. We compute the probability of mentioning
an event as P (Mention) = ese

ese+esn+sc . We use
cross entropy loss to train the model. For evalua-
tion, consider the candidate sentence mentioning an
event if the probability of entailment is greater than
0.5. We use the same training hyper-parameters
as trigger labeling. We run experiments with 4
random seeds and report the average score.

A.4 Implementation Details for Weak
Supervision

For the weak annotation, The threshold is chosen
from 0.4 to 1.0 with 0.05 incremental steps. We
choose the threshold as 0.65 to have the best F1
score on the example mentions. Since we use the
ACE 2005 English training corpus for weak super-
vision, we also compute the F1 score of the weakly
supervised annotation directly. The F1 score is
0.46.

For the example-based denoising, we choose the
weight parameter � = 0.7 for trigger labeling and
� = 0.5 for sentence-level event detection.

B Keywords and Example Mentions

We show keywords for each event type in Table 6.
We include example mentions in the supplementary
materials. We have a total of 173 sentences and
241 event mentions in the example data.
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Event Type Keywords

Business:Declare-Bankruptcy bankruptcy, broke, broken, bankrupt

Business:End-Org failure, shut, collapse, fold

Business:Merge-Org merger, merge

Business:Start-Org initiate, establish, established, launch

Conflict:Attack conflict, shoot, war, fighting, violence, attack, surge, battle, terrorism, inva-
sion, coalition, warfare, explode, invade, pound, combat, fought

Conflict:Demonstrate rally, protest, demonstration, demonstrate, riot

Contact:Meet talk, meet, meeting, seminar, summit, dialogue

Contact:Phone-Write call, phone, letter, email, video, cable, telephone, correspondence, mail, dial

Justice:Acquit acquittal

Justice:Appeal appeal

Justice:Arrest-Jail jail, arrest, imprison

Justice:Charge-Indict charge, accuse, indictment, accusation

Justice:Convict convict

Justice:Execute execute, execution

Justice:Extradite deport, expel, extradite

Justice:Fine penalty, fine, fee, penalize

Justice:Pardon mercy, forgive, pardon

Justice:Release-Parole parole, release, free

Justice:Sentence sentence

Justice:Sue sue, lawsuit

Justice:Trial-Hearing trial, hearing, testify

Life:Be-Born birth, born

Life:Die die, death, suicide, murder, kill, slaughter, survive, killing, stabbed, fatal

Life:Divorce divorce, split

Life:Injure hurt, harm, hit, wound, injure, injured, wounded

Life:Marry wedding, marry, wed

Movement:Transport head, move, retreat, leave, visit, trip, travel, shift, tour, remove, return, arrive,
carry, moving, ship, journey, transport, cruise, transition, deploy

Personnel:Elect elect, election, vote, voting, poll, electoral, voter

Personnel:End-Position resign, former, previous, fire, late, retire, dismiss, formerly, defunct

Personnel:Nominate name, nominate

Personnel:Start-Position appoint, employ, hire

Transaction:Transfer-Money pay, spend, compensate, borrow, transfer, donate, lend

Transaction:Transfer-Ownership buy, buying, acquire, purchase, acquisition, takeover, obtain

Table 6: Keywords used for each event type. Although we performed lemmatization for matching, there are some
situations that lemmatization cannot handle perfectly. Therefore we also include various tenses for some verbs.
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Abstract

Pretrained language models have shown suc-
cess in various areas of natural language
processing, including reading comprehension
tasks. However, when applying machine learn-
ing methods to new domains, labeled data may
not always be available. To address this, we
use supervised pretraining on source-domain
data to reduce sample complexity on domain-
specific downstream tasks. We evaluate zero-
shot performance on domain-specific reading
comprehension tasks by combining task trans-
fer with domain adaptation to fine-tune a pre-
trained model with no labelled data from the
target task. Our approach outperforms Domain-
Adaptive Pretraining on downstream domain-
specific reading comprehension tasks in 3 out
of 4 domains.

1 Introduction

Pretrained language models (Liu et al., 2019; Wolf
et al., 2020) require substantial quantities of labeled
data to learn downstream tasks. For domains that
are novel or where labeled data is in short supply,
supervised learning methods may not be suitable
(Zhang et al., 2020; Madasu and Rao, 2020; Riet-
zler et al., 2020). Collecting sufficient quantities
of labeled data for each new application can be re-
source intensive, especially when aiming for both
a specific task type and a specific data domain.
By traditional transfer learning methods, it is pro-
hibitively difficult to fine-tune a pretrained model
on a domain-specific downstream task for which
there is no existing training data. In light of this, we
would like to use more readily available labeled in-
domain data from unrelated tasks to domain-adapt
our fine-tuned model.

In this paper, we consider a problem setting
where we have a domain-specific target task (QA)
for which we do not have any in-domain training

*Equal Contribution

data (SQuAD). However, we assume that we have
generic training data for the target task type, and
in-domain training data for another task. To ad-
dress this problem setting, we present Task and Do-
main Adaptive Pretraining (T+DAPT), a technique
that combines domain adaptation and task adapta-
tion to improve performance in downstream target
tasks. We evaluate the effectiveness of T+DAPT
in zero-shot domain-specific machine reading com-
prehension (MRC) (Hazen et al., 2019; Reddy
et al., 2020; Wiese et al., 2017) by pretraining on
in-domain NER data and fine-tuning for generic
domain-agnostic MRC on SQuADv1 (Rajpurkar
et al., 2018), combining knowledge from the two
different tasks to achieve zero-shot learning on
the target task. We test the language model’s per-
formance on domain-specific reading comprehen-
sion data taken from 4 domains: News, Movies,
Biomedical, and COVID-19. In our experiments,
RoBERTa-Base models trained using our approach
perform favorably on domain-specific reading com-
prehension tasks compared to baseline RoBERTa-
Base models trained on SQuAD as well as Domain
Adaptive Pretraining (DAPT). Our code is publicly
available for reference. 1

We summarize our contributions as follows:

• We propose Task and Domain Adaptive Pre-
training (T+DAPT) combining domain adap-
tation and task adaptation to achieve zero-
shot learning on domain-specific downstream
tasks.

• We experimentally validate the performance
of T+DAPT, showing our approach performs
favorably compared to both a previous ap-
proach (DAPT) and a baseline RoBERTa fine-
tuning approach.

• We analyze the adaptation performance on
different domains, as well as the behavior of

1https://github.com/adityaarunsinghal/
Domain-Adaptation
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Figure 1: sequential transfer learning procedures of T+DAPT, DAPT, and a RoBERTa baseline for zero-shot
question answering.

DAPT and T+DAPT under various experimen-
tal conditions.

2 Related Work

It has been shown that pretrained language mod-
els can be domain-adapted with further pretrain-
ing (Pruksachatkun et al., 2020) on unlabeled in-
domain data to significantly improve the language
model’s performance on downstream supervised
tasks in-domain. This was originally demonstrated
by BioBERT (Lee et al., 2019). Gururangan et al.
(2020) further explores this method of domain adap-
tation via unsupervised pretraining, referred to as
Domain-Adaptive Pretraining (DAPT), and demon-
strates its effectiveness across several domains and
data availability settings. This procedure has been
shown to improve performance on specific domain
reading comprehension tasks, in particular in the
biomedical domain (Gu et al., 2021). In this pa-
per, as a baseline for comparison, we evaluate the
performance of DAPT-enhanced language models
in their respective domains, both in isolation with
SQuAD1.1 fine-tuning and in conjunction with our
approach that incorporates the respective domain’s
NER task. DAPT models for two of our domains,
News and Biomedical, are initialized from pre-
trained weights as provided by the authors of Guru-
rangan et al. (2020). We train our own DAPT base-
lines on the Movies and COVID-19 domains. Xu
et al. (2020) explore methods to reduce catastrophic
forgetting during language model fine-tuning. They
apply topic modeling on the MS MARCO dataset
(Bajaj et al., 2018) to generate 6 narrow domain-

specific data sets, from which we use BioQA and
MoviesQA as domain-specific reading comprehen-
sion benchmarks.

3 Experiments

We aim to achieve zero-shot learning for an unseen
domain-specific MRC task by fine-tuning on both
a domain transfer task and a generic MRC task.
The model is initialized by pretrained RoBERTa
weights (Liu et al., 2019), then fine-tuned using our
approach with a domain-specific supervised task
to augment domain knowledge, and finally trained
on SQuAD to learn generic MRC capabilities to
achieve zero-shot MRC in the target domain on
an unseen domain-specific MRC task without ex-
plicitly training on the final task. This method is
illustrated in Figure 1.

3.1 Datasets

We explore the performance of this approach in
the Movies, News, Biomedical, and COVID-19
domains. Specifically, our target domain-specific
MRC tasks are MoviesQA (Xu et al., 2020),
NewsQA (Trischler et al., 2017), BioQA (Xu et al.,
2020), and CovidQA (Möller et al., 2020), respec-
tively. We choose to use named entity recognition
(NER) as our supervised domain adaptation task
for all four target domains, as labeled NER data is
widely available across various domains. Further-
more, NER and MRC share functional similarities,
as both rely on identifying key tokens in a text
as entities or answers. The domain-specific NER
tasks are performed using supervised training data
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Dataset Dev Set Sample
MoviesQA 755 Q: After its re-opening, which types of movies did the Tower Theatre show?

A: second and third run movies, along with classic films
NewsQA 934 Q: Who is the struggle between in Rwanda?

A: The struggle pits ethnic Tutsis, supported by Rwanda, against ethnic Hutu, backed
by Congo.

BioQA 4,790 Q: What is hemophilia?
A: a bleeding disorder characterized by low levels of clotting factor proteins.

CovidQA 2,019 Q: What is the molecular structure of bovine coronavirus?
A: single-stranded, linear, and nonsegmented RNA

Table 1: Overview of the domain-specific MRC datasets used in our experiments. The number of question-answer
pairs in the train set and development set for each domain is shown, along with a sample question-answer pair from
each domain. The datasets share the same format as SQuAD.

from the MIT Movie Corpus (Liu et al., 2013),
CoNLL 2003 News NER (Tjong Kim Sang and
De Meulder, 2003), NCBI-Disease (Doğan et al.,
2014) and COVID-NER 2. The domain-specific
language modeling tasks for DAPT are performed
using unsupervised text from IMDB (Maas et al.,
2011), the RealNews Corpus (Zellers et al., 2020),
the Semantic Scholar Open Research Corpus (Lo
et al., 2020) and the Covid-19 Corpus 3.

3.2 Methods

We compare our approach (T+DAPT) to a previ-
ous approach (DAPT) as well as a baseline model.
For the baseline, the pretrained RoBERTa-Base
model is fine-tuned on SQuAD and evaluated on
domain-specific MRC without any domain adap-
tation. In the DAPT approach, RoBERTa-Base
is first initialized with fine-tuned DAPT weights
(NewsRoBERTa and BioRoBERTa) provided by
Gururangan et al. (2020) or implemented ourselves
using the methodology described in Gururangan
et al. (2020) and different Movies and COVID-19
datasets (Maas et al., 2011; Danescu-Niculescu-
Mizil and Lee, 2011; Pang et al., 2019). These mod-
els are initialized by DAPT weights—which have
been fine-tuned beforehand on unsupervised text
corpora for domain adaptation—from the Hugging-
Face model hub (Wolf et al., 2020), fine-tuned on
SQuAD, and evaluated on domain-specific MRC.

3.3 Results

We compare the effectiveness of our approach,
which uses NER instead of language modeling

2https://github.com/tsantosh7/
COVID-19-Named-Entity-Recognition

3https://github.com/davidcampos/
covid19-corpus

(as in DAPT) for the domain adaptation method
in a sequential training regime. Our experiments
cover every combination of domain (Movies, News,
Biomedical, or COVID) and domain adaptation
method (T+DAPT which uses named entity recog-
nition vs. DAPT which uses language modeling vs.
baseline with no domain adaptation at all).

Our results are presented in Table 2. We use
F1 score to evaluate the QA performance of each
model in its target domain. In our experiments,
DAPT performs competitively with baseline mod-
els and outperforms in one domain (CovidQA). Our
T+DAPT approach (RoBERTA + Domain NER +
SQuAD) outperforms the baseline in three out of
four domains (Movies, Biomedical, COVID) and
outperforms DAPT in three out of four domains
(Movies, News, Biomedical). We also test a combi-
nation of DAPT and T+DAPT by retraining DAPT
models on domain NER then SQuAD, and find that
this combined approach underperforms compared
to either T+DAPT alone or DAPT alone in all four
domains. We further discuss the possible reasons
for these results in Section 4.

4 Analysis

Specific domains learn from adaptation: Our ap-
proach shows promising performance gains when
used for zero-shot domain-specific question an-
swering, particularly in the biomedical, movies,
and COVID domains, where the MRC datasets
were designed with the evaluation of domain-
specific features in mind. Performance gains
are less apparent in the News domain, where
the NewsQA dataset was designed primarily to
evaluate causal reasoning and inference abilities—
which correlate strongly with SQuAD and base-
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RoBERTa Retraining Procedure MoviesQA NewsQA BioQA CovidQA
SQuAD1.1 67.1 57.0 58.0 42.0
DAPT + SQuAD1.1 60.7 54.4 57.8 47.2
T+DAPT (ours) 68.0 56.0 58.9 42.7
DAPT + T+DAPT 66.4 54.2 55.1 43.1

Table 2: F1 score of pretrained RoBERTa-Base models on dev sets of MRC datasets for given domains with the
stated retraining regimens

line RoBERTa pretraining—rather than domain-
specific features and adaptation. The lack of perfor-
mance gains from either T+DAPT or DAPT in the
News domain could also possibly be attributed to
the nature of the domain: Gururangan et al. (2020)
found that the News domain had the highest vo-
cabulary overlap of any domain (54.1%) with the
RoBERTa pretraining corpus, so the baseline for
this domain could have had an advantage in the
News domain that would be lost due to catastrophic
forgetting while little relevant knowledge is gained
from domain adaptation. We perform follow-up
experiments with varying amounts of epochs and
training data in SQuAD fine-tuning to analyze the
tradeoff between more thorough MRC fine-tuning
and better preservation of source domain knowl-
edge from DAPT and auxiliary domain adaptation
tasks. The results from these runs are in the Ap-
pendix (Table 4).

When does DAPT succeed or fail: In zero-
shot QA, DAPT performs competitively with the
baseline in all domains and outperforms in the
COVID domain. This builds upon the results of
Gururangan et al. (2020), which reports superior
performance on tasks like relation classification,
sentiment analysis, and topic modeling, but does
not address reading comprehension tasks, which
DAPT may not have originally been optimized for.
Unsupervised language modeling may not provide
readily transferable features for reading compre-
hension, as opposed to NER which identifies key
tokens and classifies those tokens into specific en-
tities. These entities are also often answer tokens
in reading comprehension, lending to transferable
representations between NER and reading compre-
hension. Another possible factor is that RoBERTa
was pretrained on the English Wikipedia corpus,
the same source that the SQuAD questions were
drawn from. Because of this, it is possible that
pretrained RoBERTa already has relevant represen-
tations that would provide an intrinsic advantage
for SQuAD-style reading comprehension which

would be lost due to catastrophic forgetting after re-
training on another large language modeling corpus
in DAPT.

In the COVID domain, we use the article dataset
from Wang et al. (2020). These articles also make
the basis for the CovidNER and CovidQA (Möller
et al., 2020) datasets, which may explain the large
performance improvement from DAPT in this do-
main. These results suggest that the performance of
DAPT is sensitive to the similarity of its language
modeling corpus to the target task dataset.1

5 Conclusion

We evaluate the performance of our T+DAPT ap-
proach with domain-specific NER, achieving pos-
itive results in a zero-shot reading comprehen-
sion setting in four different domain-specific QA
datasets. These results indicate that our T+DAPT
approach robustly improves performance of pre-
training language models in zero-shot domain QA
across several domains, showing that T+DAPT is a
promising approach to domain adaptation in low-
resource settings for pretrained language models,
particularly when directly training on target task
data is difficult.

In future work, we intend to explore various
methods to improve the performance of T+DAPT
by remedying catastrophic forgetting and maximiz-
ing knowledge transfer. For this we hope to emu-
late the regularization used by Xu et al. (2020) and
implement multi-task learning and continual learn-
ing methods like AdapterNet (Hazan et al., 2018).
In order to improve the transferability of learned
features, we will explore different auxiliary tasks
such as NLI and sentiment analysis in addition to
few-shot learning approaches.

6 Ethical Considerations

Question answering systems are useful tools in
complement to human experts, but the “word-of-

1Additional experiments in the COVID domain with dif-
ferent auxiliary tasks are presented in the Appendix A.1
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BioQA Samples
Q: what sugar is found in rna
DAPT: ribose, whereas the sugar in DNA is deoxyribose
T+DAPT: ribose
Q: normal blood pressure range definition
DAPT: 120 mm Hg1
T+DAPT: a blood pressure of 120 mm Hg1 when the heart beats (systolic) and a blood pressure of
80 mm Hg when the heart relaxes (diastolic)
MoviesQA Samples
Q: what is cyborgs real name
DAPT: Victor Stone/Cyborg is a hero from DC comics most famous for being a member of the Teen
Titans
T+DAPT: Victor Stone
Q: who plays klaus baudelaire in the show
DAPT: Liam Aiken played the role of Klaus Baudelaire in the 2004 movie A Series of Unfortunate
Events.
T+DAPT: Liam Aiken

Table 3: Samples from BioQA and MoviesQA where T+DAPT achieves exact match with the label answer, and
DAPT produces a different answer. Answers from each approach are shown side-by-side for comparison.

machine effect” (Longoni and Cian, 2020) demon-
strates the effects of a potentially dangerous over-
trust in the results of such systems. While the meth-
ods proposed in this paper would allow more thor-
ough usage of existing resources, they also bestow
confidence and capabilities to models which may
not have much domain expertise. T+DAPT models
aim to mimic extensively domain-trained models,
which are themselves approximations of real ex-
perts or source documents. Use of domain adapta-
tion methods for low-data settings could propagate
misinformation from a lack of source data. For ex-
ample, while making an information-retrieval sys-
tem for biomedical and COVID information could
become quicker and less resource-intensive using
our approach, people should not rely on such a sys-
tem for medical advice without extensive counsel
from a qualified medical professional.
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A Appendix

RoBERTa Adaptation Procedure CovidQA
CovidQA (upper bound) 52.1416
SQuAD only 42.0485
DAPT 47.2190
CovidNER 42.6584
CovidQCLS 42.6300
DAPT+Covid-NER 43.0710
DAPT+Covid-QCLS 45.8314
DAPT+CovidNER+CovidQCLS 43.0854

Table 4: Zero-shot F1 performance of RoBERTa-Base
models on dev sets of QA data for COVID domain with
SQuAD1.1 following different intermediate pretraining
regimens. The CovidQA upper bound score is attained
by training directly on the CovidQA train set.

Model NewsQA
RoBERTa-Base
1 Epoch, 1000 Samples 19.9953
2 Epochs, 1000 Samples 35.2666
2 Epochs, 5000 Samples 47.0090
2 Epochs, All Samples 56.9803
2 Epochs, All Samples (Head) 05.5891
NewsRoBERTa (DAPT)
1 Epoch, 1000 Samples 17.9025
2 Epochs, 1000 Samples 28.4453
2 Epochs, 5000 Samples 44.1206

Table 5: Zero-shot F1 performance of RoBERTa-Base
models on NewsQA following different amounts of
SQuAD fine-tuning. For comparison the score of our
News model from the main paper with 2 epochs and all
samples is included as an upper bound, alongside a head
tuning baseline where all weights are frozen except the
classifier layer.

A.1 Experiment Details and Additional
Experiments

Freezing Layer - We tried to freeze the bottom
layer after NER training and only train the QA layer
on SQuAD, the performance is worse than fine-
tuning the whole RoBERTa and QA layer. NER
and QA may not rely on the exact same features for
the final task which may be the reason that freezing
causes a performance decrease.

Different Training Epoch and Training Exam-
ples - When selecting the best performance model,
we use a validation set in target domain to evaluate
the performance. From Table 5, we show our trials

with different amounts of SQuAD training in the
News Domain and how it affected performance in
NewsQA.

Different Training Order - We tried to use
different training order, for example, we train on
SQuAD1.1 task first and then on NER, the F1 score
is 42.15 in CovidQA, which has some improve-
ment, but QA as the last task performs better.

Another Auxiliary Task - In the Covid domain,
we also do experiments on a more QA-relevant
task, question classification (QCLS) (Wei et al.,
2020). We show the result in Table 4. The ex-
periments show that QCLS task have more im-
provements than NER task. In addition, we test
the model trained on CovidQA as the performance
upper bound.
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Abstract
Curriculum learning strategies in prior multi-
task learning approaches arrange datasets in
a difficulty hierarchy either based on human
perception or by exhaustively searching the op-
timal arrangement. However, human percep-
tion of difficulty may not always correlate well
with machine interpretation leading to poor per-
formance and exhaustive search is computa-
tionally expensive. Addressing these concerns,
we propose two classes of techniques to ar-
range training instances into a learning curricu-
lum based on difficulty scores computed via
model-based approaches. The two classes i.e
Dataset-level and Instance-level differ in granu-
larity of arrangement. Through comprehensive
experiments with 12 datasets, we show that
instance-level and dataset-level techniques re-
sult in strong representations as they lead to an
average performance improvement of 4.17%
and 3.15% over their respective baselines. Fur-
thermore, we find that most of this improve-
ment comes from correctly answering the dif-
ficult instances, implying a greater efficacy of
our techniques on difficult tasks.

1 Introduction

In recent times, Multi-Task Learning (MTL) (Caru-
ana, 1997) i.e. developing one Generalist model
capable of handling multiple tasks has received sig-
nificant attention from the NLP community (Agha-
janyan et al., 2021; Lu et al., 2020; Sanh et al.,
2019; Clark et al., 2019; Mishra et al., 2022). De-
veloping a single model in MTL has several advan-
tages over multiple Specialist models as it (i) can
leverage knowledge gained while learning other
tasks and perform better in limited-data scenar-
ios (Crammer and Mansour, 2012; Ruder et al.,
2017), (ii) prevents overfitting to a single task, thus
providing a regularization effect and increasing
robustness (Clark et al., 2019; Evgeniou and Pon-
til, 2004), and (iii) provides storage and efficiency
benefits because only one model needs to be main-
tained for all the tasks (Bingel and Søgaard, 2017).

Prior work has shown that presenting training
instances ordered by difficulty level benefits not
only humans but also machines (Elman, 1993; Xu
et al., 2020). Arranging instances in a difficulty
hierarchy i.e Curriculum Learning (easy to hard)
and Anti-Curriculum Learning (hard to easy) has
been studied in MTL setup (McCann et al., 2018;
Pentina et al., 2015). These techniques arrange
datasets either based on human perception of diffi-
culty or by exhaustively searching the optimal ar-
rangement. However, both these approaches have
several limitations. Firstly, human perception of
difficulty may not always correlate well with ma-
chine interpretation, for instance, a dataset that is
easy for humans could be difficult for machines to
learn or vice-versa. Secondly, exhaustive search is
computationally expensive and becomes intractable
as the number and size of datasets increase.

In this work, we propose two classes of tech-
niques that enable models to form their own learn-
ing curriculum in a difficulty hierarchy. The two
classes i.e Dataset-level and Instance-level differ
in the granularity of arrangement. In dataset-level
techniques, we arrange datasets based on the av-
erage difficulty score of their instances and train
the model sequentially such that all the instances
of a dataset are learned together. In instance-level
techniques, we relax the dataset boundaries and or-
der instances solely based on their difficulty scores.
We leverage two model-based approaches to com-
pute the difficulty scores (Section 2).

We experiment with 12 datasets covering various
NLP tasks and show that instance and dataset-level
techniques result in stronger representations with
an average performance gain of 4.17% and 3.15%
over their respective baselines. Furthermore, we
analyze model predictions and find that difficult
instances contribute most to this improvement im-
plying greater effectiveness of our techniques on
difficult tasks. We note that our techniques are
generic and can be employed in any MTL setup.
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In summary, our contributions are as follows:
1. Incorporating Machine Interpretation of Dif-

ficulty in MTL: We introduce a novel frame-
work for MTL that goes beyond human intu-
ition of sample difficulty and provides model
the flexibility to form its own curriculum at two
granularities: instance-level and dataset-level.

2. Performance Improvement: We experiment
with 12 NLP datasets and show that instance and
dataset-level techniques lead to a considerable
performance improvement of 4.17% and 3.15%.
We note that our curriculum arrangement tech-
niques can be used in conjunction with other
multi-task learning methods such as dynamic
sampling (Gottumukkala et al., 2020) and pre-
finetuning (Aghajanyan et al., 2021) to further
improve their performance.

3. Efficacy on Difficult Instances: Our experi-
ments in low-data regime reveal that the pro-
posed techniques are most effective on difficult
instances. This makes them more applicable
for real-world tasks as they are often more diffi-
cult than abstract toy tasks and provide limited
training instances.

2 Difficulty Score Computation

In this section, we describe two model-based diffi-
culty computation methods based on recent works.

2.1 Cross Review Method
Xu et al. (2020) proposed a method that requires
splitting the training dataset D into N equal meta-
datasets (M1 to MN ) and training a separate model
on each meta-dataset with identical architecture.
Then, each training instance is inferred using the
models trained on other meta-datasets and the aver-
age prediction confidence is subtracted from 1 to
get the difficulty score. Mathematically, score of
instance i (∈Mk) is calculated as,

si = 1−
∑

j∈(1,...,N),j ̸=k cji
N − 1

where cji is prediction confidence on instance i
given by the model trained on Mj .

2.2 Average Confidence Across Epochs
In this method, the difficulty score is computed by
simply averaging the prediction confidences across
epochs of a single model and subtracting it from 1.

si = 1−
∑E

j=1 cji

E

where the model is trained till E epochs and cji is
prediction confidence of the correct answer given
by the model at jth checkpoint. This method is
based on recent works that analyze the behavior
of model during training i.e “training dynamics”
(Swayamdipta et al., 2020) and during evaluation
(Varshney et al., 2022a).

Algorithm 1: General Training Structure
Input:
D: the training dataset,
{S1, ..., SK}: splits created from D
frac: fraction of previous split
Initialization: Model M
for i← 1 to K do

train_data = Si
for j ← 1 to i− 1 do

sampled_Sj = Sampler(Sj , frac)
train_data += sampled_Sj

end
Train M with train_data

end
Train M with D

3 Proposed Techniques

Addressing the limitations of current approaches
highlighted in Section 1, we propose two classes
of techniques to arrange training instances that al-
low models to form the learning curriculum based
on their own difficulty interpretation. The tech-
nique classes i.e Dataset-Level and Instance-Level
leverage difficulty scores computed using meth-
ods described in section 2 and follow the general
training structure shown in Algorithm 1. The train-
ing dataset D is divided into K splits (S1, ..., SK)
based on the difficulty score, and model M is
trained sequentially on these ordered splits. Fur-
thermore, while training the model on split Si, a
fraction (frac) of instances from previous splits
(Sj(j < i)) is also included in training to avoid
catastrophic forgetting (Carpenter and Grossberg,
1988) i.e forgetting the previous splits while learn-
ing a new split. Note that D is a collection of
multiple datasets in the MTL setup. The final step
requires training on the entire dataset D as the eval-
uation sets often contain instances of all tasks and
difficulty levels. Dataset-level and Instance level
techniques vary in the way splits (S1, ..., SK) are
created as described below:

Dataset-level techniques: In this technique class,
each dataset represents a split and is arranged
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Figure 1: Distribution of instances based on difficulty
score computed using Average Confidence method. Dif-
ficulty score of datasets are shown in the legends.

based on the average difficulty score of its instances
i.e score of a dataset Dk is calculated as:

dk =

∑
i∈Dk

si

|Dk|

where, si is the difficulty score of instance i ∈ Dk.

Instance-level techniques: Here, we relax the
dataset boundaries and arrange instances solely
based on their difficulty scores. We study
two approaches of dividing instances into splits
(S1, ..., SK): Uniform and Distribution-based
splitting. In the former, we create K uniform splits
from D, while in the latter, we divide based on the
distribution of scores such that instances with sim-
ilar scores are grouped in the same split1. The
latter approach can result in unequal split sizes as
we show in Figure 1 that the number of instances
varies greatly across difficulty scores.

4 Experiments

Datasets: We experiment with 12 datasets cov-
ering various sentence pair tasks, namely, Nat-
ural Language Inference (SNLI (Bowman et al.,
2015), MultiNLI (Williams et al., 2018), Adversar-
ial NLI (Nie et al., 2020)), Paraphrase Identification
(QQP (Iyer et al., 2017), MRPC (Dolan and Brock-
ett, 2005), PAWS (Zhang et al., 2019)), Common-
sense Reasoning (Winogrande (Sakaguchi et al.,
2020)), Question Answering NLI (QNLI (Wang
et al., 2018)), Dialogue NLI (DNLI (Welleck et al.,
2019)), and Numerical Reasoning (Stress Test of
Equate (Ravichander et al., 2019)). For evaluation
on robustness and generalization parameters, we
use HANS (McCoy et al., 2019) and Stress Test
(Naik et al., 2018) datasets.

1Refer to Appendix for details

Setup: We experiment in a low-resource regime
limiting the number of training instances of each
dataset to 5000. This enables evaluating our tech-
niques in a fair and comprehensive manner as trans-
former models achieve very high accuracy when
given large datasets. Furthermore, inspired by de-
caNLP (McCann et al., 2018), we reformulate all
the tasks in our MTL setup as span identification
Question Answering tasks1. This allows creating a
single model to solve the tasks that originally have
different output spaces.

Implementation Details: We use three values of
frac: 0, 0.2, and 0.4 (refer Algorithm 1), N = 5
(in Cross Review method), and E = 5 (in Average
Confidence method). For distribution-based split-
ting, we experiment by dividing D into 3 and 5
splits1. These hyper-parameters are selected based
on development dataset performance.

Baseline Methods: In MTL, heterogeneous
batching where all the datasets are combined and a
batch is randomly sampled has been shown to be
much more effective than homogeneous and par-
titioned batching strategies (Gottumukkala et al.,
2020). Therefore, we use it as the baseline for
instance-level techniques. For dataset-level tech-
niques, we generate multiple dataset orders and
take the average performance as the baseline. We
average these baseline scores across 3 different
runs.

5 Results and Analysis

Table 1 shows the efficacy of our proposed curricu-
lum learning techniques.

Performance Improvement: Instance and
Dataset-level techniques achieve an average
improvement of 4.17% and 3.15% over their
respective baseline methods. This improvement
in consistent across all the datasets and also
outperforms single-task performance in most
cases. Furthermore, we find that models leveraging
Average Confidence method (2.2) outperform
their counterparts using the Cross Review method
(2.1)1 rendering Average Confidence approach as
more effective both in terms of performance and
computation as Cross Review requires training
multiple models (one for each meta-dataset).

Uniform Vs Distribution based splitting: In
instance-level experiments, distribution-based split-
ting shows slight improvement over uniform split-
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Datasets
Single-Task Instance-Level Dataset-Level

Heterogeneous(B) Uniform Distribution (D) D with frac=0.4 Random Order(B) Proposed Order
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

SNLI 77.26 77.42 74.55 74.62 77.79 77.79 77.64 77.7 77.65 77.65 77.7 77.75 78.94 79.05
MNLI Mismatched 65.98 66.12 62.07 62.14 66.14 66.3 66.71 66.78 66.6 66.66 66.29 66.4 69.15 69.28
MNLI Matched 65.33 65.45 61.23 61.36 65.85 65.96 66.91 67.01 66.82 66.85 65.96 66.09 69.18 69.33
Winogrande 50 50 47.34 50 50.24 50.27 50 50.12 49.82 49.85 47.99 49.85 48.37 50.3
QNLI 74.21 74.23 66.78 66.81 70.42 70.44 71.81 71.81 71.38 71.38 70.35 70.39 73.75 73.79
EQUATE 98.99 98.99 98.99 98.99 99.14 99.21 99.57 99.57 99.28 99.28 99.57 99.57 99.57 99.57
QQP 80.04 80.06 75.34 75.35 78.89 78.9 79.23 79.25 79.11 79.12 79.23 79.26 80.27 80.29
MRPC 80.98 80.98 74.42 74.45 74.05 74.05 75.95 75.98 75.4 75.4 75.73 75.77 79.08 79.08
PAWS Wiki 52.45 52.49 55.92 56.01 53.15 53.16 54.39 54.47 70.59 70.62 56.44 56.51 80.33 80.34
PAWS QQP 68.25 68.41 73.03 73.03 69 69 71.83 71.83 78.84 78.84 73.08 73.12 83.46 83.46
ANLI R1 42.2 42.57 38.1 38.28 42.1 42.13 45.7 45.7 43.2 43.33 42.9 43.04 42.3 42.58
ANLI R2 38.1 38.78 35 35 39.8 39.9 38.9 39.05 37.2 37.25 38.4 38.5 36.8 36.97
ANLI R3 39.25 39.38 36.17 36.24 38.5 38.62 38.17 38.24 36.5 36.56 37.92 38.03 37.25 37.4
DNLI 84.68 84.83 80.36 80.48 83.51 83.57 83.15 83.2 82.09 82.12 82.52 82.59 82.67 82.73
HANS - - 49.06 49.07 48.95 49.01 48.3 48.38 49.39 49.45 48.22 48.27 48 48.09
Stress Test - - 55.28 55.44 56.2 56.31 58.66 58.77 57.7 57.75 56.74 56.84 59.94 60.15

Table 1: Results on performing curriculum learning using the proposed techniques with difficulty scores computed
via Average Confidence approach. Note that frac is 0 unless otherwise mentioned. B means baseline and D with
frac=0.4 column represents Distribution based splitting with value of frac as 0.4.

ting. We attribute this to the superior inductive
bias resulting from the collation of instances with
similar difficulty scores to the same split.

Effect of adding instances from previous splits:
For dataset-level techniques, we find that it does
not provide any improvement. This is because all
the instances of a dataset are grouped in a single
split therefore, adding instances from other splits
doesn’t contribute much to the inductive bias. Fur-
thermore, in the case of instance-level, it leads to a
performance improvement because previous splits
contain instances of the same dataset hence, pro-
viding the inductive bias.

Difficulty Scores Analysis: Figure 1 shows the
distribution of training instances of all datasets with
difficulty scores computed using Average confi-
dence (2.2) method. This distribution reveals that
instances across datasets and within every dataset
vary greatly in difficulty as they are widely spread
across the difficulty scores. Comparing the average
difficulty score of all datasets (shown in legends of
Figure 1) shows that Equate and QNLI are easy-to-
learn while PAWS and Winogrande are relatively
difficult-to-learn. Furthermore, around 32% of the
training instances get assigned a difficulty score
of ≤ 0.1 hinting at either the presence of dataset
artifacts or the inherent easiness of these instances.
A similar observation is made with Cross Review
method with the percentage being 37%.

Test Set Analysis: We also compute difficulty
scores of test instances and plot the performance
improvement achieved by our approach over the
baseline method for every difficulty score bucket

Figure 2: Performance improvement vs Difficulty score
for dataset level techniques.

in Figure 2. We find that the proposed technique
is effective especially on instances with high diffi-
culty scores. This implies a greater efficacy of our
techniques on tasks that contain difficult instances.

6 Conclusion

In this paper, we proposed two classes of tech-
niques for MTL that allow models to form the learn-
ing curriculum based on their own interpretation
of difficulty. Comprehensive experiments with 12
datasets showed that our techniques lead to a perfor-
mance improvement of 4.17% and 3.15%. Further-
more, we found that difficult instances contribute
most to this improvement, implying a greater effi-
cacy of our techniques on difficult tasks. We hope
that our techniques and findings will foster develop-
ment of stronger multi-task learning models as our
curriculum arrangement techniques can be used in
conjunction with other multi-task learning methods
such as dynamic sampling (Gottumukkala et al.,
2020) and pre-finetuning (Aghajanyan et al., 2021)
to further improve their performance.
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Appendix

A Statistics of Evaluation Datasets

In this work, we experiment with 12 datasets span-
ning over several NLU tasks. Table 4 shows the
statistics of the evaluation sets.

B Implementation Details

We use the huggingface implementation of BERT-
Base model, batch size 16, learning rate 5e− 5 for
our experiments. We use three values of frac: 0,
0.2, and 0.4 (refer Algorithm 1), N = 5 (in Cross
Review method), and E = 5 (in Average Confi-
dence method). For distribution based splitting,
we experiment by dividing D into 3 and 5 splits.
The results reported in the paper are for 3 splits.
These hyper-parameters are selected based on per-
formance on the dev dataset. We adjust the per gpu
training batch size and gradient accumulation ac-
cordingly to fit in our 4 Nvidia V100 16GB GPUs.
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Context – Question Datasets

C: Kyle doesn’t wear leg warmers to bed, while Logan almost always does. he is
more likely to live in a colder climate. false, or true ?
Q: Kyle is more likely to live in a colder climate. Winogrande

C: In order for an elevator to be legal to carry passengers in some jurisdictions it must
have a solid inner door. false, or true ?
Q: What is another name for a freight elevator? Does the context sentence contain
answer to this question ?

QNLI

C: What makes a great problem solver? false, or true? QQP, MRPC,
Q: How can I be a fast problem solver? Are the two sentences semantically equivalent? PAWS

C: i sell miscellaneous stuff in local fairs . contradiction, or neutral, or entailment ?
Q: i used to work a 9 5 job as a telemarketer . Consistency of the dialogues ? DNLI

C: 205 total Tajima’ s are currently owned by the dealership. contradiction, or neutral,
entailment ?
Q: less than 305 total Tajima’ s are currently owned by the dealership. Equate

C: Two collies are barking as they play on the edge of the ocean contradiction, or
neutral, or entailment ?

SNLI, MNLI,
ANLI

Q: Two dogs are playing together.

Table 2: Illustrative examples (Context (C) - Question (Q) pairs) of different types of training datasets considered in
this work. We transform all these datasets to Question-Answering format in order to use a single model for all these
tasks. Answers are highlighted in bold.

Datasets
Instance-Level Dataset-Level

Uniform Splitting + Prev Proposed Order with frac=0.4 AC on Proposed Order
EM F1 EM F1 EM F1

SNLI 76.19 76.2 77.09 77.11 77 77.02
MNLI Mismatched 64.54 64.55 65.83 65.85 65.36 65.41
MNLI Matched 63.63 63.64 66.06 66.08 64.72 64.77
Winogrande 50.48 50.48 50.6 50.94 48.43 49.79
QNLI 68.16 68.17 71.24 71.25 72.23 72.26
EQUATE 99.71 99.71 99.43 99.43 99.57 99.57
QQP 77.61 77.61 79.32 79.32 79.68 79.71
MRPC 72.15 72.15 76.07 76.07 77.55 77.55
PAWS Wiki 52.11 52.13 69.48 69.48 52.92 52.95
PAWS QQP 68.7 68.7 69.75 69.75 66.62 66.69
ANLI R1 41.9 41.93 43.8 43.88 44.7 44.8
ANLI R2 37.8 37.85 36.8 36.83 37.4 37.5
ANLI R3 37.58 37.62 36.5 36.53 36.83 36.83
DNLI 82.55 82.58 83.64 83.66 81.83 81.93
HANS 49.76 49.77 48.24 48.28 50.25 50.26
Stress Test 56.07 56.09 57.55 57.57 58.79 58.87
Average 62.43 62.45 64.46 64.5 63.37 63.49

Table 3: Results of instance-level and dataset-level techniques.
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(a) Cross Review approach (b) Average Confidence approach

Figure 3: Distribution of instances based on difficulty scores computed using (a) Cross Review approach and (b)
Average Confidence approach.

Dataset Size Dataset Size

SNLI 9824 MNLI 19645
Winogrande 1654 QNLI 5650
PAWS qqp 671 PAWS wiki 7987
MRPC 1630 ANLI R1 1000
ANLI R2 1000 ANLI R3 1000
DNLI 16408 HANS 30000
Equate 696 QQP 40371
Stress Test 136464

Table 4: Statistics of the evaluation datasets.

We keep the maximum sequence length of 512 for
our experiments to ensure that the model uses the
full context.

C Dataset Examples

Table 2 shows examples of different types of
datasets used in this work. We transform all these
datasets to Question-Answering format in order to
use a single model for all these tasks.

D Difficulty Scores

Figure 3 shows the distribution of difficulty scores
computed using Cross Review and Average Confi-
dence approach.

E Results

Table 3 shows the results of instance-level and
dataset-level techniques.

F Analysis

In table 5, we compare the performance of random
order and the proposed order (developed using our
curriculum strategy) across all difficulty scores for
instance level techniques.

Difficulty
Score

Instances Random
Order

Proposed
Order

0.1 63736 94.86 93.77
0.2 18703 87.8 85.55
0.3 28035 81.85 79.85
0.4 17238 74.5 72.81
0.5 21502 65.03 65.84
0.6 17338 57.69 57.94
0.7 21255 46.75 48.92
0.8 18058 38.36 44.05
0.9 22327 26.8 33.07
1 46008 9.17 14.05

Table 5: Comparing performance of random order and
the proposed order (developed using our curriculum
strategy) across all difficulty scores for instance level
techniques.

G Scheduling in Multi-task Learning

Scheduling in multi-task learning has attracted a lot
of attention, especially for the machine translation
task (Zaremoodi and Haffari, 2019; Kiperwasser
and Ballesteros, 2018; Jean et al., 2019). Such
approaches can be adapted for our tasks and can
further improve the multi-task performance. We
leave these explorations for future work.

H Limitations of Computing Difficulty
Scores using Model-based Techniques

In addition to arranging the training instances into a
learning curriculum, computing difficulty scores us-
ing model-based techniques has shown its benefits
in several other areas, such as improving selective
prediction ability (Varshney et al., 2022b), under-
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standing training dynamics (Swayamdipta et al.,
2020), and efficient evaluations (Varshney et al.,
2022a). However, these techniques present a few
challenges:
1. Computation: They involve calculating the

difficulty scores of training instances which re-
quires additional computation. However, this
computation is only required during training and
not required during inference. Hence, it does
not add any computational overhead at inference
time when deployed in an application.

2. Noisy Instances: Training instances that are
wrongly annotated/noisy will most certainly get
assigned a very high difficulty score and hence
will be learned at the end during training. This
is unlikely to hamper learning when the number
of noisy instances is small. However, it may
negatively impact the model’s learning when
the training dataset has a non-trivial number of
noisy instances. We plan to investigate this in
our future work.
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Abstract

Pretrained language models represent the state
of the art in NLP, but the successful con-
struction of such models often requires large
amounts of data and computational resources.
Thus, the paucity of data for low-resource lan-
guages impedes the development of robust NLP
capabilities for these languages. There has been
some recent success in pretraining encoder-
only models solely on a combination of low-
resource African languages, exemplified by
AfriBERTa. In this work, we extend the ap-
proach of “small data” pretraining to encoder–
decoder models. We introduce AfriTeVa, a
family of sequence-to-sequence models derived
from T5 that are pretrained on 10 African lan-
guages from scratch. With a pretraining corpus
of only around 1GB, we show that it is possible
to achieve competitive downstream effective-
ness for machine translation and text classifi-
cation, compared to larger models trained on
much more data. All the code and model check-
points described in this work are publicly avail-
able at https://github.com/castorini/
afriteva.

1 Introduction

Transfer learning has driven many recent advances
in natural language processing, and leveraging pre-
trained models for downstream tasks has produced
state-of-the-art results on many tasks. These results
can be attributed to general-purpose knowledge that
is gained when a model is pretrained on a data-rich
task (Raffel et al., 2020). This paradigm also ex-
tends to multilingual settings, where a model is
pretrained on text in multiple languages and then
fine-tuned for downstream tasks in those languages.
Some of these models, for example, mBERT and
XML-R (Conneau et al., 2020), have been trained
on large combination of languages comprised of
high-resource and low-resource languages, amount-
ing to many gigabytes of data.

Due to the effectiveness of transfer learning on
downstream tasks, T5 (Raffel et al., 2020) intro-
duced a unified framework where all NLP tasks can
be framed as a text-to-text problem, enabling us to
train a single model for multiple tasks. This frame-
work is simple and effective by enabling knowledge
transfer from high-resource to low-resource tasks
(Nagoudi et al., 2022). Unlike BERT-based models,
which are encoder-only models, T5 and its multi-
lingual variants such as mT5 (Xue et al., 2021b)
and byT5 (Xue et al., 2021a) are encoder–decoder
models that are more suited for natural language
tasks involving generation. Both mT5 and byT5
were trained on 100+ languages, of which only 13
were low-resource African languages, making up
less than 6% of the total training data. Despite the
existence of 2000+ African languages (Eberhard
et al., 2019), only a few of them are featured in pre-
training, and thus it is unclear how effective these
models generalize to those languages.

The paucity of data for many African languages
has been a stumbling block for developing robust
NLP capabilities. However, some works have
shown that it is possible to train language models
with smaller amounts of data, albeit on encoder-
only models. For example, Micheli et al. (2020)
obtained good results on the French Question An-
swering Dataset (FQuAD) by pretraining on as
little as 100MB of text. Directly related to our
present study, AfriBERTa (Ogueji et al., 2021) pre-
trained a RoBERTa-based model from scratch on
10 African languages with only around 1GB of
data, outperforming mBERT and XLM-R on tasks
in several languages. Given this context, we pose
the following research question:

Research Question: Can “small data” pretraining
for low-resource African languages exemplified by
AfriBERTa be extended from encoder-only models
to encoder–decoder models?
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To answer this research question, we pretrained
encoder–decoder models in low-resource settings
using relatively little data and evaluated our mod-
els against other models that have been pretrained
on much more data. We introduce AfriTeVa, a
family of pretrained transformer-based sequence-
to-sequence models derived from T5, pretrained on
10 low-resource African languages. AfriTeVa gets
its name from the fact that “V” is the Roman nu-
meral for “5”, which reflects its membership in the
T5 family. We pretrained from random initializa-
tion with only around 1GB of data (using the same
corpus as AfriBERTa) and evaluated our models
on text classification and machine translation. To
the best of our knowledge, this is the first encoder–
decoder model pretrained solely on low-resource
African languages.

With respect to our research question, our re-
sults are suggestive but not conclusive. AfriTeVa
demonstrates better results than mT5, but falls short
of other models pretrained with richer resources.
However, existing experiments conflate several fac-
tors that we have not successfully untangled. Nev-
ertheless, our preliminary study sets the ground for
future work.

2 Related Work

2.1 NLP for African Languages

Interest in low-resource African languages has in-
creased in recent years. However, the question
of how NLP capabilities can be scaled to many
of these languages has yet to be answered fully
(Nekoto et al., 2020). Adebara and Abdul-Mageed
(2022) highlighted the challenges of using and ex-
tending current NLP technologies to communities
with different fabrics and languages. A common
characteristic of African languages is the absence
of large monolingual data for pretraining, which
directly impacts the ability to build high-quality
language models for these languages.

Some of the more recent work in benchmarking
and advancing the state of machine translation for
African languages include the following: Adelani
et al. (2022) investigated how to best leverage ex-
isting pretrained models for machine translation in
16 languages. They also released a corpus compris-
ing machine translation data in all 16 languages.
Emezue and Dossou (2021) released MMTAfrica,
which is a many-to-many multilingual translation
system for 6 African languages. Duh et al. (2020)
provided a benchmark state-of-the-art neural ma-

chine translation system on two African languages,
Somali and Swahili, while Martinus and Abbott
(2019) leveraged current neural machine transla-
tion techniques to train translation models for 5
African languages.

Some researchers have been interested in meth-
ods to adapt already pretrained models to unseen
languages, thus enabling the ability to pretrain in
high-resource settings and extend to low-resource
languages. Liu et al. (2021) introduced a continual
pretraining framework to adapt the mBART model
for machine translation to unseen languages, while
Baziotis et al. (2020) incorporated an LM as a prior
by adding a regularization term for low-resource
machine translation.

2.2 Multilingual Pretrained Models

XLM-R (Conneau et al., 2020), mBERT, and mT5
(Xue et al., 2021b) have extended masked language
modelling to multilingual settings by jointly pre-
training large transformer models on up to 100+
languages. This work demonstrates the effective-
ness of multilingual models on downstream tasks,
even for low-resource languages. This has been at-
tributed to shared vocabulary items, generalizable
representations the model learns (Artetxe et al.,
2020), and model architectures (K et al., 2020).

Still, these models contain only a handful of
African languages. Ogueji et al. (2021) explored
the viability of pretraining multilingual models
from scratch using only limited amounts of data on
a number of African languages—this is the “small
data” pretraining approach we referred to in the in-
troduction. They demonstrated the competitiveness
of this “small data” approach and released compara-
tively smaller models that match and in some cases
exceed the effectiveness of larger models pretrained
on much more data. As a follow-up, Oladipo et al.
(2022) explored the effect of vocabulary size and
other factors affecting transfer in AfriBERTa-based
models. Our work builds on this thread: We won-
dered if the approach taken by AfriBERTa can be
extended to encoder–decoder models.

3 Experimental Setup

Following the T5 architecture (Raffel et al., 2020),
we consider 3 model sizes for AfriTeVa: small
(64M parameters), base (229M parameters), and
large (745M parameters). Each model is similar in
configuration to their T5 counterparts.
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Small Base Large
# of Layers 6 12 24
# of Attention Heads 8 12 16
# of Parameters 64M 229M 745M
Batch Size 256 128 64
Optimizer Adafactor
ϵ 1e-6
Weight Decay 1e-3
Learning rate 3e-4
Warmup steps 40000
Vocabulary size 70000

Table 1: Model Configurations: model configurations
and training hyperparameters.

3.1 Pretraining

To adapt the T5 architecture (Raffel et al., 2020;
Xue et al., 2021b) to African languages, we pre-
trained AfriTeVa on the AfriBERTa corpus (Ogueji
et al., 2021), a multilingual corpus comprising 10
low-resource African languages: Afaan Oromoo,
Amharic, Gahuza, Hausa, Igbo, Nigerian Pidgin,
Somali, Swahili, Tigrinya, and Yorùbá. Table 2
presents characteristics of text in each language in
more detail. As we can see, the languages vary in
terms of morphology and typology. Amharic, So-
mali, and Tigrinya have subject–object–verb (SOV)
word order while the other languages have subject–
verb–object (SVO) word order. The languages also
belong to different written scripts, another aspect
of diversity.

In addition to AfriTeVa pretrained with only
African languages, we also pretrained another
model jointly with English and the 10 languages
listed above. We sampled 1,500,000 English sen-
tences from the Common Crawl1 to match the lan-
guage with the most sentences, which is Swahili.
Our models were pretrained with a vocabulary size
of 70,000 tokens learned using a SentencePiece
unigram subword tokenizer (Kudo and Richardson,
2018). The model that includes English in pre-
training used a different tokenizer with the same
vocabulary size.

We pretrained AfriTeVa using the masked lan-
guage modelling “span-corruption” training objec-
tive in T5, where consecutive spans of dropped-out
tokens are replaced by a single sentinel token that
does not correspond to any wordpiece in the tok-
enizer. We pretrained our models for 500,000 steps
with effective batch sizes shown in Table 1. Model
perplexity during training was evaluated on varying

1https://data.statmt.org/cc-100/

amounts of sentences sampled from the different
languages, consisting of roughly 440,000 sentences
for the models without English, and 540,000 sen-
tences for the model with English.

All pretraining and fine-tuning experiments were
conducted using the Huggingface transformers li-
brary (Wolf et al., 2020) on a TPU VM of type v3-8
provisioned on Google Cloud using the JAX/FLAX
framework. All models were pretrained using a
learning rate of 3e-4 and a maximum sequence
length of 512 tokens using the Adafactor optimizer
(Shazeer and Stern, 2018).

3.2 Fine-Tuning
Given the lack of benchmark datasets that would
be appropriate for sequence-to-sequence models
for low-resource African languages, we focused
on two downstream tasks: machine translation and
text classification.
Text Classification: We performed text classifica-
tion on news title topic classification datasets for
Hausa and Yorùbá (Hedderich et al., 2020). The
authors established strong baselines using multilin-
gual pretrained language models and multilingual
pretrained language models + English adaptive fine-
tuning. We cast the text classification task into a
text-to-text format where the decoder generates two
tokens; the class token and an end-of-sequence to-
ken. More precisely, the text classification task is
framed as:

input: sentence [eos]
output: label [eos]

We do not use a task prefix for these experiments.
In cases where the class labels are in a language
not seen during pretraining or do not exist as a
single token in the vocabulary, we replace them
with randomly chosen tokens from the vocabulary
and fine-tune. During inference, we map the tokens
back to the initial labels.

To fine-tune our models, we used PyTorch Light-
ning with a batch-size of 16, a constant learning
rate of 0.0003, and the Adam optimizer. We re-
port F1 scores averaged over 3 runs with different
random seeds.
Machine Translation: We fine-tuned and eval-
uated all models on machine translation datasets
in the news domain, focusing on 7 African lan-
guages. We used publicly available parallel data for
the following languages: Hausa (6k sentences),2

2https://www.statmt.org/wmt21/translation-task.html
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Language Lang code Family Word Order Script # Sent. # Tok. Size (GB)

Afaan Oromoo orm Afro–Asiatic SVO Latin 410,840 6,870,959 0.051
Amharic amh Afro–Asiatic SOV Ge’ez 525,024 1,303,086 0.213
Gahuza gah Niger–Congo SVO Latin 131,952 3,669,538 0.026
Hausa hau Afro–Asiatic SVO Latin 1,282,996 27,889,299 0.150
Igbo igb Niger–Congo SVO Latin 337,081 6,853,500 0.042
Nigerian Pidgin pcm English–Creole SVO Latin 161,842 8,709,498 0.048
Somali som Afro–Asiatic SOV Latin 995,043 27,332,348 0.170
Swahili swa Niger–Congo SVO Latin 1,442,911 30,053,834 0.185
Tigrinya tig Afro–Asiatic SOV Ge’ez 12,075 280,397 0.027
Yorùbá yor Niger–Congo SVO Latin 149,147 4,385,797 0.027

Total (African languages only) 5,448,911 108,800,600 0.939

English eng Indo–European SVO Latin 1,500,000 35,053,400 0.264

Total (Including English) 6,948,911 143,854,000 1.203

Table 2: Dataset Information: Characteristics and the size of data in each language, including number of sentences
and tokens, and uncompressed size on disk. The table also shows the written scripts and family that each language
belongs to, along with its language code.

Igbo (10k sentences) (Ezeani et al., 2020), Yorùbá
(10k sentences) (Adelani et al., 2021), Swahili (30k
sentences),3 Luganda (7k sentences), Luo (7k sen-
tences) and Pcm (8k sentences) (Adelani et al.,
2022). The datasets contain train, dev, and test
folds for the individual languages. All machine
translation corpora are publicly available.4

To fine-tune our models for machine translation,
we trained for 10 epochs using a beam size of 10
and a constant learning rate of 0.0003. As is stan-
dard, BLEU score (Papineni et al., 2002) was the
evaluation metric.

3.3 Models Comparisons

Here we compare AfriTeVa with existing multi-
lingual language models that were pretrained on
low-resource African languages. Table 3 shows a
high-level breakdown of model features.

mT5 (Xue et al., 2021b) is a multilingual variant of
T5 (Raffel et al., 2020) that was pretrained on 107
languages, but includes only 13 African languages,
making up less than 6% of the training corpus.

byT5 (Xue et al., 2021a) is a transformer pretrained
on byte sequences using the same corpora as mT5;
its model size is similar to mT5 and T5.

AfriMT5 and AfriByT5 (Adelani et al., 2022)
are multilingual sequence-to-sequence models that
were adapted from mT5 and byT5, respectively.
These models were further pretrained on 18 African
languages plus English and French, starting from
existing mT5 and byT5 checkpoints.

3https://opus.nlpl.eu/GlobalVoices.php
4https://github.com/masakhane-io/lafand-mt

XLM-R (Conneau et al., 2020) is an encoder-only
model based on RoBERTa (Zhuang et al., 2021). It
was pretrained on a corpus consisting of 100 lan-
guages, of which only 8 were African languages.

AfriBERTa (Ogueji et al., 2021) is also an encoder-
only model based on RoBERTa, pretrained from
scratch with “small data”, as already discussed.

M2M-100 (Fan et al., 2021) is a multilingual
encoder–decoder model that was pretrained for
many-to-many multilingual translation using paral-
lel data in 100 languages. M2M-100 can translate
directly between any pair of the 100 languages cov-
ered in training, including 18 African languages.

mBART50 (Tang et al., 2020) is a multilingual
encoder–decoder model trained for machine trans-
lation in 50 languages. The model was fine-tuned
on many translation directions at the same time,
and covers 3 African languages in pretraining.

4 Results and Discussion

4.1 Machine Translation

We present our machine translation results in Ta-
ble 4 and Table 5. We compared the results of
different sequence-to-sequence models fine-tuned
for two directions, to and from English, for each
language in our dataset. Evaluation was performed
on both the model variants pretrained only with
the AfriBERTa corpus as well as the variant that
includes English in the pretraining corpus. For
comparison, machine Translation results for mT5,
byT5, AfriMT5, AfriByT5, mBART50, and M2M-
100 were copied from Adelani et al. (2022).
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Model # Params Model Family African Languages Covered
XLM-R (Conneau et al., 2020) 270M Encoder-only Afaan Oromoo, Afrikaans, Amharic, Hausa,

Malagasy, Somali, Swahili, Xhosa
AfriBERTa (Ogueji et al., 2021) 112M Encoder-only Afaan Oromoo, Amharic, Gahuza, Hausa,

Igbo, Nigerian Pidgin, Somali, Swahili, Tigrinya, Yorùbá
mT5 (Xue et al., 2021b) 582M Encoder–Decoder Afrikaans, Amharic, Chichewa, Hausa, Igbo, Malagasy,

Somali, Shona, Sotho, Swahili, Xhosa, Yorùbá, Zulu
byT5 (Xue et al., 2021a) 582M Encoder–Decoder Afrikaans, Amharic, Chichewa, Hausa, Igbo, Malagasy,

Somali, Shona, Sotho, Swahili, Xhosa, Yorùbá, Zulu
AfriMT5, 582M Encoder–Decoder Afrikaans, Amharic, Arabic, Chichewa, Hausa, Igbo,
AfriByT5 (Adelani et al., 2022) Malagasy, Oromo, Nigerian Pidgin, Rwanda-Rundi,

Sesotho, Shona, Somali, Swahili, Xhosa, Yorùbá, Zulu
mBART50 (Tang et al., 2020) 610M Encoder–Decoder Afrikaans, Swahili, Xhosa
M2M-100 (Fan et al., 2021) 418M Encoder–Decoder Afrikaans, Amharic, Fulah Ganda, Hausa, Igbo,

Lingala, Luganda, Northern Sotho, Swahili, Swati, Wolof
Somali, Swahili, Swati, Wolof, Xhosa, Yorùbá, Zulu

AfriTeVa (ours) 229M Encoder–Decoder Afaan Oromoo, Amharic, Gahuza, Hausa,
Igbo, Nigerian Pidgin, Somali, Swahili, Tigrinya, Yorùbá

Table 3: Model Comparisons: a high-level comparison of our model with similar large multilingual pretrained
language models featuring low-resource African languages.

Focusing on variants of AfriTeVa, we find im-
proved BLEU scores on all languages as we scale
up our models. In both translation directions for
most languages, we obtain our best BLEU scores
using AfriTeVa base + En. Only when translating
English into Nigerian Pidgin do we see a drop in
BLEU score for AfriTeVa base + En. In Table 5,
scores improved by an average of 3 points as we go
from small to large when translating from English
to the various African languages. When translating
to English, we observed average improvements of
4 points. With AfriTeVa large, scores improved by
an extra BLEU point over AfriTeVa base.

What do these empirical results say with respect
to our research question? The most pertinent com-
parison is between mT5 and AfriTeVa base + En:
the former is pretrained on 100+ languages while
the latter is only pretrained on the much smaller
AfriBERTa corpus. The fact that AfriTeVa base
+ En outperforms mT5 (with a smaller model, no
less) suggests the viability of the “small data” pre-
training approach, so in this respect, these experi-
mental results affirm our hypothesis.

The situation, however, is a bit more complex.
AfriMT5, which starts with the mT5 backbone and
performs further pretraining, outperforms AfriTeVa
base + En. The AfriMT5 pretraining corpus com-
prises 12GB data in 20 languages, including En-
glish and French. This suggests that massive multi-
language pretraining remains useful as model ini-
tialization, which in turn would suggest that “small

data” pretraining still cannot compete. However,
this is not a fair comparison for at least two rea-
sons: (1) AfriMT5 is a larger model, and (2) the
pretraining corpus of AfriMT5 is much larger than
the 1GB AfriBERTa corpus. Thus, a fair compari-
son would be pretraining with the AfriMT5 corpus
from scratch with the same model size as mT5. We
leave this for future work.

The effectiveness of byT5 and AfriByT5 further
complicates our analysis. We see that byT5 alone
achieves excellent BLEU scores. AfriByT5, which
benefits from additional pretraining starting from
a byT5 backbone, is only marginally better. In
particular, byT5 appears to generate high-quality
output for Luganda and Luo, two languages that it
had never encountered before during pretraining.
These results suggest that tokenization is conse-
quential in ways we do not yet fully understand.
Once again, this is interesting future work.

We provide evaluation results for M2M-100 and
mBART50 only as a reference, since we do not feel
that they represent fair comparisons. All models
discussed above derive from the T5 family, and thus
it is easier to isolate the source of the translation
quality differences. For comparisons to M2M-100
and mBART50, it is difficult to perform attribu-
tion analysis to understand the underlying factors
contributing to effectiveness. Furthermore, both of
these models are specialized for machine transla-
tion, whereas the T5-based models can be adapted
to multiple downstream tasks.
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translation into English
Model # params hau ibo pcm swa yor lug luo avg

mT5 (Xue et al., 2021b) 582M 5.9 18.0 42.2 29.0 7.9 11.5 6.7 17.3
✓ ✓ x ✓ ✓ ✗ ✗

ByT5 (Xue et al., 2021a) 582M 14.0 20.8 43.4 28.8 9.6 19.3 11.9 21.1
✓ ✓ ✗ ✓ ✓ ✗ ✗

AfriMT5 (Adelani et al., 2022) 582M 10.7 19.1 44.7 30.7 11.5 14.8 9.4 20.1
AfriByT5 (Adelani et al., 2022) 582M 14.7 20.5 43.4 29.0 10.4 20.6 12.4 21.6

✓ ✓ ✓ ✓ ✓ ✗ ✗

AfriTeVa Small 64M 4.7 7.9 32.3 15.5 3.7 5.1 4.2 10.4
AfriTeVa Base 229M 9.0 13.4 35.9 19.9 7.2 9.4 6.8 14.5
AfriTeVa Large 745M 11.4 15.2 36.8 21.3 8.2 10.5 7.7 15.9
AfriTeVa Base + En 229M 12.5 20.4 37.1 26.2 9.5 11.7 10.2 18.2

✓ ✓ ✓ ✓ ✓ ✗ ✗

M2M-100 (Fan et al., 2021) 418M 17.2 18.5 44.7 29.9 13.5 18.5 19.4 23.1
✓ ✓ ✗ ✓ ✓ ✓ ✓

mBART50 (Tang et al., 2020) 610M 12.3 16.4 44.4 29.2 9.8 14.1 10.2 19.5
✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 4: Machine Translation Results (lang–en) : BLEU scores when translating from each African language to
English. All models were fine-tuned on each language using data in the news domain. Checkmarks indicate that the
model was pretrained on that language. AfriMT5 and AfriByT5 were further pretrained using the mT5 base and
byT5 base checkpoints, respectively (Adelani et al., 2022). The highest reported BLEU scores are shown in bold for
T5 models; overall best BLEU scores are underlined.

translation from English
Model # params hau ibo pcm swa yor lug luo avg

mT5 (Xue et al., 2021b) 582M 2.4 14.1 33.5 23.2 2.2 3.5 3.2 11.7
✓ ✓ ✗ ✓ ✓ ✗ ✗

ByT5 (Xue et al., 2021a) 582M 8.8 18.6 32.4 26.6 6.2 11.3 8.8 16.1
✓ ✓ ✗ ✓ ✓ ✗ ✗

AfriMT5 (Adelani et al., 2022) 582M 4.5 15.4 34.5 26.7 4.7 5.9 4.5 13.7
AfriByT5 (Adelani et al., 2022) 582M 9.8 19.3 32.5 27.5 7.1 12.2 9.0 16.8

✓ ✓ ✗ ✓ ✓ ✗ ✗

AfriTeVa Small 64M 4.3 8.1 30.3 16.1 2.9 2.6 4.1 9.8
AfriTeVa Base 229M 7.2 13.2 31.7 20.3 4.9 5.3 6.6 12.7
AfriTeVa Large 745M 8.9 15.7 31.5 20.6 6.0 6.2 6.8 13.7
AfriTeVa Base + En 229M 10.1 17.3 28.7 24.3 6.8 8.7 8.6 14.9

✓ ✓ ✓ ✓ ✓ ✗ ✗

M2M-100 (Fan et al., 2021) 418M 14.4 20.3 33.2 27.0 9.6 13.0 10.8 18.3
✓ ✓ ✗ ✓ ✓ ✓ ✓

mBART50 (Tang et al., 2020) 610M 11.8 14.8 33.9 22.1 7.5 9.7 9.6 15.6
✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 5: Machine Translation Results (en–lang) : BLEU scores when translating from English to each African
language. All models were fine-tuned on each language using data in the news domain. Checkmarks indicate that
the model was pretrained on that language. AfriMT5 and AfriByT5 were pretrained further using the mT5 base and
byT5 base checkpoints, respectively (Adelani et al., 2022). The highest reported BLEU scores are shown in bold for
T5 models; overall best BLEU scores are underlined.
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Language mBERT XLM-R AfriBERTa mT5 AfriTeVa
base large base small base large

(172M) (270M) (126M) (582M) (64M) (229M) (745M)

hau 83.03 85.62 90.86 86.80 88.75 88.25 89.80
yor 71.61 71.07 83.22 75.46 80.15 80.51 82.26

Table 6: Text Classification Results: F1 scores averaged over 3 random seeds. mBERT, XLM-R, and AfriBERTa
results were obtained from Ogueji et al. (2021)

.

4.2 Text Classification

Text classification F1 results are presented in Ta-
ble 6, based on the experimental settings described
in Section 3.2. Note that while it is possible to
adapt sequence-to-sequence models for classifica-
tion tasks, as we have done, intuitively, encoder-
only models are more suitable for text classification
tasks. AfriTeVa small outperforms mBERT and
XLM-R on both languages despite having signifi-
cantly fewer parameters. However, AfriTeVa base
is still outperformed by AfriBERTa large by an av-
erage of 3 F1 points on Yorùbá and 2 F1 points on
Hausa. Our models also perform better than mT5
on both languages. As with machine translation,
we see improvements as we scale our model from
64M parameters to 745M parameters. However,
the gains are modest here.

What do these text classification results say with
respect to our research question? Once again, the
pertinent comparison is between mT5 and Afri-
TeVa, since we are primarily concerned with the
viability of “small data” pretraining. Here, our re-
sults are consistent with the machine translation
experiments: it does appear that we can pretrain
full encoder–decoder models from scratch using
relatively small amounts of data.

4.3 Limitations

Encoder–decoder models are best suited for nat-
ural language generation tasks such as summa-
rization, question answering, machine translation,
etc. Cross-lingual datasets are often used as bench-
marks to evaluate multilingual pretrained models.
Despite our efforts to evaluate on as many tasks
as possible, many existing datasets feature few to
no African languages. For example, popular cross-
lingual datasets such as WikiLingua (Ladhak et al.,
2020), XQuAD (Artetxe et al., 2020), and Tydi QA
(Clark et al., 2020) only contain Swahili.

Existing machine translation systems in many
low-resource languages require much larger paral-
lel corpora to improve translation quality. Exam-

ples include languages such as Yorùbá, Igbo, and
Luganda. To improve such systems, there is a need
for high-quality data in multiple domains. While
there are existing efforts to curate parallel datasets
such as JW300 (Agić and Vulić, 2019), Yorùbá
(Adelani et al., 2021), Igbo (Ezeani et al., 2020),
Fon (Emezue and Dossou, 2020), parallel corpora
for bi-directional translation in Amharic, Tigrigna,
Afan-Oromo, Wolaytta, and Ge’ez (Teferra Abate
et al., 2018), there is a need for continued research
to creating high-quality datasets to further drive
advances in low-resource machine translation (Fan
et al., 2021).

5 Conclusions

In this work, we present AfriTeVa, a family of
multilingual T5 models that were pretrained from
scratch on 10 low-resource African languages with
only around 1GB of data (with an additional vari-
ant model that includes English data in pretraining).
Answering our research question, we have verified
that it is possible to pretrain encoder–decoder mod-
els on relatively small amounts of data, but there
remain conflating factors we have yet to fully un-
derstand. Although we do not reach the state of the
art, our models achieve competitive results on text
classification and machine translation benchmarks.
We also highlight some of the limitations of eval-
uating sequence-to-sequence models for African
languages. Finally, we release code and pretrained
models to drive further work in multilingual models
for African languages.
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Abstract
This paper presents our study in exploring the
task of named entity recognition (NER) in a low
resource setting, focusing on few-shot learning
on the Sumerian NER task. The Sumerian lan-
guage is deemed as an extremely low-resource
language due to that (1) it is a long dead lan-
guage, (2) highly skilled language experts are
extremely scarce. NER on Sumerian text is
important in that it helps identify the actors
and entities active in a given period of time
from the collections of tens of thousands of
texts in building socio-economic networks of
the archives of interest. As a text classification
task, NER tends to become challenging when
the amount of annotated data is limited or the
model is required to handle new classes. The
Sumerian NER is no exception. In this work,
we propose to use two few-shot learning sys-
tems, ProtoBERT and NNShot, to the Sumerian
NER task. Our experiments show that the Pro-
toBERT NER generally outperforms both the
NNShot NER and the fully supervised BERT
NER in low resource settings on the predictions
of rare classes. In particular, F1-score of Pro-
toBERT on unseen entity types on our test set
has achieved 89.6% that is significantly better
than the F1-score of 84.3% of the BERT NER.

1 Introduction

Named Entity Recognition (NER), as a fundamen-
tal task in Natural Language Processing, aims to
locate and classify named entities such as peo-
ple, organizations, and locations, etc. The Ur
III period (ca. 2112-2004 BC), spanning about
100 years, has a particularly rich source of texts,
comprising at least 100,000 documents. These
are primarily financial records and potentially sup-
port investigations of economic activity in Ancient
Mesopotamian society. To give but one example,
Liu (2021) aims to do a prosopographical study of
individuals delivering animals to the Puzriš-Dagan
organization during the Ur III period and identi-
fies the individuals, their family relations and royal

status of the historical actors delivering animals,
as well as the variety of animals involved. NER
applied to this domain can efficiently help Assyri-
ologists recover and analyze the social-economical
activities and thus provide a better understanding
of the social organization and dynamics of ancient
Mesopotamian history.

There is a broad effort in the community of
Assyriologists, in collaboration of Computer Sci-
entists, to build reproducible socio-economic net-
works from the Ur III archives (Journal et al., 2021).
This effort shows that the application of NER to
these texts is of great use in the quantitative study
of Assyriology.

In this work, we conduct experiments to ap-
ply models that are based on prototypical net-
works (Snell et al., 2017) and nearest neighbour
classification to the Sumerian NER task. Specif-
ically, we adapt two few-shot learning systems,
ProtoBERT (Ding et al., 2021) and NNShot (Yang
and Katiyar, 2020), to the Sumerian NER task and
have achieved good performance in prediction of
rare classes. In summary, our contributions are
as follows: (1) We construct two few-shot learn-
ing systems, ProtoBERT and NNShot, and apply
them on the Sumerian NER task. To the best of our
knowledge, this is the first work exploring Sume-
rian NER task using the few-shot learning approach.
(2) We demonstrate that the ProtoBERT approach
considerably and consistently outperforms the fully
supervised BERT-based model and has shown to
be well-suited for prediction of rare class with few
labelled examples.

2 Previous Work

Previous studies on Sumerian NER are few, par-
tially due to the lack of language resources and
meaningful collaborations between researchers in
Computer Science and Assyriology. The few stud-
ies include Luo et al. (2015) and Liu et al. (2016).
Luo et al. (2015) uses the DL-CoTrain algorithm
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for personal name identification to minimize the
use of the annotated data. The system achieves a
high recall (92.5%) and a low precision (56.0%).
Liu et al. (2016) chooses to fully utilize the an-
notated data by applying a wide range of super-
vised algorithms, including Decision Tree, Gradi-
ent Boosting, Logistic Regression, Naive Bayes,
SVM and Random Forest, to predict personal
names. The supervised approach shows an op-
posite behavior with a low recall (around 65%)
and a high precision (around 86%). A more recent
work (Bansal et al., 2021) investigates the Sumerian
Machine Translation task in low-resource settings.
They also built a variety of algorithms, including
HMM, Rules+CRF, Bi-LSTM+CRF, FLAIR and
RoBERTa, on the POS and NER tasks on the Sume-
rian dataset. For the NER task, RoBERTa achieves
the best F1-score (95.3%) on a set of 12 entity types
and the simple CRF model with well-defined rules
significantly outperforms the rest of the models
and is the second best with F1-score of 91.3%. We
adapt their labelled Sumerian dataset in this work.
As they only reported the overall F-scores of those
NER systems on the 12 entity types without de-
scribing how the dataset is split, their result is not
directly comparable with ours. More details about
the dataset will be given in Section 3.

One of the key problems for low-resource NER
is the lack of annotated data. As one of the common
strategies, cross-lingual NER attempts to address
this challenge by transferring knowledge from one
or more high-resource source languages with abun-
dant annotated data to a low-resource target lan-
guage with few or no labels. The knowledge trans-
fer is either through annotation projection from the
source language to the target language (Bharadwaj
et al., 2016; Xie et al., 2018; Feng et al., 2018;
Rahimi et al., 2019) or through using a shared
encoder in a multi-task architecture (Lin et al.,
2018; Kruengkrai et al., 2020). Along the research
line of enabling parameter reuse across a variety
of tasks, Pfeiffer et al. (2020) proposes MAD-
X, an adapter-based framework which includes
language adapters, task adapters and invertible
adapters, in a multilingual context. MAD-X outper-
forms the state of the art in cross-lingual transfer
on NER across diverse languages. However, the
highest F1-score is achieved on Arabic which is
59.41%. For other low-resource languages, such
as Icelandic, Quechua and so on, the F1-scores
are mostly around 30-50%. Cross-lingual meth-

ods have achieved notable success, but in certain
circumstances, such as insufficient pre-training cor-
pora or when the target language is far from the
source language, their performance suffers. Sume-
rian language, as a long dead language, suffers both
which makes the cross-lingual methods not readily
apply.

Few-shot classification (Vinyals et al., 2016; Bao
et al., 2019) can effectively recognize new classes
from very few labelled examples and thus has re-
cently drawn a lot of attention. Snell et al. (2017)
proposed Prototypical Networks based on the idea
that there exists an embedding space in which im-
ages of the same class cluster around a single proto-
type representation for each class. In other words,
two images of the same class should be close to
each other, and two images of the different class
will be far away. Adapting this idea from image
classification, Fritzler et al. (2019); Hou et al.
(2020); Ding et al. (2021) address the few-shot
NER problem and have achieved considerable suc-
cess. Yang and Katiyar (2020) proposed token-level
nearest neighbor classification based methods for
the few-shot NER problem to address some poten-
tial issues of prototypical NER in learning class
prototypes, such as learning a noisy prototype of
the ‘O’ class.

Usually the overall F1-scores are high if BERT is
chosen as backbone encoder in deep learning NER
systems (Devlin et al., 2019). However, Tänzer
et al. (2022) demonstrates that BERT fails to pre-
dict minority classes when the number of examples
is limited. They observe that BERT needs at least
25 examples of a minority label to start learning
on the CoNNL-03 dataset (Sang and De Meulder,
2003). If the examples are fewer than 25, the F1-
score will be 0. When the examples exceed 100, the
performance improves rapidly. They also observe
similar phenomena on other datasets. For example,
learning on the JNLPBA dataset (Collier and Kim,
2004) requires at least 50 examples. They also
construct a prototypical few-shot learning model
to overcome BERT’s limitation. The results show
the few-shot learning model consistently surpasses
the performance of BERT on minority classes. For
instance, it is outperforming BERT by 40 F1 points
on LOC class when the dataset has 15 sentences
containing that class. All this has shown that few-
shot learning is well suited for the setting when the
number of labelled examples is very constrained,
which further justifies our choice of exploring this
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approach in the Sumerian NER task. And our ex-
perimental results have also echoed their findings.

The paper is organized as follows. In Section 3
we give a more detailed description of the Sumerian
NER task and the dataset. In Section 4 we describe
our models. Section 5 contains the description of
our experimental setup and the report and analysis
of the results. We conclude our work with some
discussion of the future work in Section 6.

3 Dataset and task description

The dataset we used in this work is originally from
the CDLI database (Cuneiform Digital Library Ini-
tiative http://cdli.ucla.edu/). CDLI is a
project that curates an electronic documentation of
ancient cuneiform texts, comprised of cuneiform
texts, images, transliterations and sundry informa-
tion concerning the Ur III period and its immediate
aftermath. It is a joint project of the University of
California, Los Angeles, the University of Oxford,
and the Max Planck Institute for the History of
Science, Berlin.

Although the texts we are investigating were
originally written in cuneiform script, CDLI pro-
vides them in transliterated form, using the English
alphabet. Fig. 1 shows a tablet from CDLI reposi-
tory, (id P407107). An image of the original tablet
with its cuneiform inscription is on the left; the
transliteration is in the middle and the modern En-
glish translation appears on the right.

As aforementioned, we adapt the labelled Sume-
rian dataset and the tagset directly from Bansal et al.
(2021). The dataset has 22,728 sentences, 61,478
tokens, and 12 entity types (not including the O
type that indicates a word is not a named entity
of interest). All these entity types, their meaning
and counts in the dataset are shown in Table 1. The
tablet in Fig. 1 demonstrates an example with multi-
ple named entity types in it. According to a domain
expert, den-lil2-la2 in line 2 on the obverse is la-
belled as the named entity tag ‘DN’ (Divine Name),
ki-maszki in line 3 labelled as ‘GN’ (Geographical
Name), a-mur-dsuen and ur-ku3-nun-na in line 2
and 3 on the reverse are labelled as ‘PN’ (Personal
Name), and ses-da-gu7 in line 4 labelled as ‘MN’
(Month Name). The task of a few-shot Sumerian
NER tagger is to identify these named entity types
from the transliterations of tablets based on a few
labelled examples.

The counts in Table 1 show that the dataset is
quite unbalanced. Some entity types have many

Tag Meaning Count
DN Divine Name 900
FN Field Name 1,463
GN Geographical Name 1,351
PN Personal Name 17,729
RN Royal Name 150
SN Settlement Name 521
WN Watercourse Name 304
EN Ethnos Name 60
MN Month Name 79
ON Object Name 18
TN Temple Name 60
O Others 38,822
AN Agricultural Name 1

Table 1: Twelve NER tags and O-tag, their meanings
and counts in the dataset

more labelled examples than others. For example,
entity types ‘EN’, ‘MN’, ‘ON’ and ‘TN’ only have
tens of labelled examples. The least entity type is
‘AN’ which only has 1 example. On the contrary,
‘PN’ has a dominant number of examples in the
dataset, over half of that of the non-named entity
type ‘O’. We decide to discard ‘AN’, ‘ON’ and
‘EN’ entity types from our training and test process.
For tag ‘AN’ and ‘ON’, the number of their labelled
examples is too low to enable an effective episodic-
based few-shot learning process. Even though ‘EN’
tag has the same number of examples as the ‘TN’
tag, because of the data splitting and relabelling is-
sues described in Sec. 5.1 and Sec. 5.3, we choose
to drop it from our tag set as well. However, we
still report the experimental results both without
and with the ‘EN’ tag in Table 6 and Table 7, re-
spectively. More details about data splitting and
relabeling can be found in Section 5.1.

4 Methods

In the following, we will describe three models
applied to the low-resource Sumerian NER task.
They are BERT+LC, ProtoBERT and NNShot.
As Transformer-based pre-trained language mod-
els (Devlin et al., 2019) have shown significant
impact on the NER task, a pre-trained language
model (PLM) on Sumerian will also be used in
our NER models. In our experiment, we adapt a
PLM on Sumerian explored in Bansal et al. (2021).
The PLM is pre-trained using RoBERTa (Liu et al.,
2019) on their Sumerian monolingual dataset.
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Figure 1: Tablet no. P407107 inscribed with the original Sumerian cuneiform script, the digitized transliteration,
and human-translated English text line by line.

4.1 BERT+LC

Although a supervised setting is not the main goal
of this work, it is nevertheless interesting to ex-
plore the standard setup of using the BERT model
with a linear classifier built on top of its encoding
representations, and compare it with the few-shot
learning models. The model is trained to mini-
mize the cross-entropy loss on the given training
data. More details on the hyper-parameters and
data setup can be found in Sec. 4.4 and Sec. 5.1,
respectively.

4.2 ProtoBERT

ProtoBERT (Ding et al., 2021) is a few-shot learn-
ing model that combines the few-shot capabilities
of prototypical networks (Snell et al., 2017) with
the BERT’s pre-trained knowledge. The model
aims to build an embedding space through the train-
ing process so all the inputs can be clustered around
its own “prototype” that represents the centroid of
the class each input is associated with. Classifying
a new input can then be done by finding its closest
centroid and being assigned with the correspond-
ing entity type. The training process is organized
into a series of “episodes”. Each episode consists
of a support set and a query set that are randomly
sampled from the training set. As a support set con-
tains a limited number of “training” examples and a
query set “test” examples, each episode essentially
mimics the test-time scenario in a few-shot learn-
ing setting. In an N -way K-shot learning setup,
each support set has N classes and K samples per
class and the query set has N classes as well.

In our implementation, we follow the algorithm

in (Ding et al., 2021) and run 500 episodes for train-
ing. In this model, for each class c, its prototype
pc is calculated by averaging the embeddings of
examples that belong to class c in the support set
S:

pc =
1

|Sc|
∑

x∈Sc

f(x) (1)

where Sc denotes the set of all elements in S that
belong to class c and function f denotes the BERT
architecture augmented with a linear classifier. The
model parameter of f is updated after each episode
in the training process by minimizing the cross-
entropy loss between the probability calculated
through softmax and the one-hot ground-truth label
of x.

After computing all prototypes in a support set S,
we compute the distance from each input x in the
query set Q to each prototype. As used in Ding et al.
(2021), we also use the squared Euclidean distance
as the metric function d(f(x), p) = ∥f(x) − p∥22.
Once we get the distances between x and all the
prototypes, a softmax function is used to compute
the prediction distribution of x over all prototypes.
The entity type of the nearest prototype is the pre-
diction of x.

4.3 NNShot

NNShot (Yang and Katiyar, 2020) is a few-shot
learning method based on token-level nearest neigh-
bor classification. Unlike ProtoBERT where the
training classes are clustered based on the token
representations, NNShot does the inference on a
query example directly based on the nearest neigh-
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bor metric. That is, NNShot simply computes the
distance score between example x in the query set
and all examples in the support set. It then assigns
x the label of the example in the support set that is
closest to x. In this work, we use the same distance
metric as we use in ProtoBERT.

4.4 Hyper-parameters

We experimentally set a fixed collection of hyper-
parameters across all the datasets. The Adam opti-
mizer (Kingma and Ba, 2015) is used in the training
stage. The learning rate is 1e−3. For BERT+LC,
we set the batch size as 16. For few-shot learning
systems, we use 2-way 5 ∼ 10 shot setting as sug-
gested in Ding et al. (2021) for building a support
set. This strategy allows each class in a support
set to have a variable number of examples between
5 to 10, which effectively alleviates the sampling
constraint between the two classes. All the models
are implemented using the Hugging Face library1.

5 Experiments

5.1 Data and tag processing

In the following, we describe how we split the tag
set and generate our training, dev and test datasets
accordingly for each model.

5.1.1 Tagset and dataset splitting
We largely follow the work of (Ding et al., 2021)
for our tag set and data set splitting. We first di-
vide the 12 entity types into three mutually disjoint
subsets so the entity types in the test set are “new”
classes or “unseen” in the training set, and vice
versa. In practice, new entity types may appear in
an existing or new data set or a new domain where
no insufficient number of annotated examples has
become available. To be aligned with a realistic
setting, we reserve the entity types that have fewer
examples for the test set, and those that have more
examples for the training set. Based on the char-
acteristics of our dataset, and common practice,
for each specific entity type, we placed 5 to 10 ex-
amples. However, it turns out that the numbers of
examples of entity types ‘AN’ and ‘ON’ are too low
(1 and 18, respectively) for our few-shot learning
models to get stable results. Thus we drop these
two entity types from our tag set and filter out those
sentences that have ‘AN’ or ‘ON’ entity type when
we construct training, dev and test sets.

1https://huggingface.co

With this setup, we generate the train, dev and
test sets where each set only contains instances of
its own pre-assigned entity types. As the average
sentence length in our dataset is quite small which
is around three, all the entity types except for ‘EN’
do not co-occur with other entity types in a same
sentence. However, almost all of the sentences
containing ‘EN’ also contain other entity types, in-
cluding ‘PN’, ‘GN’, etc. Relabelling (Yang and
Katiyar, 2020) as a common strategy in few-shot
learning systems to get mutually disjoint subsets is
when a sentence has more than one entity type, any
entity type that does not belong to the pre-assigned
set is relabelled as ‘O’ type. We follow this process
for the ‘EN’ tag and conduct the experiment. As
the number of ‘EN’ tokens is only 60 out of 61,478
in the entire dataset, and ‘EN’ is the only tag that in-
volves relabelling, we also experimentally exclude
‘EN’ and conduct the experiment. Experiments
show a significant improvement in system perfor-
mance (24 point increase in F-1) without ‘EN’ and
relabelling. In the setup without relabelling, we
drop ‘EN’ along with ‘AN’ and ‘ON’ from the 12
entity types which leaves us 9 types among which
the top-4 are ‘DN’, ‘FN’, ‘GN’ and ‘PN’ and are as-
signed to the training set, ‘MN’ and ‘TN’ to the test
set, and ‘RN’, ‘SN’ and ‘WN’ to the dev set. Type
‘O’ is present across all the three subsets. In total,
73 sentences are removed from the dataset owing
to this process, accounting for around 0.3% of the
total number of the sentences in the dataset. We
first report the experimental results of all the mod-
els in the setting of not including ‘EN’ in Sec. 5.2.
The results with ‘EN’ are presented and discussed
in Sec 5.3 where the influence of relabelling is
discussed in detail.

5.1.2 Data and tags for BERT+LC
The remaining data is split into training and test
sets based on their pre-assigned entity types. Since
BERT+LC is fully supervised, it cannot handle un-
seen classes in the test phase. For that reason, a
few examples of ‘MN’ and ‘TN’ need to be rein-
serted into the training set. Because our dataset
is very small compared to other widely studied
languages and BERT+LC requires more data than
the few-shot learning setting, we omit the dev set
at this step. That means BERT+LC’s training set
contains all 9 entity types. However, we only in-
clude 8 examples of ‘MN’ and ‘TN’ in this training
set to make it comparable with the few-shot learn-
ing models that only use 5 ∼ 10 examples in each
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Model Dev Test
BERT+LC —— 0.843
NNShot 0.714 0.857
ProtoBERT 0.823 0.896

Table 2: F1-scores for all models on test set and few-
shot models on dev set.

support set for each entity type.

5.1.3 Data and tags for few-shot learning
systems

Section 5.1.2 describes the augmentation of the
training set for the BERT+LC model but the test set
remains the same across the 3 models. To construct
the training and dev sets for the few-shot learning
models, we select sentences containing ‘DN’, ‘FN’,
‘GN’ and ‘PN’ for the training set and sentences
having ‘RN’, ‘SN’ and ‘WN’ for the dev set.

Fig. 2 summarizes our process of splitting the set
of entity tags and data for the three models. With-
out including ‘EN’ and relabelling, the training
sets for the BERT+LC model and the two few-shot
learning systems have 22,530 sentences and 21,642
sentences, respectively. The dev set has 498 sen-
tences, and test set 107 sentences.

5.2 Results
Table 2 summarizes the overall results of the three
models on the test dataset, and the results of the
two few-shot learning models on the dev set, when
not including ‘EN’. As shown in Fig. 2 and de-
scribed in Sec. 5.1, the training dataset that used
by BERT+LC model is the combination of train-
ing set used by ProtoBERT and NNShot, dev set,
8 instances of entity type ‘MN’ and 8 instances
of entity type ‘TN’ but the test data remains the
same across the three models. In our few-shot sys-
tems, we use a 2-way 5 ∼ 10 shot setting. All the
F1-scores we report are micro averaged F1-score.

As shown, both ProtoBERT and NNShot per-
form better than BERT+LC on the test set. NNShot
outperforms BERT+LC by 1.4% F1-score and Pro-
toBERT outperforms BERT+LC by 5.3% F1-score.
The gap between NNShot and ProtoBERT becomes
more evident on the dev set with ProtoBERT out-
performing NNShot by over 10% F1-score. This
suggests that ProtoBERT can outperform NNShot
by a larger margin when they run on a larger
dataset.

We further analyze the performance of the three
models on the individual entity types on the dev

Model Entity P R F1

BERT+LC
MN 1.0 0.914 0.955
TN 1.0 0.378 0.549

NNShot
MN 0.869 0.883 0.876
TN 0.735 0.926 0.820

ProtoBERT
MN 0.949 0.933 0.941
TN 0.703 0.963 0.813

Table 3: Precision (P), Recall (R) and F1-score of indi-
vidual entity types on test set.

Model Entity P R F1

NNShot
SN 0.595 0.581 0.588
WN 0.789 0.818 0.803
RN 0.636 0.840 0.724

ProtoBERT
SN 0.714 0.789 0.750
WN 0.765 0.912 0.832
RN 0.857 0.960 0.906

Table 4: Precision (P), Recall (R) and F1-score of indi-
vidual entity types on dev set.

and test sets. The results are summarized in Table 3
and Table 4, respectively. Table 3 shows that pre-
dictions on ‘MN’ are overwhelmingly better than
that on ‘TN’. We believe this is mainly because
‘MN’ as month name is a much easier entity type
to identify than ‘TN’ (a temple name). Among
the three models, BERT+LC system produces the
best F1-score on ‘MN’ that is 1.4% higher than
that of ProtoBERT. However, BERT+LC produces
the worst performance on ‘TN’ with an F1-score
of 54.9%, around 27% lower than that of NNShot
and ProtoBERT. This is mainly due to its low re-
call on ‘TN’ even though its precision is 100%. A
further post-processing step often takes place when
conducting NER using Sumerian data: we allow a
domain expert to go over the automatically identi-
fied name list (or a sample of the list) for further
verification. We believe a system that has a higher
recall is more useful in practice than a system that
has a 100% precision but low recall. That said, we
think ProtoBERT has its own advantages in prac-
tice than the other two systems in low-shot settings.
This is consistently suggested by Table 3 and Ta-
ble 4 with the high recall scores of ProtoBERT in
all the individual entity types across dev and test
set. Table 4 shows that ProtoBERT dominantly out-
performs NNShot on all the individual entity types
on dev set in F1-score and recall. The only place
where ProtoBERT falls behind NNShot is on ‘WN’
by 2.4% in precision.
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Figure 2: The process of tag and data splitting for three models

Model Dev Test
BERT+LC —— 0.822
NNShot 0.714 0.821
ProtoBERT 0.823 0.659

Table 5: F1-score of few-shot learning models on test
set with EN.

5.3 Discussion on the influence of relabeling

NER is a sequence labeling problem and it is very
common that a sentence contains several different
entity types. For few-shot learning systems, we
keep entity types in training, dev and test sets mutu-
ally disjoint because we want to test the systems on
unseen entity types. A common strategy for avoid-
ing the same entity types from occurring in differ-
ent subsets is relabeling. Tokens in the training set
whose labels belong to the test set are relabelled to
‘O’ type. Same operation is performed on test set
and dev set to keep these subsets mutually disjoint.
Fortunately, in our Sumerian dataset, the sentences
are normally short and the majority of them only
contain one of the twelve types. For most of the
entity types, we can easily select sentences that
only contain one entity type and no need to rela-
bel any tokens in those sentences. However, ‘EN’
is an exception. Almost every sentence that has

‘EN’ entity type has the existence of multiple other
entity types, which means all those entity types
should be relabelled to ‘O’ when we include ‘EN’
in our target tag set. As ‘EN’ was initially assigned
as an entity type for the test set, we did our first
experiment with ‘EN’ included in the test set and
ran all the three models on this set. Table 5 shows
that the performance of ProtoBERT drops dramat-
ically. F1-score drops to 65.6% (with ‘EN’) from
89.6% (without ‘EN’). In this setting, the result
of BERT+LC is produced by adding 8 randomly
sampled ‘EN’ examples to the model’s training set,
and the rest of ‘EN’ examples goes to the test set.

Table 6 shows the confusion matrix calculated
on the test set both without and with the ‘EN’ type
to see how the results of ProtoBERT are allocated.
The first column of the table with entity types is
the gold labels in test set. The first row shows what
label each gold label was predicted to be by the
system. As shown in the table, with ‘EN’ included
in the test set, 54 ‘O’ are labeled to ‘TN’ and 52 ‘O’
are labeled to ‘EN’. That means with the inclusion
of ‘EN’ many more false positive for ‘TN’ and ‘EN’
are produced. We believe this is mainly caused by
the fact that almost all the sentences that have ‘EN’
also have many other entity types and these entity
types are relabelled to ‘O’. In ProtoBERT, when

142



Test set without EN
O MN TN

O (118) 108 3 7
MN (60) 0 56 4
TN (27) 1 0 26

Test set with EN
O MN TN EN

O (225) 157 2 54 52
MN (60) 1 58 1 0
TN (27) 2 0 25 0
EN (50) 12 0 0 38

Table 6: Prediction of ProtoBERT on test set without
and with EN.

we calculate prototypes for each class, we average
all the tokens in support set with the same entity
type. After we relabel some tokens to ‘O’, the
prototype of ‘O’ becomes noisy. That’s why the
model often gets confused between ‘O’ type and
other types such as ‘EN’ or ‘TN’, which leads to
poor performance of a model. Again, ‘MN’ as
an easy entity type shows to be stable and is not
affected by this relabelling as much.

Table 7 shows that the influence of relabeling for
NNShot is not as obvious as that for ProtoBERT.
The main reason is that the model is based on token-
level nearest neighbor classification. When we
query a token, it goes to find its closest example
and uses its type which can counteract to a certain
extent the effect of ‘O’ type relabeling issue.

Previous work of few-shot learning systems on
English also shows the performance is not as good
as expected (Fritzler et al., 2019; Huang et al.,
2020; Ding et al., 2021). As the prototypes in their
work are also learnt from a similar relabelling pro-
cess, it could be one of the reasons that affects the
system performance. Yang and Katiyar (2020) pro-
poses STRUCTSHOT for few-shot NER to better
model the label dependencies in a sentence. Al-
though the label dependency issue in Sumerian
NER is not as outstanding, it still exists. We are
planning to leave it as future work to further inves-
tigate effective ways to deal with the relabelling
issues caused by the ‘O’ type.

6 Conclusions and Future Work

We have applied three models, BERT+LC, NNShot
and ProtoBERT, to explore the Sumerian NER in
low resource settings, and have presented our pre-
liminary results. This is the first work of exploring

Test set without EN
O MN TN

O (118) 109 7 2
MN (60) 0 53 7
TN (27) 1 1 25

Test set with EN
O MN TN EN

O (225) 251 1 6 7
MN (60) 6 50 0 4
TN (27) 7 0 20 0
EN (50) 12 0 0 38

Table 7: Prediction of NNShot on test set without and
with EN.

few-shot NER on the Sumerian language dataset.
Our experiments show that ProtoBERT as a few-
shot learning model has consistently outperformed
the fully supervised model BERT+LC model in
few-shot settings and has generally achieved better
performance than NNShot. Though as a token-level
nearest neighbour classification method, NNShot
is less sensitive to the noisy ‘O’ type that is intro-
duced by the relabeling step, it may not be as stable
as ProtoBERT owing to the nearest neighbor mech-
anism in the training stage. We show that BERT-LC
fails to do a good job in learning more examples
in few-shot settings. While we investigate the ef-
ficacy of prototypical networks-based ProtoBERT
and nearest neighbour metric-based NNShot learn-
ing models in the few-shot Sumerian NER task,
it will be particularly interesting to 1) extend our
work to a larger test set; 2) explore new methods
such as STRUCTSHOT (Yang and Katiyar, 2020)
to solve the noisy ‘O’ type issue introduced by rela-
belling; 3) experiment on using more sophisticated
cross-lingual approaches including adapter-based
models on Sumerian NER.
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Abstract

Recent advances in the field of deep learning
have led to a growing interest in the develop-
ment of NLP approaches for low-resource and
endangered languages. Nevertheless, relatively
little research, related to NLP, has been con-
ducted on indigenous languages. These lan-
guages are considered to be filled with complex-
ities and challenges that make their study in-
credibly difficult in the NLP and AI fields. This
paper focuses on the morphological segmen-
tation of indigenous languages, an extremely
challenging task because of polysynthesis, di-
alectal variations with rich morpho-phonemics,
misspellings and resource-limited scenario is-
sues. The proposed approach, towards a mor-
phological segmentation of Innu-Aimun, an ex-
tremely low-resource indigenous language of
Canada, is based on deep learning. Experi-
ments and evaluations have shown promising
results, compared to state-of-the-art rule-based
and unsupervised approaches.

1 Introduction

Over the past decade, we have observed a success-
ful growth in the deep learning-based approaches
in several Natural Language Processing (NLP) ap-
plications. This has helped to create NLP tools
and applications in resource-rich languages. On
the other hand, for low-resource languages, few
applications of NLP have been studied for multiple
reasons (Mager et al., 2018b).

In particular, for indigenous languages, NLP ap-
plications have to deal with linguistics challenges
such as polysynthesis, diversity of grammatical fea-
tures of morphology, dialect variation with rich
morpho-phonemics, misspellings due to noisy or
scarce training data and low resource scenario chal-
lenges (Littell et al., 2018; Joanis et al., 2020).
Moreover, morphological segmentation for indige-
nous polysynthetic languages is especially chal-
lenging because these languages have often mul-
tiple individual morphemes by word and several

meanings per morpheme.
The current research focuses on the morpholog-

ical segmentation task for indigenous languages,
with a case study on Innu-Aimun, also called Mon-
tagnais1. Innu-Aimun is an Algonquian polysyn-
thetic language spoken by over 10,000 Innu in
Labrador and Quebec in Eastern Canada2. We
choose this indigenous language for this specific
NLP task because it has not yet been investigated
thus far.

The main focus consists of how to develop in-
digenous language technology and linguistic re-
sources, with the aim of helping the indigenous
communities in the revitalization and preservation
of their languages. Thus, we propose in the cur-
rent study, a deep learning-based morphological
segmentation for Innu-Aimun. Our contribution
to the current research is twofold. Firstly, it pro-
poses a deep learning-based word segmenter for
indigenous languages. Secondly, it empirically
compares the proposed approach, in a case study
of Innu-Aimun, with multiple baselines such as
Finite-State Transducer, Morfessor, and Adaptor
Grammar-based approaches.

Overall, this study aims to serve as a benchmark
for developing NLP tools and applications, which
will help revitalize and preserve indigenous lan-
guages, while taking into account indigenous cul-
tural realities and knowledge.

The paper is structured as follows: Section 2
highlights morphological analyzers for indigenous
languages, with a description of Innu-Aimun. Our
proposed approach is described in Section 3. Sec-
tion 4 presents the experimental results, compared
to other state-of-the-art approaches. Section 5 dis-
cusses our evaluations, while providing an error
analysis. Finally, Section 6 presents the conclusion
as well as potential future work.

1https://www.thecanadianencyclopedia.ca/en/article/innu-
montagnais-naskapi

2https://en.wikipedia.org/wiki/Innu-Aimun
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2 Related work

2.1 Morphological segmentation in
Indigenous languages

Many indigenous languages in Canada, in the
Americas and around the world have in common
that they are polysynthetic. Most also share a con-
text of extremely low or scarce resource. While
morphological segmentation is highly useful—if
not unavoidable—for indigenous NLP applications,
data and knowledge scarcity make its development
very challenging.

When there exists no language-specific tool,
NLP tasks often make use of unsupervised ap-
proaches for segmentation. Byte-pair encoding
(BPE) segmentation, introduced by Sennrich et al.
(2016), is a common one for Neural Machine Trans-
lation. The technique has been used by (Joanis
et al., 2020; Le and Sadat, 2020), for instance, to
produce an Inuktitut-English NMT baseline using
the Nunavut Hansard corpus.

In cases where there is a lack of annotated data,
rule-based approaches, such as those based on
Finite-State Transducers (FST), have been used the
most. Farley (2012) proposed an FST-based mor-
phological analyser for Inuktitut (one of Canada’s
most resourced and documented indigenous lan-
guages). Harrigan et al. (2017) developed an FST
morphological model for Plains Cree. Arppe et al.
(2017) applied the same approach partially adapted
to East Cree. Mager et al. (2018a) proposed a prob-
abilistic approach to an FST model for Wixarika
(huichol).

Other proposed approaches are hybrid, adding
knowledge or rules to unsupervised methods. Es-
kander et al. (2019) proposed an approach based
on Adaptor Grammars (Johnson et al., 2006), and
applied it to four Uto-Aztecan polysynthetic lan-
guages. Pan et al. (2020) combined BPE segmen-
tation and rule-based segmentation for Uyghur, a
morphologically rich language.

For deep learning-based approach, Kann et al.
(2018) used the neural network-based seq2seq mod-
els for Mexican polysynthetic languages. Micher
(2019) applied a recurrent neural network-based
approach to deal with the word segmentation for
Inuktitut.

2.2 Innu-Aimun language
Innu-Aimun is the language of the Innu, an indige-
nous people formerly known as the Montagnais
(Mollen, 2006). This language is found in the

Quebec and Labrador provinces of Canada, in a
dozen communities (Baraby et al., 2017). It is a
polysynthetic indigenous language, a member of
the Algonquian family and is related to Cree and
Naskapi with which it forms a dialectic continuum
(Drapeau, 2014). Statistics Canada estimated the
number of speakers at 11,360 in 2016 3.

Although Innu-Aimun is fundamentally an oral
language, its orthography was standardized in 1989
(Mollen, 2006). A first dictionnary based on the
standard orthography, for Innu-French, was pub-
lished in 1991 (Drapeau, 1991). There exists today
a more complete, trilingual and pan-dialectal dic-
tionnary that is being continuously updated and is
available online4. Other online resources include
a verb conjugation web application (Baraby and
Junker, 2011), based on work of Baraby (1998).

The aforementioned online tools have been part
of an effort by Junker et al. (2016) to develop a
series of Web tools for Innu-Aimun language main-
tenance. This project, primarily, aimed at bilingual
speakers, which also includes several primary lan-
guage resources (e.g. lexicons, grammars, conver-
sational guides, etc.), educational online games and
a catalog of audio and written Innu-Aimun works5.

Other than online tools, very few language tech-
nologies have been developed for Innu-Aimun, to
our knowledge. A search-engine with flexible or-
thography has been developed by Junker and Stew-
art (2008) and integrated with an online dictionnary
(Junker et al., 2016), in conjunction with an equiv-
alent tool for East Cree. Other research projects
have targeted the construction of Innu-Aimun cor-
pora Cadotte et al. (2022). Drapeau and Lambert-
Brétière (2013) proposed an annotated, multimodal
corpus with translations. An NRC Canada indige-
nous languages technology project (Kuhn et al.,
2020) aimed to transcribe oral recordings of sev-
eral indigenous languages in Canada, including
Innu-Aimun.

3 Our proposed approach

3.1 Model overview

In this paper, we focus on the surface segmenta-
tion (Ruokolainen et al., 2016; Kann et al., 2018;
Liu et al., 2021), where a term is segmented in a
substrings sequence.

3Statistics Canada: The Aboriginal languages of First Na-
tions people, Métis and Inuit

4https://dictionary.Innu-Aimun.ca/
5Tshakapesh Institute - Catalogue
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Given an Innu-Aimun word, the segmentation
process consists of breaking down the word into
separate morphemes, for example, uminushima →
u-minush-im-a (in English: her/his cats). Our
model is made following these steps: (1) apply
the Transformer-based encoder-decoder architec-
ture, with a multihead self attention mechanism
(Vaswani et al., 2017); (2) deal with surface seg-
mentation, while considering the monotonic aspect
of morphotactics (that is, the constraints on the
ordering of morphemes) (Figure 1). We train the
positional embeddings using the position of each
element in a sequence.

Figure 1: Architecture of our framework: Deep
Learning-based Morphological segmentation for indige-
nous language, with pretrained debiased word-based
embedding for source-target, and positional embedding.

3.2 Deep Learning-based morphotactics
modeling

We model a deep learning-based morphological
segmenter using the Transformer-based encoder-
decoder architecture.

In the encoder, the input sequence is encoded
at character level. Then the embedding layer is
incorporated with pre-trained embeddings at mul-
tiple levels such as character, affix (prefixes and
suffixes), along with multiheaded attention over
the input sequence, that helps finding morpheme
boundaries related to the whole word.

To ensure the monotonic aspect of morphotac-
tics, the positional embeddings are used to encode
the order of each element of a sequence in both the
encoder and the decoder.

The decoder uses the same concept of multihead
attention over itself and also the encoder. The at-
tention mechanism allows to align input sequences
to the correct corresponding output sequences that
are segmented in individual morphemes (Figure 1).

4 Experiments and Evaluations

4.1 Data Preparation

A small corpus was manually collected from mul-
tiple resources such as the Website of Aimun-
Mashinaikan-French-English dictionary Innu6 as
well as open source grammar books and the on-
line Innu lessons platform7 that are available at
the Tshakapesh Institute (Drapeau, 2014; Mollen,
2006).

The collected experimental corpus contains 500
word bases (roots) and 500 affixes (prefixes, suf-
fixes). A training set, crawled from the Aimun-
Mashinaikan dictionary Innu, consists of 30,118
terms, used as raw word lists, non segmented, with
length between 2 and 46 characters. A small golden
testing set, containing 250 unique terms, was man-
ually segmented with the help of an Innu language
teacher from the Uashat Mak Mani-utenam com-
munity8.

4.2 Training settings

We configured several baselines: (1) based on a sim-
ple weighted Finite-State Transducer (FST) to max-
imise the morpheme frequency (Richardson and
Tyers, 2021), (2) based on Morfessor version 2.0
(Virpioja et al., 2013) to learn the morpheme bound-
aries using minimum description length optimiza-
tion, and (3) based on the Adaptor Grammar ap-
proach. We used the MorphAGram toolkit (Eskan-
der et al., 2020), with two settings: standard setting
(AdaGra-Std) and scholar seeded setting (AdaGra-
SS). We adopted the best learning settings: the best
standard PrefixStemSuffix+SuffixMorph grammar
and the best scholar-seeded grammar, as explained
in (Eskander et al., 2019), for Innu-Aimun.

We configured a deep-learning based model (T-
DeepLo) with an encoder-decoder Transformer
model (Vaswani et al., 2017), based entirely on
the multihead self-attention mechanism. For the
hyperparameters, we used 4-layer both in the en-
coder and in the decoder. The batch size was set at
32. The initial learning rate was set to 0.0001. The
hidden dimension was set at 256, and dropout with
a rate of 0.2. The model is trained with 8 multi-
head attention in the encoder and in the decoder,
using Adam optimizer (Kingma and Ba, 2014).

6https://dictionary.Innu-Aimun.ca/
Words

7https://lessons.innu.atlas-ling.ca/
8https://www.itum.qc.ca/
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4.3 Results

Precision Recall F1
FST 52.71 42.96 46.11
Morfessor 43.33 38.01 40.49
AdaGra-Std 53.78 43.18 47.91
AdaGra-SS 70.45 61.36 65.60
T-DeepLo 81.27 77.15 79.16

Table 1: Evaluation on the test set using the different
settings.

The performances of all the models were eval-
uated using the conventional automatic metrics in
the field of NLP, such as Precision, Recall and F1-
score.

For the unsupervised methods, we noticed that
the scholar-seeded learning (AdaGra-SS) model
outperformed all the other baselines, with 70.45%,
61.36%, 65.60% in terms of Precision, Recall and
F1 score, respectively (Table 1). We observed both
precision and recall were significantly improved
while injecting a list of affixes (prefixes and suf-
fixes) during the training. However, the Morfessor
model showed the worst results, with only 40.49%
in terms of F1.

The Transformer-based DeepLo model obtained
the best performance across all metrics, with gains
of +10.82%, +15.79%, +13.56% in terms of Preci-
sion, Recall and F1 score, respectively, compared
to the AdaGra-SS model (Table 1). The T-DeepLo
model showed the ability to learn and to extract
more complex features, relying on the multihead
self attention mechanism.

We performed an error analysis in order to shed
some light on how the models were able to learn
and recognize the morpheme boundary of a se-
quence. Table 2 shows sample prediction outputs
from all the models on the test set.

5 Error analysis

Due to the complex linguistic peculiarities of Innu-
Aimun and its dialectal variations, a word can be
pronounced in several ways. Thus, its transcrip-
tion poses more challenges in the segmentation
task. Besides, a word in Innu-Aimun is always
composed of a central core (root), including a verb.

With the help of an Innu language teacher, we
made observations and reviewed the data and pre-
dictions to determine if the segmentation results
were correct and discover the errors. Basically, our

models tend to over-segment more complex mor-
phemes due to the linguistic irregularities and the
morphotactic phenomena, to detect common lexi-
cal suffixes such as ap, tsh or grammatical ending
suffixes such as at, eu, t, n, it, mi or uk. In particu-
lar, we observed an over-segmentation in the FST
and Morfessor models. These models tend to seg-
ment a term into several sub-morphemes (Table 2).
The same phenomena are found in other models of
AdaGra-Std and AdaGra-SS. Furthermore, the T-
DeepLo model was able to better detect morpheme
boundaries.

All models failed when dealing with out-of-
vocabulary words. For example, here, the term
mitshuap (meaning: house), which was not seen
in the training, was segmented into multiple mor-
phemes (Table 2).

Another challenge is related to the over-
segmentation of all the models, down to charac-
ter level, due to the length of prefixes and suffixes
between one and multiple characters. For exam-
ple, some models divided a term up to a character
level (Table 2): (FST) u a pa tamu; mi t shu a p;
(Morfessor) u apa tamu; (AdaGra-Std) minu sha t;
(AdaGra-SS) u apa tamu.

6 Conclusion and Perspectives

We presented a deep learning-based method for
morphological segmentation for Innu-Aimun, an
indigenous language of Canada, which can be con-
sidered as a first research study on the subject, so
far.

Our evaluations showed promising results. Thus,
the proposed deep learning-based method, incor-
porating pre-trained embeddings at multiple levels,
helped finding morpheme boundaries related to the
whole word. This study makes an important con-
tribution by focusing on morpheme segmentation
in the low-resource indigenous language. Further-
more, through this research, we noted the impor-
tance of close collaboration and consultation with
the Innu indigenous community, to ensure that lan-
guage technologies are developed with respect and
in accordance with the community’s revitalisation
objectives.
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Reference FST Morfessor AdaGra-Std AdaGra-SS T-DeepLo
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u minush im a u minush ima u minu sh ima u minush ima u minush im a u minush im a
uapat am u u a pa tamu u apa tamu uapa tamu u apa tamu u apa tamu

Table 2: Illustrations of morpheme segmentation predictions on the test set using the different settings such as
Finite-State Transducer, Morfessor, Standard setting (AdaGra-Std), Scholar seeded setting (AdaGra-SS), and Deep
learning-based (T-DeepLo). Strings in bold are incorrectly segmented.
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Abstract

Crowdsourcing platforms are often used to
collect datasets for training machine learning
models, despite higher levels of inaccurate la-
beling compared to expert labeling. There are
two common strategies to manage the impact
of such noise: The first involves aggregating
redundant annotations, but comes at the ex-
pense of labeling substantially fewer examples.
Secondly, prior works have also considered us-
ing the entire annotation budget to label as
many examples as possible and subsequently
apply denoising algorithms to implicitly clean
the dataset. We find a middle ground and pro-
pose an approach which reserves a fraction of
annotations to explicitly clean up highly prob-
able error samples to optimize the annotation
process. In particular, we allocate a large por-
tion of the labeling budget to form an initial
dataset used to train a model. This model is
then used to identify specific examples that
appear most likely to be incorrect, which we
spend the remaining budget to relabel. Exper-
iments across three model variations and four
natural language processing tasks show our ap-
proach outperforms or matches both label ag-
gregation and advanced denoising methods de-
signed to handle noisy labels when allocated
the same finite annotation budget.

1 Introduction

Modern machine learning often depends on heavy
data annotation efforts. To keep costs in check
while maintaining speed and scalability, many peo-
ple turn to non-specialist crowd-workers through
platforms like Mechanical Turk. Although crowd-
sourcing reduces costs to a reasonable level, it also
tends to produce substantially higher error rates
compared with expert labeling. The classic ap-
proach for improving reliability in classification
tasks is to perform redundant annotations which
are later aggregated using a majority vote to form
a single gold label (Snow et al., 2008; Sap et al.,
2019a; Potts et al., 2021; Sap et al., 2019b). This
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Figure 1: Data cleaning reserves a small portion of the
annotation budget for targeted relabeling of examples
that are identified as especially likely to be noisy. In
contrast, the default and denoising methods spend the
entire budget upfront, yielding lower quality data.

solution is easy to understand and implement, but
comes at the expense of severely reducing the num-
ber of labeled examples available for training.

As an alternative, researchers have made great
strides in designing automatic label cleaning meth-
ods, noise-insensitive training schemes and other
mechanisms to work with noisy data (Sukhbaatar
et al., 2015; Han et al., 2018; Tanaka et al., 2018).
For example, some methods learn a noise tran-
sition matrix for reweighting the label (Dawid
and Skene, 1979; Goldberger and Ben-Reuven,
2017), while others modify the loss (Ghosh et al.,
2017; Patrini et al., 2017). Another set of options
generate cleaned examples from mislabeled ones
through semi-supervised pseudo-labeling (Jiang
et al., 2018; Li et al., 2020). However, empirically
getting many of these techniques to work well in
practice is often a struggle due to the difficulty of
training extra model components.
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We avoid the complexity of repairing or
reweighting the labels of existing annotations by
instead obtaining wholly new annotations from
crowdworkers for a selected subset of samples. In
doing so, our proposed methods require no extra
model parameters to train, yet still retains the ben-
efits of high label quality. Concretely, we start by
allocating a large portion of the labeling budget
to obtain an initial training dataset. The examples
in this dataset are annotated in a single pass, and
we would expect some percentage of them to be
incorrectly labeled. However, enough of the labels
should be correct to train a reasonable base model.
Next, we take advantage of the recently trained
model to identify incorrectly labeled examples, and
then spend the remaining budget to relabel those
examples. Finally, we train a new model using the
original data combined with the cleaned data.

The key ingredient of our method is a function
for selecting which examples to re-annotate. We
consider multiple approaches for identifying candi-
dates for relabeling, none of which have been ap-
plied before to denoising data within NLP settings.
In all cases, relabeling the target examples relies on
neither training any extra model components nor
on tuning sensitive hyper-parameters. By using the
existing annotation pipeline, the implementation
becomes relatively trivial.

To test the generalizability of our method, we
compare against multiple baselines on four tasks
spanning multiple natural language formats. This
departs from previous studies on human labeling
in NLP, which focus exclusively on text classifica-
tion (Wang et al., 2019; Jindal et al., 2019; Tayal
et al., 2020). The control baseline and denoising
baselines perform a single annotation per example.
The majority vote baseline triples the annotations
per example, but consequently is trained on only
one third the number of examples to meet the anno-
tation budget. We lastly include an oracle baseline
that lifts the restriction on a fixed budget and in-
stead uses all available annotations. We test across
three model types, ranging from small ones taking
minutes to train up to large transformer models
which require a week to reach convergence. We
find that under the same fixed annotation budget,
cleaning methods match or surpass all baselines.

In summary, our contributions include:

1. We examine an alternative direction to learn-
ing with noisy labels that appear when data is
collected under low-resource settings.

2. We build four versions of our approach that
vary in how they target examples to relabel.

3. We compare against a number of baselines,
many of which have never been implemented
before in the natural language setting.

Overall, our Large Loss method, which selects ex-
amples for relabeling by the size of their training
loss, performs the best out of all variations we con-
sider despite requiring no extra parameters to train.

2 Related Work

The standard method for learning in the presence
of unreliable annotation is to perform redundant
annotation, where each example is annotated mul-
tiple times and a simple majority vote determines
the final label (Snow et al., 2004; Russakovsky
et al., 2015; Bowman et al., 2015). While effec-
tive, this can be costly since it severely reduces
the amount of data collected. To tackle this prob-
lem, researchers have developed several alternative
methods for dealing with noisy data that can be
broken down into three categories.

Denoising Techniques Noisy training examples
can be thought of as the result of perturbing the
true, underlying labels by some source of noise.
One group of methods assume the source of noise
is from confusing one label class for another, and
is resolved by reverting the errors through a noise
transition matrix (Sukhbaatar et al., 2015; Gold-
berger and Ben-Reuven, 2017). Other methods
work under the assumption that labeling errors oc-
cur due to annotator biases (Raykar et al., 2009;
Rodrigues and Pereira, 2018), such as non-expert
labelers (Welinder et al., 2010; Guan et al., 2018) or
spammers (Hovy et al., 2013; Khetan et al., 2018).
Finally, some methods model the noise of each
individual example, either through expectation-
maximization (Dawid and Skene, 1979; Whitehill
et al., 2009; Mnih and Hinton, 2012), or neural
networks (Felt et al., 2016; Jindal et al., 2019).

Another set of methods modify the loss function
to make the model more robust to noise (Patrini
et al., 2017). For example, some methods add a reg-
ularization term (Tanno et al., 2019), while others
bound the amount of loss contributed by individ-
ual training examples (Ghosh et al., 2017; Zhang
and Sabuncu, 2018). The learning procedure can
also be modified such that the importance of train-
ing examples is dynamically reweighted to prevent
overfitting to noise (Jiang et al., 2018).
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Pseudo-labeling represents a final set of methods
that either devise new labels for noisy data (Reed
et al., 2015; Tanaka et al., 2018) or generate wholly
new training examples (Arazo et al., 2019; Li et al.,
2020). Other approaches from this family use two
distinct networks to produce examples for each
other to learn from (Han et al., 2018; Yu et al.,
2019).

Budget Constrained Data Collection Our work
also falls under research studying how to maxi-
mize the benefit of labeled data given a fixed an-
notation budget. Khetan and Oh (2016) apply
model-based EM to model annotator noise, al-
lowing singly-labeled data to outperform multiply-
labeled data when annotation quality goes above
a certain threshold. Bai et al. (2021) show that
similar trade-offs exist when performing domain
adaptation on a constrained budget. Zhang et al.
(2021) observe that difficult examples benefit from
additional annotations, so optimal spending actu-
ally varies the amount of labels given to each ex-
ample. Our approach actively targets examples for
relabeling based on its likelihood of noise, whereas
they randomly select examples for multi-labeling
without considering its characteristics.

Human in the Loop Finally, our work is also re-
lated to data labeling with humans. Annotators can
be assisted through iterative labeling where models
suggest labels for each training example (Settles,
2011; Schulz et al., 2019), or through active learn-
ing where models suggest which examples to label
(Settles and Craven, 2008; Ash et al., 2020). In
both cases, forward facing decisions are made on
incoming batches of unlabeled data. In contrast,
our methods look back to previously collected data
to select examples for relabeling. These activities
are orthogonal to each other and can both be in-
cluded when training a model. (See Appendix C)

Lastly, re-active learning from (Sheng et al.,
2008; Lin et al., 2016) proposes to relabel exam-
ples based on their predicted impact by retraining
a classifier from scratch for every iteration of an-
notation. Accordingly, their method is impractical
when adapted to the large Transformer models stud-
ied in this paper1. Instead, we identify examples
to relabel through much less computationally ex-
pensive means, making the process tractable for
real-life deployment.

1Training a large language model (such as RoBERTa-
Large) until convergence can easily take a day or longer. Do-
ing so each time for 12k annotations would take 30+ years.

3 Methods Under Study

We study how to maximize model performance
given a static data annotation budget. Concretely,
we are given some model M for a target task,
along with a budget as measured by B number
of annotations, where each annotation allows us
to apply a possibly noisy labeling function fr(x),
where r is the number of redundant annotations
applied to a single example. Annotating some set
of unlabeled instances produces noisy examples
(X, fr(X)) = (X, Ỹ ). Our goal is to achieve
the best score possible for some primary evalu-
ation metric S on a given task by cleaning the
noisy labels Ỹ clean−−−→ Y . Afterwards, we train
a model with the cleaned data and then test it on
a separate test set. For all our experiments, we set
B = 12, 000 as the total annotation budget.

As a default setting, we start with a Control base-
line which uses the entire budget to annotate 12k
examples, once each (n = 12, 000; r = 1). To
simulate a single annotation, we randomly sam-
ple a label from the set of labels offered for each
example by the dataset. To obtain more accurate
labels, people often perform multiple annotations
on each example and use Majority Vote to aggre-
gate the annotations. Accordingly, as a second
baseline we annotate 4k examples three times each
(n = 4, 000; r = 3), matching the same total bud-
get as before. In the event of a tie, we randomly
select one of the candidate labels. Finally, we also
include an Oracle baseline which uses the gold la-
bel for 12k examples (n = 12, 000; r = 3|5). The
gold label is either given by the dataset or gener-
ated by majority vote, where the label might result
from aggregating five annotations rather than just
three annotations.

3.1 Noise Correction Baselines

We consider four advanced baselines, all of which
perform a single annotation per example (n =
12, 000, r = 1) as seen in Figure 1. (1) (Gold-
berger and Ben-Reuven, 2017) propose applying
a noise Adaptation layer which models the error
probability of label classes. This layer is initial-
ized as an identity matrix, which biases the layer
to act as if there is no confusion in the labels. This
noise transition matrix is then learned as a non-
linear layer on top of the baseline model M to
denoise predictions. The layer is discarded during
final inference since gold labels are used during
test time and are assumed to no longer be noisy.
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(2) The Crowdlayer also operates by modeling the
error probability, but assumes the noise arises due
to annotator error, so a noise transition matrix is
created for each worker (Rodrigues and Pereira,
2018). Once again, this matrix is learned with gra-
dient descent and removed for final inference. (3)
The Forward correction method from (Patrini et al.,
2017) adopts a loss correction approach which mod-
ifies the training objective. Given− log p(ŷ = ỹ|x)
as the original loss, Forward modifies this to be-
come −log∑c

j=1 Tjip(ŷ = y|x) where c is the
number of classes being predicted, and both i and
j are used to index the number of classes. Ma-
trix T is represented as a neural network that is
learned jointly during pre-training. (4) Lastly, the
Bootstrap method proposed by (Reed et al., 2015)
generates pseudo-labels by gradually interpolating
the predicted label ŷ with the given noisy label
ỹ. We apply their recommended hard bootstrap
variant which uses the one-hot prediction for in-
terpolation since this was shown to work better in
their experiments.

3.2 Cleaning through Targeted Relabeling

Rather than maximizing the number of examples
annotated given our budget, we propose reserv-
ing a portion of the budget for reannotating the
labels most likely to be incorrect. Specifically, we
start by annotating a large number of examples
one time each using the majority of the budget
(na = 10, 000; r = 1). We then pretrain a model
M1 using this noisy data, and observe either the
model’s training dynamics or output predictions
to target examples for relabeling. Next, we use
the remaining budget to annotate those examples
two more times (nb = 1, 000; r = 2), allowing us
to obtain a majority vote on those examples. The
final training set is formed by combining the 1k
multiply-annotated examples with the remaining
9k singly-annotated examples. We wrap up by ini-
tializing a new model M2 with the weights from
M1 and fine-tune it with the clean data until con-
vergence. We experiment with four approaches for
discovering the most probable noisy labels:

Area Under the Margin AUM identifies prob-
lematic labels by tracking the margin between the
likelihood assigned to the target label class and
the likelihood of the next highest class as training
progresses (Pleiss et al., 2020). Intuitively, if the
gap between these two likelihoods is large, then the
model is confident of its argmax prediction, pre-

sumably because the training label is correct. On
the other hand, if the gap between them is small,
or even negative, then the model is uncertain of its
prediction, presumably because the label is noisy.
AUM averages the margins over all training epochs
and targets the examples with the smallest margins
for relabeling.

Cartography Dataset Cartography is a tech-
nique for mapping the training dynamics of a
dataset to diagnose its issues (Swayamdipta et al.,
2020). The intuition is largely the same as AUM,
such that Cartography also chooses consistently
low-confidence (ie. low probability) examples for
relabeling. We take the suggestion from Section
5 of their paper to detect mislabeled examples by
tracking the mean model probability of the true
label across epochs. Note that unlike AUM, Car-
tography tracks the final model outputs after the
softmax, rather than the logits before the softmax.
These can lead to different rankings since Cartog-
raphy does not take the other probabilities in the
distribution into account.

Large Loss (Arpit et al., 2017) found that cor-
rectly labeled examples are easier for a model to
learn, and thus incur a small loss during training,
whereas incorrectly labeled examples produce a
large loss. Inspired by this observation and other
similar works (Jiang et al., 2018), the Large Loss
method selects examples for cleaning by ranking
the top nb examples where the model achieves the
largest loss during the optimal stopping point. The
ideal stopping point is the moment after the model
has learned to fit the clean data, but before it has
started to memorize the noisy data (Zhang et al.,
2017). We approximate this stopping point by per-
forming early stopping during training when the
progression of the development set fails to improve
for three epochs in a row. We then use the earlier
checkpoint for identifying errors.

Prototype We lastly consider identifying noisy
labels as those which are farthest away compared
to the other training data (Lee et al., 2018). More
specifically, we use a pretrained model to map all
training examples into the same embedding space.
Then, we select the vectors for each label class to
form clusters where the centroid of each cluster is
the “prototype” (Snell et al., 2017). Finally, we
define outliers as those far away from the centroid
for their given class, as measured by Euclidean
distance, which are then selected for cleaning.
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4 Experiments

4.1 Datasets and Tasks
To test our proposal, we select datasets that span
across four natural language processing tasks. We
choose these datasets because they provide multiple
labels per example, allowing us to simulate single-
and multiple-annotation scenarios.

Offense The Social Bias Frames dataset collects
instances of biases and implied stereotypes found
in text (Sap et al., 2020). We extract just the la-
bel of whether a statement is offensive for binary
classification.

NLI We adopt the MultiNLI dataset for natural
language inference (Williams et al., 2018). The
three possible label classes for each sentence pair
are entailment, contradiction, and neutral.

Sentiment Our third task uses the first round of
the DynaSent corpus for four-way sentiment anal-
ysis (Potts et al., 2021). The possible labels are
positive, negative, neutral, and mixed.

QA Our final task is question answering with
examples coming from the NewsQA dataset
(Trischler et al., 2017). The input includes a
premise taken from a news article, along with a
query related to the topic. The target label consists
of two indexes representing the start and end loca-
tions within the article that extract a span of text
answering the query. Unlike the other tasks, the
format for QA is span selection rather than classi-
fication. Due to this distinction, certain denoising
methods that assume a fixed set of candidate labels
are omitted from comparison.

4.2 Training Configuration
In our experiments, we fine-tune parameters dur-
ing initial training with only six runs, which is
composed of three learning rates and two levels of
dropout at 0.1 and 0.05. Occasionally, when vary-
ing dropout had no effect, we consider doubling
the batch size instead from 16 to 32. We found
an appropriate range of learning rates by initially
conducting some sanity checks on a sub-sample of
development data for each task and model combi-
nation. Learning rates were chosen from the set of
[1e-6, 3e-6, 1e-5, 3e-5, 1e-4]. When a technique
contained method-specific variables, we defaulted
to the suggestions offered in their respective pa-
pers. We do not expect any of the methods to be
particularly sensitive to specific hyperparameters.

4.3 Model Variations

We select three models for comparison that repre-
sent strong options at their respective model sizes.
We repeat the process of example identification and
simulated re-annotation separately for each model.
We use all models as a pre-trained encoders to em-
bed the text inputs of the different tasks we study.

DeBERTa-XLarge is our large model, which con-
tains 750 million parameters and currently is the
state-of-the-art on many natural language under-
standing tasks (He et al., 2021). DistilRoBERTa
represents a distilled version of RoBERTa-base
(Liu et al., 2019). It contains 82 million param-
eters, compared to the 125 million parameters
found in RoBERTa. Learning follows the distil-
lation process set by DistillBERT where a student
model is trained to match the soft target probabil-
ities produced by the larger teacher model (Sanh
et al., 2019). Fine-tuning DistilRoBERTa is approx-
imately 60-70 times faster compared to fine-tuning
DeBERTa-XLarge on the same task.

For the final model, we avoid using Transform-
ers altogether and instead use the FastText bag-of-
words encoder (Joulin et al., 2017). The FastText
embeddings are left unchanged during training, so
the only learned parameters are in the 2-layer MLP
we use for producing the model’s final output. The
same output prediction setup is used for all mod-
els, with a 300-dimensional hidden state. Training
the FastText models run roughly 100-120 faster
compared to working with DeBERTa-XLarge.

5 Major Results

Table 1 displays results across all models types
and tasks, with each row representing a different
technique. All rows except the Oracle were trained
using the same label budget of 12,000 annotations.2

In some cases, a method may surpass the Oracle
since we conducted limited hyperparameter tuning,
but as expected, the Oracle model outperforms all
other methods overall. Notably, the Control setting
always beats the Majority setting. In fact, Major-
ity is consistently the lowest-performing method
on all models and tasks, showing that improved
label quality is never quite enough to overcome
the reduction in annotation quantity. Adaptation is
the best among denoising methods, achieving the

2Our annotation amount is much less than total available
data for a task so our results are not directly comparable to
prior work. For example, DynaSent train set includes 94,459
examples and Social Bias Frames contains 43,448 examples.
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Methods FastT DRoB DeXL Avg

Oracle 78.0 81.8 86.2 82.0
Control 77.0 81.4 86.0 81.5
Majority 76.2 80.4 84.5 80.4

Adaptation 77.8 81.5 86.1 81.8
Crowdlayer 77.1 81.4 85.4 81.3
Bootstrap 77.1 81.2 85.1 81.2
Forward 77.5 81.2 84.9 81.2

Large Loss 77.7 81.6 85.4 81.6
AUM 77.5 81.5 85.3 81.4
Cartography 77.3 81.2 85.0 81.2
Prototype 77.7 81.4 85.5 81.5

(a) Offensive Language Detection from SBF

Methods FastT DRoB DeXL Avg

Oracle 40.7 49.7 88.3 59.6
Control 40.1 48.5 87.4 58.7
Majority 38.5 46.2 86.1 56.9

Adaptation 40.6 49.4 87.8 59.2
Crowdlayer 40.2 48.7 87.4 58.7
Bootstrap 40.8 49.3 87.4 59.1
Forward 40.6 48.6 87.3 58.8

Large Loss 40.5 48.9 87.8 59.1
AUM 40.3 49.0 87.1 58.8
Cartography 40.1 48.1 87.0 58.4
Prototype 40.4 48.6 88.0 59.0

(b) Natural Language Inference from MNLI

Methods FastT DRoB DeXL Avg

Oracle 55.5 57.3 73.2 62.0
Control 54.0 57.2 72.7 61.3
Majority 52.4 55.8 71.2 59.8

Adaptation 53.8 56.8 72.6 61.1
Crowdlayer 53.9 57.2 72.7 61.2
Bootstrap 54.1 57.4 72.7 61.4
Forward 53.5 57.3 73.0 61.4

Large Loss 55.6 57.4 73.1 62.0
AUM 55.4 56.5 72.6 61.5
Cartography 55.0 56.6 72.0 61.2
Prototype 55.1 57.1 73.1 61.7

(c) Sentiment Analysis from DynaSent

Methods FastT DRoB DeXL Avg

Oracle — 7.94 52.3 30.1
Control — 6.90 50.3 28.6
Majority — 5.89 47.9 26.9

Adaptation — — — —
Crowdlayer — — — —
Bootstrap — 6.72 50.5 28.6
Forward — — — —

Large Loss — 6.95 51.5 29.2
AUM — 6.69 51.5 29.1
Cartography — 6.24 51.0 28.6
Prototype — — — —

(d) Question Answering from NewsQA

Table 1: Aggregated results for all method and model combinations, averaged over three seeds. Model names are
abbreviated for space: FastT is FastText, DRoB is DistilRoBERTa, and DeXL is DeBERTa-XLarge. Avg is the
average across models for that method. FastText doesn’t produce context-dependent representations, and so is not
usable on the QA task.

strongest results in two out of four settings. Large
Loss is the best among cleaning methods, with the
highest scores in the remaining two tasks. Proto-
typical is also a strong runner-up. Large Loss is the
best overall method due to its consistency since it
never drops below second on all tasks.

Variance among the three seeds is fairly consis-
tent for all models and methods within the same
task. Specifically, the standard deviation for of-
fense detection and NLI are both around 0.5, with
sentiment analysis and QA around 1.5 and 4.5, re-
spectively. We do not see any strong trends across
tasks, nor any outliers for a specific method.

Breakdown by Task Table 1a contains the re-
sults for offense language detection, where we see
that Large Loss and Adaptation are the only meth-
ods to overtake the Control. These two are also
the best overall performers on natural language

inference as seen in Table 1b. The cleaning meth-
ods really shine on sentiment analysis and question
answering where even the worst cleaning method
often tops the best denoising method. We hypoth-
esize this happens because the denoising methods
work best in simple classification tasks, which we
further explore in the next section. A handful of
results are not reported in Table 1d since they refer
to methods that are designed exclusively for classi-
fication tasks, and cannot be directly transferred to
span selection.

Breakdown by Model The larger models per-
form better than the smaller models in terms of
downstream accuracy, but somewhat surprisingly,
there does not seem to be any clear patterns in
relation to the method. In other words, if a par-
ticular method performs well (poorly) with one
model size, it tends to also do well (poorly) when
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Table 2: Jaccard similarity for all pairs of targeted rela-
beling methods on the sentiment analysis task. Large,
Cart and Proto are short for Large Loss, Cartography
and Prototype, respectively. Results for other tasks
available in Appendix A.

Methods Offense NLI Sentiment QA

Default 81.6 48.9 57.4 6.95
Random 80.9 48.0 55.8 6.41
Cross 81.7 48.4 57.3 6.56

Table 3: Ablation results that vary the method of iden-
tifying errors for relabeling. Default uses the same
model for error selection and training.

applied to the other model sizes too. One possible
exception to this is the Prototype method show-
ing strong performance with DeBERTA-XLarge.
This is possibly because a stronger model produces
more valuable hidden state representations for de-
termining outliers. Since method performance is
largely independent of the model size, we use Dis-
tillRoBERTa as the encoder for simplicity in the
upcoming analyses.

Ablation How can we be sure that the cleaning
methods are actually exhibiting a small, but consis-
tent gain over the baselines rather than just natural
variation? Perhaps the scores are close simply be-
cause all the methods use the same amount of train-
ing data. If the cleaning methods are indeed adding
value, then they should perform much better than
random selection. To measure this, we replace the
pre-trained DistilRoBERTa model with a uniform
sampler to identify examples for cleaning.

Active learning has been shown to exhibit sig-
nificant decrease when transferring across model
types (Lowell et al., 2019). In contrast, we argue
that our method is not active learning since it is not
directly dependent on the specific abilities of the
target model. To test this claim, we also conduct an
additional ablation whereby we replace one model
type for another. Namely, we use the DeBERTa-
XLarge model to select examples for cleaning, then
train on the DistilRoBERTa model.

The results in Table 3 show that randomly select-

ing data points to relabel indeed lowers the final
performance by a noticeable amount. By compar-
ison, cross training models leads to a negligible
drop in performance. We believe this occurs be-
cause targeted relabeling produces clean data, and
clean data is useful regardless of the situation.

6 Discussion and Analysis

To better understand how the proposed clean meth-
ods operate, we conduct additional analysis with
the sentiment analysis task.

Methods Precision GoEmotions Synthetic

Oracle — 55.8 57.9
Control — 54.8 56.6
Majority — 53.0 55.2

Adaptation — 54.8 56.5
Crowdlayer — 54.9 56.4
Bootstrap — 55.0 57.0
Forward — 53.9 56.2

Large Loss 56.8 55.2 56.5
AUM 60.4 54.6 56.1
Cartography 19.0 54.3 56.4
Prototype 46.6 55.1 56.7

Table 4: This table contains results for the three dif-
ferent post-hoc analyses. Left column is precision of
the model in identifying mislabeled examples. Right
columns are results training on extended datasets. All
scores are average of three seeds on DistillRoBERTa.

How well do clean methods select items? We
compare the four proposed methods by first looking
at the amount of overlap in the examples selected
for relabeling. To calculate this, we gather all ex-
amples chosen for relabeling by their likelihood of
annotation error. For a given pair of methods, we
then find the size of their intersection and divide
by the size of their union, which yields the Jaccard
similarity. As shown in Table 2, AUM and Large
Loss have high overlap meaning that they select
similar examples for cleaning. We additionally cal-
culate the precision of each method by counting
the number of times a label targeted for relabel-
ing did not match the oracle label, and therefore
legitimately requires cleaning. Based on Table 4,
we once again see reasonable performance for the
Large Loss cleaning method.

Qualitative examples for sentiment analysis are
displayed in Table 5, which were chosen as the
most likely examples of label errors according to
their respective methods. Large Loss consistently
discovers ‘neutral’ labels that were mis-labeled as
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Method Input Text Label

That’s usually how it go goes. MIXED
I always order “to-go” MIXED

Large Loss It’s $15 bucks for a beer since I used a drink ticket MIXED
We usually frequent the settlers ridge location. MIXED
I went on June 4th around 10:30. MIXED

So fine, no problem. POSITIVE
A sirloin hotdog wrapped in bacon. NEUTRAL

AUM For many years, I have gone to the Pet Smart down the street. NEUTRAL
I was always so happy here when it was managed by Johnny. NEUTRAL
I ordered the pad Thai noodles, chicken chow mien and egg rolls. POSITIVE
The food and customer service was fantastic when you first opened POSITIVE
The servers were pleasant. POSITIVE

Cartography Our waiter was overly friendly and informational. MIXED
Family owned and operated these folks are killing it POSITIVE
I really thought the young folks behind the counter were outgoing and seemed to enjoy their jobs POSITIVE

This should be a fun family place! NEGATIVE
Hotel was awesome. NEGATIVE

Prototype Great service for many years on our cars, but always at an additional price. NEUTRAL
Salad was great but a bit small. NEUTRAL
We had to specify the order multiple times, but eventually when the food came it was actually
pretty good.

NEUTRAL

Table 5: Sentiment Analysis examples each method identified as being most likely to be label errors.

‘mixed’, while Prototype also does a good job un-
covering label errors, finding ‘positive’ examples
mislabeled as ‘negative’. Overall, we see that the
best performing cleaning methods do seem to pick
up on meaningful patterns.

How many examples should be cleaned? All
cleaning experiments so far have been run with na
= 10,000 examples with nb = 1,000 samples chosen
for relabeling. This is equivalent to using up λ = 5

6
of the labeling budget upfront, with the remaining
annotations saved for later. This λ ratio was chosen
as a reasonable default, but can also be tuned to
be higher or lower. Figure 2 shows the results of
varying the λ parameter from a range of 1

6 to 11
12 .

Based on the results, choosing λ = 2
3 would have

actually been the best option. This translates to na
= 8,000 examples with nb = 2,000 of those exam-
ples selected for re-labeling. As a sanity check, we
also try dropping the nb cleaned examples when
retraining, keeping only the noisy data. As seen in
Figure 2, the performance decreases as expected.

What if we increase the number of classes?
Based on the trends in the task breakdown of sec-
tion 5, denoising methods seem to perform worse
than explicit relabeling methods as the task gets
harder. Most denoising methods may even be-
come intractable for complex settings, such as
those which require span selection. To test this hy-
pothesis, we extend our setup to the GoEmotions

Training without 
the cleaned data

Figure 2: Varying the number of training examples
changes the amount of budget remaining for cleaning.
10,000 examples is set as the default and the percent
change is measured in comparison to this point.

dataset, where the goal of the task is to predict the
emotion associated with a given utterance (Dem-
szky et al., 2020). Whereas previous tasks dealt
with 2-4 classes, the GoEmotions dataset requires
a model to select from 27 granular emotions and
a neutral option, for a total of 28 classes. Intu-
itively, we would expect the denoising methods
to struggle since the pairwise interactions among
classes has grown exponentially larger. The results
in Table 4 reveal that Large Loss again outperforms
all other methods in prediction accuracy. Notably,
Adaptation in particular continues to exhibit lower
than average scores compared to other methods.
This supports our claim that relabeling methods are
more robust as the number of classes grows.
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What happens if noise is synthetically created?
Many of the advanced denoising methods were
originally tested on synthetically generated noise,
whereas the noise in our datasets originates from
noisy annotations, caused by the inherent am-
biguity of natural language text (Pavlick and
Kwiatkowski, 2019; Chen et al., 2020). Perhaps
this partially explains how our proposed relabeling
methods are able to outperform prior work. To
study this further, we create a perturbed dataset
starting from the gold DynaSent examples. Specif-
ically, we randomly sample replacement labels
according to a fabricated noise transition matrix,
rather than sampling from the label distribution
provided by annotators. (More details in Appendix
D.) With noise coming from an explicit transition
matrix, it might be easier for all models to pick up
on this pattern.

The middle column of Table 4 shows that all
eight cleaning methods perform on par with each
other. When comparing the variance on this dataset
with synthetic noise against the original DynaSent
dataset with natural noise, the standard deviation
drops from 0.34 down to 0.28, highlighting the uni-
formity in performance among the eight methods.
The denoising methods work as intended on syn-
thetic noise, but such assumptions may not hold on
real data with more nuanced errors.

7 Conclusion

Noisy data is a common problem when annotat-
ing data under low resource settings. Perform-
ing redundant annotation on the same examples
to mitigate noise leads to having even less data to
work with, so we propose data cleaning instead
through targeted relabeling. We apply our methods
on multiple model sizes and NLP tasks of varying
difficulty, which show that saving a portion of a
labeling budget for re-annotation matches or out-
performs other baselines despite requiring no extra
parameters to train or hyper-parameters to tune.
Intuitively, our best method can be summarized
as double-checking the examples that the model
gets wrong to see if it is actually an incorrect label
causing problems.

Thus, to make the most out of the scarce labeled
data available, we believe a best practice should
include targeting examples for cleaning rather than
spending the entire annotation budget upfront. Fu-
ture work includes exploring more sophisticated
techniques for identifying examples to relabel and

understanding how such cleaning models perform
on additional NLP tasks such as machine transla-
tion or dialogue state tracking, which have distinct
output formats.
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A Additional Quantitative Results

Looking at Figure 3, the similarity scores for of-
fensive language detection and natural language
inference largely match up with the scores found
in sentiment analysis. In particular, Large Loss
and AUM exhibit higher overlap with each other.
Additionally, Prototype shows a medium overlap
and Cartography shows no overlap at all with the
other methods. We reach a similar conclusion that
the Large Loss method is a reasonable technique.

B Additional Qualitative Examples

More examples can be found in Table 6 on the next
page. We see that Large Loss is once again quite
accurate in picking up labeling errors. Prototype for
NLI does a great job at finding examples labeled as
‘entailment’ which should be something else. The
hypotheses for all the selected examples contain
negative sentiment, which may be located far away
from the entailment examples in the embedding
space. Cartography exhibits a pattern of always
choosing examples labeled as ‘contradiction’.

C Comparison to Learning Schemes

On the surface, targeting examples for relabeling
contains may seem similar to active learning or
curriculum learning. Although there are certainly
some parallels between these techniques, these are
fundamentally different learning paradigms.

Active learning methods typically choose new
examples to label based on the uncertainty of the
model (Tong and Koller, 2001; Hanneke, 2014) or
on the diversity they can add to the existing dis-
tribution (Sener and Savarese, 2018; Ash et al.,
2020). Although sample noise can also be mea-
sured through model uncertainty, denoising and
active learning do not have the same goal. More
specifically, the noise of a training example is re-
lated to how its label is somehow incorrect. Perhaps
the start of a span was not properly selected or an
example that should not be tagged was accidentally
included. More simply, an example is mislabeled
as class A, when in fact it belongs to class B. This
situation is not possible with active learning be-
cause the examples in active learning do not have
labels yet! The entire point of active learning is to
choose which examples should be labeled next (Set-
tles and Craven, 2008; Settles, 2011). Thus, when
we try to identify examples for cleaning, we are
re-labeling rather than labeling for the first time.

Curriculum learning also selects examples for
training based on model uncertainty (Bengio et al.,
2009) and diversity maximization (Jiang et al.,
2014). It could be interpreted that easier exam-
ples are those that contain less noise, which would
connect to our proposed process. However, tra-
ditional curriculum learning chooses these exam-
ples upfront rather than based on modeling dynam-
ics (Jiang et al., 2015). Extensions have been made
under the umbrella of self-paced curriculum learn-
ing whereby examples are chosen for a curriculum
based on how they react to a model’s behavior (Ku-
mar et al., 2010). This is indeed similar to how we
can choose to relabel examples based on the model
loss. This aspect of relabeling though is the key dis-
tinction – we act on these examples in an attempt to
denoise the dataset. On the other hand, self-paced
learning simply feeds those same examples back
into the model without any modification.

D Data Preprocessing

D.1 Synthetic Data Generation

The synthetic dataset is created by applying an ex-
plicit noise transition matrix with 20% noise. Since
the original dataset contains four classes, we start
with an empty 4x4 matrix. The labels should not
be confused most of the time so we assign a likeli-
hood of 0.8 across the diagonal of the matrix. Next,
we randomly select another class for each row to
receive 0.1 likelihood of confusion. This leaves
0.1 for each row to be divided between the two re-
maining classes, which receive 0.05 each. For each
example in the oracle dataset, we use the original
label to select a single row from the constructed
noise transition matrix. Lastly, we are able to sam-
ple a new label according to the weights provided
by this 4-D vector. In contrast, the original sam-
pling procedure obtained its weights according to
the normalized label distribution provided by the
annotations.

D.2 GoEmotions Preprocessing

To prepare the GoEmotions dataset, we filter the
raw data to include only examples that have at
least three annotators and a clear majority vote
(used for determining the gold label). We then
cross-reference this against the proposed data splits
offered by the authors which have high inter-
annotator agreement. From this joint pool of exam-
ples, we sample 12k training examples to match the
setting of all our other experiments. This results in
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(a) Jaccard similarity on Social Bias Frames (b) Jaccard similarity on MNLI dataset

Figure 3: Jaccard similarity overlap for all pairs of targeted relabeling methods on the offensive language detection
task and the natural language inference task.

12000/2954/2946 examples for train, development
and test splits respectively.

E Limitations

Our proposed methods are limited to studying noise
which comes from human annotators acting in good
faith. Other sources of label noise include errors
which occur due to spammers, distant supervision
(as commonly seen in Named Entity Recognition),
and/or pseudo-labels from bootstrapping. Within
interactive settings, such as for dialogue systems,
models may also encounter noisy user inputs such
as out-of-domain requests or ambiguous queries.
Our methods would not work well in those regimes
either.
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Method Premise Hypothesis Label

Why shouldn’t he be? He doesn’t actually want to be that way. ENTAILMENT

How do they feel about your being a Theater major? They don’t know you’re a theater major, do they? ENTAILMENT

Defication of humankind as supreme. Humankind is not supreme. ENTAILMENT

Large Loss These are artists who are either emerging as leaders in their These artists are becoming well known in CONTRADICTION

fields or who have already become well known. their fields.
As he stepped across the threshold, Tommy brought Tommy stepped across a threshold and put CONTRADICTION

the picture down with terrific force on his head. a picture down on his head.

And if, as ultimately happened, no settlement resulted, Even if an agreement could not be reach ENTAILMENT

we could shrug our shoulders, say, ’Hey, we tried.’ we could say we tried.
Companies that were foreign had to accept Indian Foreign companies had to take Italian money CONTRADICTION

financial participation and management.
AUM ... he’s been tireless about pursuing both celebrity He never wanted any attention and kept to CONTRADICTION

and the cause of popular history ever since. himself all the time.
Two more weeks with my cute TV satellite dish My appreciation of my satellite dish has ENTAILMENT

have increased my appreciation of it. increased.
Each working group met several times to develop Each working met more than once to discuss ENTAILMENT

recommendations for ... legal services delivery system changes to the legal services delivery system.

A detailed English explanation of the plot is always You’ll have to figure the plot out on your own. CONTRADICTION

provided, and wireless recorded commentary units ...
I just loved Cinderella . I also saw my sisters as the I really disliked Cinderella and could never CONTRADICTION

wicked stepsisters sometimes, and I was Cinderella ... relate to her.
Cartography The judge gave vent to a faint murmur of disapprobation The prisoner in the dock remained still and CONTRADICTION

and the prisoner in the dock leant forward angrily. and expressionless
Jon was about to require a lot from her. Jon needed nothing to do with her. CONTRADICTION

I know you’ll enjoy being a part of the Herron School You will detest the Herron School of Art and CONTRADICTION

of Art and Gallery. Gallery and have nothing to do with it

Why shouldn’t he be? He doesn’t actually want to be that way. ENTAILMENT

I like this area a whole lot and it’s, it’s growing so much I really despise living in this location and would ENTAILMENT

and I just want to be near my family ... prefer to be farther away from my relatives.
Prototype The air is warm. The arid air permeates the surrounding land. ENTAILMENT

Inside the Oval: White House Tapes From FDR to Clinton No tapes were recorded in the white house ENTAILMENT

He became even more concerned as its route changed He wasn’t worried at all for the plane ENTAILMENT

moving into another sector’s airspace.

Table 6: Natural language inference examples that each method identified as being most likely to be label errors.
Sentences were truncated in some cases for brevity.
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Abstract
Knowledge Graphs (KGs) are directed labeled
graphs representing entities and the relation-
ships between them. Most prior work focuses
on supervised or semi-supervised approaches
which require large amounts of annotated data.
While unsupervised approaches do not need
labeled training data, most existing methods
either generate too many redundant relations or
require manual mapping of the extracted rela-
tions to a known schema. To address these lim-
itations, we propose an unsupervised method
for KG generation that requires neither labeled
data nor manual mapping to the predefined
relation schema. Instead, our method lever-
ages sentence-level semantic similarity for au-
tomatically generating relations between pairs
of entities. Our proposed method outperforms
two baseline systems when evaluated over four
datasets.

1 Introduction

A knowledge graph (KG) is a directed labeled
graph in which nodes represent entities and edges
are labeled by well-defined relationships between
entities. Formally, given a set E of entities and a
set R of relations, a knowledge graph is a set T of
triples, where T ⊆ E × R × E. A triple t ∈ T
can be expressed as (eh, r, et), where eh ∈ E,
r ∈ R, et ∈ E, and eh and et are referred to
as the head entity and the tail entity, respectively.
As a structured representation of world knowledge,
knowledge graphs have been used in a number of
applications such as Web search (Singhal, 2012;
Wang et al., 2019a), question answering (Huang
et al., 2019) and recommender systems (Wang et al.,
2019b).

Knowledge graphs can be constructed automati-
cally from text. Most of the automatic KG gener-
ation methods are supervised or semi-supervised,
where a large set of labeled data is required to
train a KG generation model (e.g., PCNN (Zeng
et al., 2015), OLLIE (Schmitz et al., 2012), ReVerb

Barack 
Obama

born Hawaii

was born inwas

Barack 
Obama

Hawaii

place_of_birth

Figure 1: A KG generated using Stanford OpenIE (left)
and our method (right) for the input sentence “Barack
Obama was born in Hawaii”.

(Fader et al., 2011)). However, creating labeled
data is labor-intensive and the generated graph is
limited to the specific domain of the training corpus.
In addition, supervised methods can only extract a
predefined set of relations occurring in the training
data and the model needs to be re-trained to work
with other new relation schemas.

Unsupervised KG models (e.g., Stanford Ope-
nIE (Angeli et al., 2015)), on the other hand, do
not need labeled training corpus. They often use
syntactic parsing and a set of rules to extract rela-
tionships between two entities in a sentence. Al-
though not normally confined to a predefined set
of relations, too many unuseful or inaccurate rela-
tions can be generated. In Figure 1, the left graph
presents an example KG using triples generated
with Stanford OpenIE (Angeli et al., 2015), while
the right graph presents the KG generated using our
proposed method, both using the same single input
sentence. In addition, in case only relations in a pre-
defined set need to be generated, the unsupervised
methods do not normally provide a mechanism to
map the extracted relation to a known one in the
set of relations

In a project to build knowledge graphs from
news articles where no labeled data are given, we
propose an unsupervised knowledge graph gener-
ation method using semantic similarity (KGSS)
that does not need a labeled set of training data
nor a complicated set of syntactic rules for KG
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Figure 2: An overview of KGSS, our proposed unsupervised KG generation system.

generation. The method can work with any set
of relations that a user prefers, and uses semantic
similarity matching to automatically identify the
relation between two entities. A salient feature
of our method is the use of a pretrained language
model (Reimers and Gurevych, 2019) to compute
and measure the similarity between the sentence
embedding and the embedding of candidate triples
formed by the two entities and a candidate relation.
The best matching candidate relation is identified
as the relation between the two entities.

Since most supervised models underperform in
low-resource settings where no or very limited la-
beled data are provided, our proposed unsupervised
approach can extract useful relations from unla-
beled data and can also be used to create a labeled
data set for distant supervised learning, which can
potentially lead to better results. In this paper, we
focus on describing and evaluating the unsuper-
vised method.

The contributions of this paper are as follows:

• We propose a novel unsupervised KG genera-
tion system that requires no labeled data.

• Our method is flexible and can work with any
set of relations. The results of the empiri-
cal evaluation (automatic as well as human)
demonstrate that our system significantly out-
performs two state-of-the-art unsupervised
methods for KG generation.

• To facilitate research in KG construction or
information extraction from news articles, we
develop a new dataset called NewsKG211 that
was created from recent news articles.

1The NewsKG21 dataset and the code for our KG genera-
tion and visualization are available under the open source li-
cense at https://github.com/lixianliu12/KGSS

2 Related Work

Research on KG construction falls under super-
vised, semi-supervised, or unsupervised categories.
For the supervised methods, we name two of them.
Bastos et al. (2021) propose the RECON model to
extract relations from a sentence and align them
to the KG, using a graph neural network for ob-
taining the sentence representations. Then a neural
classifier is adopted to predict the relation of each
entity pair in the sentence. Another supervised
learning method for KG construction is SpERT
(Eberts and Ulges, 2020), which is a span-based
deep learning model with the attention mechanism,
targeting to extract entities and relations jointly.
Semi-supervised approaches such as ReVerb (Fader
et al., 2011), OLLIE (Schmitz et al., 2012), and
Stanford OpenIE (Angeli et al., 2015), to name a
few, leverage linguistic features (e.g., dependency
trees and POS tags) with many human-defined pat-
terns and existing knowledge bases (e.g., Wikidata
(Vrandečić and Krötzsch, 2014), DBpedia (Auer
et al., 2007)) to extract triples. These systems have
a supervision component. For example, Stanford
OpenIE uses distant supervision to create a noisy
corpus of sentences annotated with relation men-
tions and train a logistic regression classifier to
decide which action to perform on an edge on
the parse tree when extracting relations. However,
these systems miss many potential triples in a sen-
tence since they use verbs as a signal to identify
triples, whereas many relational triples may not be
connected with a verb. They also tend to generate
redundant triples and require manual mapping of
the extracted relations to a fixed relation schema.

The earliest unsupervised approaches (i.e.,
heuristics approaches) (Suchanek et al., 2007; Auer
et al., 2007; Bollacker et al., 2008) were applied to
Wikipedia data, building the pioneering Knowl-
edge Graphs (e.g., YAGO, DBpedia, Freebase).
However, these approaches leverage additional
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Figure 3: A demo of our system. (1) An input box for users to enter text. (2) A button for users to select their
preferred relation schema; if nothing is imported, a default relation schema is used. (3) Users can select the type of
entities to be extracted; if nothing is selected, both Named Entity and Noun will be extracted. (4) A submit button.
(5) An interactive KG will be generated and visualized where the users can drag the nodes around to modify the
presentation of the graph as desired.

knowledge to construct the graph, for example,
the Wikipedia hierarchical categories in (Suchanek
et al., 2007). Another drawback of these ap-
proaches is that they are slow and costly to build
the KG. The resultant KGs are also restricted to a
specific domain of corpus. MAMA (Wang et al.,
2020), an unsupervised KG construction model,
uses the attention weight matrices of a pre-trained
language model (e.g., BERT (Devlin et al., 2018))
to extract the candidate triples. For mapping the ex-
tracted relations to a fixed schema, they follow the
method of Stanford OpenIE (Angeli et al., 2015)
requiring some manual annotations. Goswami et al.
(2020) propose the RE-Flex framework for unsuper-
vised relation extraction, where given a set of rela-
tions, each of them is rewritten as a cloze template
(e.g., the cloze template of DraftBy is X was cre-
ated by Y, where X and Y denote subject and object
respectively.). Then the cloze template is seman-
tically matched with the context (e.g., “Bill Gates
founded Microsoft”) to determine if the context has
the relation or not. Another simliar work is pro-
posed in (Tran et al., 2020) where the importance
of the feature ENTITY TYPE for relation extrac-
tion is emphasized in their model called EType+.
However, the feed-forward neural network classi-
fier which is incorporated in their EType+ model

makes their method not entirely unsupervised.

3 Proposed Model: KGSS

Given a document, our system generates a knowl-
edge graph from the document. Figure 2 illus-
trates an overview of our system, KGSS, which
consists of four modules: entity extraction, entity
tuple formation and filtering, relation extraction,
and KG storage and visualization, and Figure 3
illustrates the user interface of our system and vi-
sualizes a KG generated given an input paragraph
based on a relation schema in TACRED* with 6 ad-
ditional relations: loc:province_of, loc:country_of,
loc:city_of, org:is_part_of, per:position_held and
per:friend. Since our proposed system is unsuper-
vised, it can flexibly work with any user-specified
relation schema.

3.1 Entity Extraction
The first step in our system is co-reference resolu-
tion, which identifies and replaces different expres-
sions of the same real-world entity with the same
expression. We use an end-to-end neural coref-
erence resolution model (Lee et al., 2017) from
AllenNLP (Gardner et al., 2018) for this task.

In the second step, our system extracts all en-
tities. We allow the user to specify in the user
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interface whether they would like to extract only
named entities or also include other noun phrases.
A named entity (NE) refers to a real-world object
associated with a name, for example - a person, an
organization, or a location (e.g., Barack Obama,
Apple Inc., New York City). We use a transition-
based algorithm (Lample et al., 2016) from the
spaCy2 library to detect all the NEs in a given sen-
tence. There are 18 categories of NEs, such as PER
(for person), ORG (for organization), and LOC (for
location) in the spaCy en_core_web_lg pipeline for
the NER task. We keep the NEs in all categories.
In addition, if noun phrases are to be included, we
extract all noun phrases (also called noun chunks)
as candidate entities.

3.2 Entity Tuple Formation and Filtering

After extracting entities, we form a set of entity tu-
ples for each sentence as follows. For each sentence
s in the input document, let E = (e1, e2, ..., ek)
be the list of identified entities in s, where ei
occurs before ej in s when i < j. The set T
of entity tuples for s contains all pairs ⟨ei, ej⟩
such that ei occurs before ej in s, that is, T =
{⟨ei, ej⟩|i < j}. We refer to this tuple formation
rule as TF1. Thus, for a sentence containing k ex-
tracted entities, there are k(k−1)

2 entity tuples in its
T . As an example, consider the sentence “Barack
Obama was born in Honolulu and graduated from
Columbia University.”. The list of extracted enti-
ties is Barack Obama, Honolulu, Columbia Univer-
sity, and the set of entity tuples is ⟨Barack Obama,
Honolulu⟩, ⟨Barack Obama, Columbia University⟩,
and ⟨Honolulu, Columbia University⟩.

However, not all entity tuples lead to generation
of good relations between the two entities. Thus,
we use some heuristic rules to filter out unpromis-
ing tuples. Recall that NEs have categories. We use
NEPER to denote an NE in the person category,
NEORG an organization NE, and NELOC a loca-
tion NE. In addition, we denote all noun phrases
as NENOUN . Not all the combinations of entities
will yield meaningful relations between them. For
instance, a location subject is most likely to not
have a relation with its non-location object (Wang,
2020). Thus, we leverage the NE types and apply
the following rules to keep quality candidate tuples
and filter out some invalid ones: Rule TF2: keep
all the tuples whose head entity is a NEPER, a
NEORG or a NELOC , and Rule TF3: if the first

2https://spacy.io/

entity is a NELOC , keep the tuple if the second en-
tity is also a NELOC ; otherwise remove the tuple.

Thus, after applying filtering rules, the final
set of entity tuples from the previous example is
⟨Barack Obama, Honolulu⟩ and ⟨Barack Obama,
Columbia University⟩. Tuple ⟨Honolulu, Columbia
University⟩ is filtered out due to Rule TF2, which
is beneficial because a relation between Honolulu
and Columbia University is not visibly helpful.

3.3 Relation Extraction

We denote the final set of entity tuples for a sen-
tence after applying the filtering rules as F . Each
tuple in F is in the format of head-tail, denoted
as ⟨eh, et⟩. Our algorithm for finding the relation
between eh and et is based on semantic matching.

Given a tuple ⟨eh, et⟩, its sentence s and a set
of pre-defined relations R = (r1, r2, . . . , rn), we
collect all the tokens between eh and et in s (includ-
ing eh and et) and name this sequence of tokens as
Psub. For each relation ri in R, we also construct a
sequence of tokens as "ehriet" and name it Ri. Us-
ing a state-of-the-art embedding model, Sentence-
BERT (SBERT)3 (Reimers and Gurevych, 2019),
we compute the semantic similarity between Psub
and Ri by obtaining the embeddings of Psub and Ri

and computing their cosine similarity. We do this
for all the ri’s in R and select the relation ri whose
Ri has the highest similarity score with Psub. If
this highest similarity score is higher than a thresh-
old4, then ri is selected as the relation between eh
and et. This generates a triple (eh, ri, et) for the
knowledge graph. This process is repeated for all
the entity tuples for sentence s and for all sentences
in the input document. A triple is removed if it has
been generated from a previous sentence.

Figure 4 shows an example sentence, its two en-
tities ⟨Barack Obama, Columbia University⟩, the
Psub formed by the two entities, the Ri’s and the
generated triple for the entity tuple. Note that even
though the Psub span is considerably long, SBERT
helps generate the correct relation in this case be-
cause of contextual knowledge encoded within
such pretrained language models, thus validating
the effectiveness of using semantic similarity in

3We use distilbert-base-nli-stsb-mean-tokens as the pre-
trained model.

4We set this threshold to 0.8 in our experiments based on
the following experiment in the NYT dataset: beginning at 0
and increasing by 0.2 on each test until the threshold reaches
1, and we found that setting the threshold at 0.8 yielded the
best F-score results. We use this threshold for all the other
datasets.
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Sentence: Barack Obama was born in Honolulu and graduated from Columbia University.
eh et

Barack Obama was born in 
Honolulu and graduated from 
Columbia University

Barack Obama age Columbia University
Barack Obama employee of Columbia University 
Barack Obama graduated from Columbia University

Barack Obama spouse Columbia University
Barack Obama siblings Columbia University
…
…

(Barack Obama, graduated_from, Columbia University)

Psub

Ri’s

triple

Semantic Similarity 
Computation

Figure 4: An example for Relation Extraction phase. At the top is the sentence with eh and et denoting head and
tail entities, respectively. Psub is the part of sentence between eh and et. Ri’s are the sequences formed by the two
entities and a relation. The final extracted triple for the two entities is also shown.

Dataset # Sentence # Relations Example Sentences Triple

TACRED 15509 42 Both Konin and Alessi think so. (Alessi, no_relation, Konin)
TACRED* 3325 41 Miettinen hired for WPS champ

Sky Blue.
(Miettinen, per:employee_of, Sky Blue)

NYT 5000 24 At the time, she lived in Hollis,
Queens.

(Hollis, neighborhood_of, Queens);
(Queens, contains, Hollis)

WEBNLG 703 246 Bionico is a dessert containing
sour cream from Mexico.

(Bionico, country, Mexico);
(Bionico, ingredient, cream)

NewsKG21 685 91 Kevin Feige is married to
Caitlin, a cardiothoracic nurse.

(Kevin Feige, spouse, Caitlin);
(Caitlin, job_title, cardiothoracic nurse)

Table 1: Dataset statistics. TACRED* is a subset of TACRED without instances containing triples with “no_relation”.

KG relation extraction.

3.4 Optional Pattern-Based Rules

To further improve relation extraction in the news
domain, we apply the following pattern-based
rules based on our observation of their occurrence
frequency in news articles: (1) Relation Extrac-
tion Rule 1 (RE1): if an entity tuple contains a
noun phrase and a named entity of type Person
(NEPER) and the noun phrase is immediately be-
fore a NEPER in the sentence (such as in "U.S.
President Biden"), we assign "job title" as the rela-
tion; (2) Relation Extraction Rule 2 (RE2): if the
two entities in a tuple appear as NELOC , NELOC
in the sentence (such as in "Seattle, Washing-
ton"), the "is part of" relation is generated; and
Relation Extraction Rule 3 (RE3): relation "job
title" is generated in the tuple with the pattern
NEPER, noun phrase (such as in "Caitlin, a car-
diothoracic nurse").

We would like to emphasize that these rules are
optional and even without these heuristics, our
method outperforms the other unsupervised ap-
proaches, as demonstrated in Table 4 in section

5.3. Please also note that these rules may not be
100% accurate, but none of the existing KG gen-
eration methods is 100% accurate. These optional
heuristics can better extract relations when two en-
tities are next to each other in a sentence, where
SBERT may not have enough information to cor-
rectly identify the relation between the two entities.
We will show that these rules lead to a better overall
result on news domains. Our goal here is to demon-
strate that optional domain specific rules can be
used to further improve the quality of the generated
triples. If our purpose is to generate more labeled
data for distant supervision, the use of these rules
can reduce the overall noise ratio.

4 Evaluation Datasets

We evaluate our KG system by comparing the gen-
erated triples to manually annotated triples from
three benchmark information extraction datasets
and a new dataset on the news domain, all for En-
glish language.
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4.1 Benchmark Datasets

The three benchmark datasets are: (i) TACRED
(Zhang et al., 2017), (ii) NYT (Riedel et al., 2010),
and (iii) WEBNLG (Gardent et al., 2017). Only
their test datasets are used in our evaluation be-
cause our method does not need training. Each of
the datasets contains a set of independent sentences
and one or more ground truth triples for each sen-
tence. TACRED has 41 relations originally from
the TAC KBP yearly challenges 5 with a newly
created relation called “no_relation”6. This dataset
was manually constructed from an underlying cor-
pus from TAC KBP where each sentence is labeled
with a single ground truth triple and a standard
evaluation tool is provided. NYT and WEBNLG
datasets have 24 and 246 predefined relations, re-
spectively. In both datasets, a sentence may have
more than one ground truth triple. The statistics
of the three benchmark datasets and our manually-
created dataset are given in Table 1.

4.2 New Dataset: NewsKG21

Our goal in this research is to create a KG from
news articles in order to build question-answering
tools for editors of a news agency. The bench-
mark datasets we can obtain are not completely
in the news domain. To evaluate our method on
the news domain, we created a new dataset named
NewsKG21. Another reason for us to develop a
new KG generation dataset is that many public
benchmark KG datasets are of poor quality since
they were created mostly via crowdsourcing (e.g.,
in the TACRED dataset, the ground truth label for
“AIG SELLS ALICO TO METLIFE” is (‘ALICO’,
‘parents’, ‘AIG’), which is wrong). The evaluation
results based on such datasets may be misleading.
As a result, we carefully created a new dataset with
as little noise as possible.

Four volunteers assisted in the creation of this
dataset. One is an author of this paper, and the
others are senior undergraduate Computer Science
students. We selected 685 sentences from news ar-
ticles published in 2021 in CNN, CBC, USNEWS,
The Star, and Wikipedia News. From the 685 sen-
tences, 1247 unique triples were manually gener-
ated. We divided the dataset into two parts: a test
data set containing 271 sentences and 705 ground
truth triples and a training set with 414 sentences

5https://tac.nist.gov/
6The results of the evaluation including the “no_relation”

instances can be found in Appendix A.

and 542 ground truth triples. To prevent bias and
advantages for a certain system, no system was
engaged in the dataset creation process. Only the
testing set is used to assess all unsupervised mod-
els.

5 Experiments and Discussion

5.1 Baselines and Metrics

We compare our system with two other state-
of-the-art unsupervised systems7, Stanford Ope-
nIE (Angeli et al., 2015) and MAMA (with the
BERTLARGE option) (Wang et al., 2020).

Entity tuple extraction: To compare the ex-
tracted entities with those in the ground truth data,
we use Token Set Ratio8, to calculate the similarity
between two entities. Given an extracted entity E
and the ground truth entity G, Token Set Ratio is de-
fined as 2M

T where T is the total number of tokens
in both E and G (that is, |E|+ |G| where |X| is the
number of tokens in entity X), M is the number
of matched tokens between E and G, and tokens
are separated by spaces in the entity (that is, tokens
are basically the words in the entity). For example,
if E is "Trudeau" and G is "Justin Trudeau", the
token set ratio is 2/3.

This entity matching method is used for all the
evaluated methods. Empirically, the threshold of
string similarity is set to 0.9 for all the systems.
The need for partial matching over exact match-
ing is motivated by the observation that some gold
standard annotations in the benchmark datasets
are incompletely-matched entities. For example,
“Apollo 12” appears as an entity in the original text,
but it appears as “Apollo” in the gold standard triple
in a benchmark dataset.

Triple generation: For a fair comparison, we
also map the extracted relations from all the meth-
ods (including Stanford OpenIE and MAMA) to
each of the dataset’s relations using the same
method, i.e., using SBERT embeddings for com-
puting the cosine similarity between extracted rela-
tions and predefined relations in the schema, and
selecting the one with the highest similarity score.
We chose this relation mapping approach for Stan-
ford OpenIE and MAMA instead of their original

7Although Stanford OpenIE was trained in a semi-
supervised way, we use their pre-trained version and do not
fine-tune it on our training dataset. Thus, we consider our use
of their method as unsupervised.

8https://pypi.org/project/fuzzywuzzy/
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Dataset System P % R % F1 %

TACRED*
Stanford OpenIE 18.4 3.0 5.2
MAMA 12.6 2.3 3.8
(Ours) KGSS 43.5 27.6 33.8

NYT
Stanford OpenIE 2.7 1.5 1.9
MAMA 1.7 7.2 2.8
(Ours) KGSS 25.7 29.2 27.3

WEBNLG
Stanford OpenIE 2.5 6.5 3.6
MAMA 5.1 6.0 5.5
(Ours) KGSS 8.4 9.1 8.7

NewsKG21
Stanford OpenIE 7.1 11.3 8.7
MAMA 2.1 6.1 3.2
(Ours) KGSS 24.6 20.4 22.3

Table 2: The results of KG triple extraction.

manual relation mapping techniques, which are
irreproducible in our experiments.

For the TACRED* dataset, we calculate preci-
sion, recall, and F-score with the provided stan-
dard evaluation script. As the TACRED* dataset
also contains pronouns and nouns as entities in
the ground truth triples, we also extract these in
addition to the named entities and omit the coref-
erence resolution in our system for this dataset
in order to have a fair comparison because both
baselines can detect pronouns and nouns as enti-
ties. In our system, the user can choose types of
entities that can be identified. For the NYT and
WEBNLG datasets, we calculate the standard F1
score as F1 = (2 ∗ p ∗ r)/(p + r), with p = c

m
and r = c

g , where c denotes the number of cor-
rectly extracted triples, m is the total number of
extracted triples, and g is the number of triples in
the annotated dataset.

5.2 Results and Discussion

Table 2 presents the results of KG triple generation
over the four datasets. We note that our method
KGSS consistently outperforms both unsupervised
baselines across all the datasets by considerable
margins on all the three metrics. One possible
explanation for the improvement gains achieved
by KGSS as compared to the unsupervised base-
lines is that the baseline methods tend to extract
triples using verbs as signals which causes them to
miss many triples, whereas our method generates
the triples using semantic similarity from sentence
embeddings. The baseline models also generate
redundant triples which lowers their precision.

It is worth noting that among the four datasets,
WEBNLG is the most challenging one for KGSS,
with much lower performance than that on other

System P % R % F1 %

Stanford OpenIE 19.2 30.9 23.7
MAMA 11.4 32.8 16.9
KGSS 45.1 48.7 46.8

Table 3: Results of entity tuple extraction (eh, et) on
NewsKG21

System P % R % F1 %

Stanford OpenIE 7.1 11.3 8.7
MAMA 2.1 6.1 3.2
KGSS (without rules) 10.5 12.1 11.2

KGSS with RE 1 13.1 15.7 14.3
KGSS with RE 1 & 2 16.1 19.3 17.5
KGSS with RE 1, 2 & 3 16.5 20.1 18.1
KGSS with 3 REs & tail type 24.6 20.4 22.3

Table 4: Results of triple extraction (eh, r, et) on
NewsKG21 dataset, without relation extraction rules
(top) and with relation extraction rules (bottom). Adding
rules improves the performance.

datasets. This is most likely because of the large
number of relation types in its schema (more than
200 as compared to other datasets having less than
100 relations). We conjecture that some relations
may be too semantically similar for SBERT to dis-
tinguish from each other.

In terms of qualitative analysis, looking at the
visual KG shown in Figure 3 generated for an ex-
cerpt from a Wikipedia article, we notice that all
mentions of ‘Bill Gates’ and ‘Gates’ get correctly
resolved to a single entity, i.e., ‘Bill Gates’, (and
similarly, ‘Microsoft Corporation’ and ‘Microsoft’
get resolved to ‘Microsoft Corporation’) which
helps prevent generating redundant triples. An-
other strength of the system can be seen in the form
of triples such as ⟨Bill Gates, friend, Paul Allen⟩,
⟨Albuquerque, city of, New Mexico⟩ and ⟨Seattle,
city of, Washington⟩. Also, all the various positions
held by Gates are captured well, thus highlighting
the role of such systems as helpful tools for sum-
marizing long pieces of unstructured text into a
concise visual representation.

5.3 Ablation Experiments

In Table 3, we evaluate the three systems on the
NewsKG21 dataset one the task of entity tuple ex-
traction, which means that we only compare the
performance of systems generating pairs of head
and tail entities to the ground truth in the dataset.
We see that our method is better than Stanford Ope-
nIE and MAMA which is most likely attributed to
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our entity tuple filtering rules (TF1, 2, and 3) that
can remove some noisy entity pairs while preserv-
ing a large number of meaningful tuples.

We also evaluate the three relation extraction
rules described in Section 3.4. The results in Table
4 show that each rule helps to enhance the per-
formance of our system as all the three measures
increase as we apply more rules. The F-score is in-
creased by around 7% after applying the three rules
all together. One significant point to notice is that
our system outperforms the other two unsupervised
methods even when no heuristic rules are used.

By analyzing the generated triples, we realized
that some incorrect triples can be avoided if we
consider the entity types of a relation in relation
extraction. For example, the spouse relation can
only connect two entities of the person type. Thus,
we add the type of the tail entity in each relation
in our relation schema. Note the head entity type
is already in the schema, similar to the schema
in the TACRED dataset. With such information
in the relation schema, we are able to eliminate
some candidate relations given an entity tuple. For
example, if the entity tuple is "Trump, New York",
any relations whose head and tail entity types do
not match Person and Location (such as the spouse
relation) are not considered as candidates.

The last row of Table 4 demonstrates that by
using the tail entity type for each relation in the
schema, we can raise the F-score of our system
by 4% points. This is another advantage of our
system, which uses an entity-type aware method for
eliminating unpromising triple extraction results,
which the Stanford OpenIE and MAMA systems
do not have. In addition, we run an ablation test
on the NewsKG21 dataset using the tuple filtering
criteria specified in section 3.2. As seen in Table 5,
each rule contributes to the improvement of overall
performance of our system.

One interesting finding is that, of the three
systems, MAMA gets the lowest score on the
NewsKG21 dataset since it extracts entity tuples
based on information contained in a pre-trained
language model BERT. As such, MAMA will ap-
proach its KG generation limit if the input arti-
cles are not from the language model’s underlying
corpus, such as our NewsKG21 dataset which is
produced from the recent news stories.

Filtering Rule P % R % F1 %

No Rule 12.9 25.4 17.1
TF 1 18.5 24.3 20.9
TF 1 & 2 19.1 23.4 21.1
TF 1, 2 & 3 20.9 23.4 22.1

Table 5: KGSS’s performance on triple extraction with
various tuple filtering methods on NewsKG21.

System P % R % F1 %

Stanford OpenIE 33.5± 9.0 34.6± 15.9 34.0
MAMA 2.7± 2.6 10.3± 6.9 4.3
KGSS 34.1± 10.0 37.8± 12.7 35.9

Table 6: Results of human evaluation on the perfor-
mance of triple extraction on NewsKG21.

5.4 Human Evaluation

In addition to automatic evaluation, we conduct
human evaluation of our proposed system’s triple
extraction performance by comparing it to two
baseline models: Stanford OpenIE and MAMA.
Five human evaluators participated in our study,
none of whom was told beforehand which systems
they were assessing; more specifically, the names
of each model were hidden. We chose 30 sen-
tences at random from the NEWSKG21 dataset,
and each participant graded the quality of triples
generated by each system on each sentence based
on the following criteria: (i) how accurate the ex-
tracted triples are in regard to the original text; and
(ii) how thoroughly the extracted triples cover the
true relations in the original sentence. Each eval-
uator was asked to assign a score from 0 to 1 to
each generated triple on precision and to the set of
triples generated from a sentence on recall, with
0 indicating entirely incorrect, 1 indicating com-
pletely accurate, and a value in between indicating
partially correct.

The results in Table 6 show that Stanford OpenIE
performs much better on human evaluation than on
automatic evaluation. This is because only evaluat-
ing the system based on automatically match with
the ground truth in the dataset may not accurately
reflect the performance of a system. However, the
results in Table 6 confirm that our system outper-
forms the two baseline models.

Although unsupervised approaches may allow
more interpretable and flexible methods, they are
not without limitations. The effectiveness of our
unsupervised algorithm is partly dependent on the
accuracy of the existing NER tools that we incor-
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porate into our pipeline. Similarly, the semantic
matching phase’s performance may be less effec-
tive when the relation schema contains similar rela-
tion names. In addition, if training data are avail-
able, supervised methods can achieve much better
results as shown in Table 9 in Appendix C. Never-
theless, our unsupervised method can work when
no training data are available and can potentially
be used to create labeled data (although noisy) for
distant supervised learning to bootstrap knowledge
graph generation.

6 Conclusions

We presented a novel unsupervised method for
knowledge graph generation without the need for
labeled data or manual mapping of extracted re-
lations to a predefined relation schema (as in two
previous unsupervised methods). A salient feature
of the method is that it uses semantic similarity
matching to find relations between entities. In addi-
tion, our system can work with any set of relations
that the user prefers, flexibility that other methods,
especially the supervised ones, do not have. We
also created a new data set from news articles that
will be shared with the community.

Our evaluation results demonstrate the effective-
ness of our system which significantly outperforms
two state-of-the-art unsupervised models over four
different datasets. We also develop an open source
interactive KG generation and visualization tool.
As future work, we will evaluate effectiveness of us-
ing our method for bootstrapping knowledge graph
generation with distant supervision.
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A Experiments on TACRED dataset
including no_relation relationship

Table 7 compares our system’s performance to Stan-
ford OpenIE and MAMA on the TACRED dataset,
which includes the relation: no_relation. In this
experiment, if the relation confidence rate returned
from SBERT is less than 0.8, our system will return
no_relation. Although the total performance of all
three systems decreases, our system still outper-
forms the other two cutting-edge models.

System P % R % F1 %

Stanford OpenIE 6.6 3.0 4.1
MAMA 2.4 2.2 2.3
(Ours) KGSS 14.3 27.6 18.8

Table 7: The performance of triple extraction on TA-
CRED including relationship "no_relation".

B Comparing performance of different
algorithms on entity extraction

For entity extraction, we compare the performance
of the named entity recognition (NER) systems

178

https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.18653/v1/2020.acl-main.669


Dataset Library P % R % F1 % Runtime
(sec)

TACRED* spaCy 29.3 86.4 43.7 145
Stanza 29.2 88.6 43.9 1355

NYT spaCy 57.5 99.6 72.9 51
Stanza 56.8 99.9 72.4 454

WEBNLG spaCy 86.7 86.5 86.6 6
Stanza 91.5 91.6 91.5 47

Table 8: Performance of spaCy and Stanza for entity
extraction

from two libraries, namely spaCy9 and Stanza10

(Qi et al., 2020) on the three benchmark datasets. A
detected NE is considered to be correct if it partially
matches the entities in the ground truth dataset via
fuzzy string matching. The precision, recall, and
F1 scores for both the tools are presented in Table
2, where we observe that while spaCy and Stanza
are comparable in terms of their F1 scores, Stanza
is about 8 times more computationally expensive.
Thus, we select spaCy for NER and tokenization in
all our experiments.

C Performance of the supervised KG
models

Table 9 shows the performance of the state of the
art supervised KG models: TransEN (Huang et al.,
2020) on the TACRED dataset, and AaR (Liu et al.,
2021) on the NYT and WEBNLG datasets. All
the models are trained on the training data of each
dataset and evaluated on the test data of the corre-
sponding dataset. The results are taken from the
references.

System Dataset P % R % F1 %

TransEN TACRED 68.3 66.2 67.3
AaR NYT 88.1 78.5 83.0
AaR WEBNLG 89.5 86.0 87.7

Table 9: The performance of the state of the art super-
vised KG models on the TACRED, NYT, and WEBNLG
datasets.

9https://spacy.io/
10https://stanfordnlp.github.io/stanza/
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Abstract

Our collective attention span is shortened by the
flood of online information. With FarFetched,
we address the need for automated claim val-
idation based on the aggregated evidence de-
rived from multiple online news sources. We in-
troduce an entity-centric reasoning framework
in which latent connections between events,
actions, or statements are revealed via entity
mentions and represented in a graph database.
Using entity linking and semantic similarity,
we offer a way for collecting and combining
information from diverse sources in order to
generate evidence relevant to the user’s claim.
Then, we leverage textual entailment recogni-
tion to quantitatively determine whether this
assertion is credible, based on the created ev-
idence. Our approach tries to fill the gap in
automated claim validation for less-resourced
languages and is showcased on the Greek lan-
guage, complemented by the training of rele-
vant semantic textual similarity (STS) and nat-
ural language inference (NLI) models that are
evaluated on translated versions of common
benchmarks.

1 Introduction

Motivation: The wider diffusion of the Web since
the dawn of Web 2.0 has enabled instantaneous
access to an expanding universe of information.
The entire nature of news consumption has shifted
dramatically, as individuals increasingly rely on
the Internet as their major source of information.
While people access, filter and blend several web-
sites into intricate patterns of media consumption,
this wealth of information contained in billions
of online articles inevitably creates a poverty of
attention and a need to efficiently allocate this at-
tention among the many sources that may absorb

it. Verifying whether a given claim coheres with
the knowledge hidden in the vast amount of pub-
lished information is a fundamental problem in
NLP, taking into account that the arrival of new
information may weaken or retract the initially sup-
ported inference. The problem is more apparent
in less-resourced languages that lack the necessary
linguistic resources for building meaningful NLP
applications.

Figure 1: Claim validation example (translated from
Greek) based on aggregated evidence using FarFetched.

Approach and Contribution: FarFetched is a
modular framework that enables people to verify
any kind of textual claim based on the incorporated
evidence from textual news sources. It combines a
series of processes to periodically crawl for news
articles and annotate their context with named en-
tities. Given a user claim, FarFetched derives a
relevant subset of the stored content based on its
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semantic similarity with the provided claim, thus
being able to reason about its validity in an NLI
setting (Figure 1). While the proposed framework
focuses on the less-resourced Greek language, its
modular architecture allows the integration of pre-
trained models for any language. Moreover, it is ca-
pable of topic-agnostic, evidence-aware assessment
of arbitrary textual claims in a fully automated man-
ner, without relying on feature engineering, curated
sources and manual intervention.

The main contributions of this work are sum-
marized as follows: a) to formalize, develop and
evaluate a claim validation and reasoning approach
based on the aggregated knowledge derived from
the continuous monitoring of news sources, and b)
to train, evaluate and share SotA models for the
STS and NLI downstream tasks for the Greek lan-
guage that support the core functionalities of our
framework.1

2 Related Work

Our work comprises functionalities comparable to
those of fact checking frameworks, targeting the
assignment of a truth value to a claim made in a
particular context (Vlachos and Riedel, 2014). For
most related approaches (Zhang et al., 2021; Ma-
jithia et al., 2019; Zhou et al., 2019; Ciampaglia
et al., 2015; Goasdoué et al., 2013) the evidence
to support or refute a claim is derived from a trust-
worthy source (e.g. Wikipedia, crowdsourced tag-
ging or expert annotators). Interesting deviations
are DeClarE (Popat et al., 2018) that searches for
web articles related to a claim considering their in-
between relevance using an attention mechanism,
and ClaimEval (Samadi et al., 2016), based on first-
order logic to contextualise prior knowledge from
a set of the highest page-ranked websites.

FarFetched can be distinguished from the afore-
mentioned works by four major points: a) evidence
collection is disentangled from manual annotation
but relies on a constantly updating feed of news
articles instead; b) claim validation based on the
accumulated evidence relies on the effective com-
bination of entity linking and attention-based mod-
els; c) our approach provides interpretable reason-
ing based on the aggregated evidence of multiple
sources without assessing their truthfulness as op-
posed to most fact checking frameworks; and d)
the outcome of the process is dynamic as the con-

1Code and benchmark datasets: https://github.
com/lighteternal/FarFetched_NLP

tinuous integration of new information may lead to
a shift in the verdict of the validated claim.

Recent advances in the field of event-centric
NLP have introduced event representation meth-
ods based on narrative event chains (Vossen et al.,
2015), knowledge graphs (Tang et al., 2019; Vossen
et al., 2016), QA pairs (Michael et al., 2018) or
event network embeddings (Zeng et al., 2021) to
capture connections among events in a global con-
text. Our method relies on an entity-centric ap-
proach instead, where the identified entities are
used as connectors between events, actions, facts,
statements or opinions, thus revealing latent con-
nections between the articles containing them. A
few similar approaches have been proposed for
combining world knowledge with event extraction
methods to represent coherent events, but rely ei-
ther on causal reasoning to generate plausible pre-
dictions (Radinsky et al., 2012) or on QA models
that require the accompanying news source to be
provided along with the user’s question (Jin et al.,
2021).

The latest advances regarding the technological
concepts that comprise our methodology are pro-
vided below:

Entity linking (EL) resolves the lexical ambigu-
ity of entity mentions and determines their mean-
ings in context. Typical EL approaches aim at iden-
tifying named entities in mention spans and linking
them to entries of a KG (e.g. Wikidata, DBpedia)
thus resolving their ambiguity. Recent methods
combine the aforementioned tasks using local com-
patibility and topic similarity features (Delpeuch,
2019), pagerank-based wikification (Brank et al.,
2017a) —used also in FarFetched— or neural end-
to-end models that jointly detect and disambiguate
mentions with the help of context-aware mention
embeddings (Kolitsas et al., 2018).

The recent interest for encapsulating diverse se-
mantic sentence features into fixed-size vectors has
resulted in SotA systems for Semantic Textual Sim-
ilarity (STS) based on supervised cross-sentence
attention (Raffel et al., 2020), Deep Averaging Net-
works (DAN) (Cer et al., 2018) or siamese and
triplet BERT-Networks (Reimers and Gurevych,
2019) to acquire meaningful sentence embeddings
that can be compared using cosine similarity. The
latter approach is leveraged in our case to train an
STS model for the Greek language using transfer
learning.

Finally, the task of Natural Language Inference
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(NLI) -also known as Recognizing Textual Entail-
ment (RTE)- associates an input pair of premise
and hypothesis phrases into one of three classes:
contradiction, entailment and neutral. Ferreira and
Vlachos, 2016 modeled fact checking as a form of
RTE to predict whether a premise, typically part of
a trusted source, is for, against, or observing a given
claim. SotA NLI models typically rely on Trans-
former variants with global attention mechanisms
(Beltagy et al., 2020), siamese network architec-
tures (Reimers and Gurevych, 2019) (also used in
FarFetched to train a Greek NLI model), autore-
gressive language models for capturing long-term
dependencies (Yang et al., 2019) and denoising
autoencoders (Lewis et al., 2020).

3 Methodology

3.1 Problem Definition

Given a user claim in free text, we tackle the prob-
lem of deciding whether this statement is plausi-
ble based on the currently accumulated knowledge
from news sources. We also acknowledge the prob-
lem of constructing relevant evidence from multi-
ple sources by analysing the information contained
in online articles and the need for efficiently ex-
tracting only contextually and semantically rele-
vant excerpts to verify or refute the user’s claim.
While our work does not primarily focus on better
sentence embeddings and natural language infer-
ence techniques, we also target the lack of such
models for the Greek language.

3.2 Our approach

FarFetched combines a series of offline (i.e. per-
formed periodically) operations to accumulate data
from various news sources and annotate their con-
text with named entities. It also encompasses a
number of online operations (i.e. upon user input)
to assess the validity of a claim in free text. First,
it identifies the entities included in the provided
claim and leverages these as a starting point to
derive a relevant subset of the stored textual infor-
mation as candidate evidence. Each candidate is
then compared with the claim in terms of textual
similarity, in order to finally conclude on the most
relevant evidence (premise) to reason about the va-
lidity of the claim (hypothesis) in an NLI setting.
The distinct modules that comprise the framework
are visualised in Figure 2. The process that Far-
Fetched follows to evaluate a claim is summarized
in Algorithm 1, while each module is described in

greater detail in the following subsections.

Figure 2: The FarFetched modular framework.

3.2.1 News Collection
A multilingual, open-source crawler and extractor
for heterogeneous website structures is leveraged to
incorporate information from various news sources
(Hamborg et al., 2017). It is capable of extracting
the major properties of news articles (i.e., title, lead
paragraph, main content, publication date, author,
etc.), featuring full website extraction and requiring
only the root URL of a news website to crawl it
completely.

3.2.2 Graph Database Population
The crawled articles are forwarded to a graph
database (Webber, 2012) that initially stores only
two types of nodes: Article, which represents
a news article with its aforementioned properties
and Section that represents a sentence of each
article’s main text (i.e. concatenated title and arti-
cle body). Each Article node is linked to one
or more Section nodes via the HAS_SECTION
relationship.
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Algorithm 1 Claim Evaluation
Input: A claim c provided by the user in natural

language.
Output: Most relevant evidence seq∗ (sequence of

article excerpts) based on the input claim c along with its
STS_score∗ and NLI_score < c, e, n >.

1: Entity Linking: Find the set of entities (e1, ..., en) ∈ E,
where e ∃ c and |E| = n

2: S ← ∅
3: Graph database search: Find all shortest paths p

between the alternating entities e and sentences s:
p← (e1, sa, e2, ..., en−1, sk, en) ∈ P

4: if P = ∅ then
5: s ∈ P ⇐⇒ s has at least 1 entity mention
6: end if
7: for pi ∈ P do
8: seqi ← (sa, ..., sk)
9: S ← S ∪ seqi (sequence seqi added to candidate

evidence set)
10: end for
11: STS_Scores← ∅
12: for seqi ∈ S do
13: Semantic Textual Similarity: Compare seqi ∈ S to

c (each candidate evidence sequence to the claim) and
calculate STS_scorei

14: STS_Scores← STS_Scores ∪ STS_scorei
15: end for
16: Find the candidate seq∗ with the highest similarity to the

claim: STS_score∗ ← max(STS_Scores)
seq∗ ← argmax(STS_score∗)

17: Natural Language Inference: Compare seq∗ to c (the
best candidate evidence to the claim) and calculate
the scores for contradiction, entailment and neutrality
NLI_score < c, e, n >

3.2.3 Entity Linking

Given that our approach relies on largely unstruc-
tured textual documents that lack explicit seman-
tic information, Entity Linking (EL) constitutes
a central role in revealing latent connections be-
tween seemingly uncorrelated article sections. To
this end, FarFetched employs a type of seman-
tic enrichment and entity disambiguation tech-
nique known as wikification (Brank et al., 2017b),
which involves using Wikipedia concepts as a
source of semantic annotation. It applies pagerank-
based wikification on input text to identify phrases
that refer to entities of the target knowledge base
(Wikipedia) and return their corresponding Wiki-
Data Entity ID. The latter is used as a unique iden-
tifier for storing the entities as Entity nodes to
the graph database and for linking them with the
crawled article Section nodes, resulting to a
more tightly connected graph, where article sec-
tions are connected to WikiData entities via the
HAS_ENTITY relationship. The virtual graph of
Figure 3 represents the structure (labels and rela-
tionships) of the graph database. It should be noted

that an entity node might have an additional label
(e.g. Person, City, Business) except for the
generic Entity one, based on the WikiData class
taxonomy.

Figure 3: Final structure of the graph database.

3.2.4 Evidence Constructor
In a typical NLI setting, a premise represents our
knowledge or evidence regarding an event and is
used to infer whether a relevant hypothesis follows
from it or not. In our case, article sections focusing
on the same entities as the user’s claim could po-
tentially lead to the construction of useful evidence
towards the validation of this claim. We can there-
fore leverage the entity-annotated article sections
of our graph database to collect relevant evidence
by aggregating information from multiple sources.
To this end, we developed an evidence construction
process that comprises the following steps:

1. The claim provided by the user passes through
the Entity Linking phase and one or more en-
tities (WikiData concepts) are identified.

2. The graph database is queried for all possi-
ble shortest paths that contain article sections
between the identified entities. Given the im-
plemented graph structure and n Entity nodes,
this translates to a minimum path length of
2(n− 1) alternating Entity-Section nodes as
shown in Figure 4. Since the existence of such
path is not guaranteed, in cases that no path
is found the algorithm will select an article
section if it contains at least one mentioned
entity.

3. The article sections contained in these paths
are concatenated to form a set of candidate
evidence sequences. Their relevance with the
claim at hand is assessed during the Semantic
Textual Similarity phase.

3.2.5 Semantic Textual Similarity
We train and apply a sentence embeddings method
to extract and compare the vector representations
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Figure 4: Shortest path example: The 3 entities (in
brown) are connected with 2 article sections (in blue).

of the user’s claim with each candidate evidence
sequence, in order to select the most semantically
relevant candidate for the final NLI phase. Despite
the abundance of multilingual language models
(e.g. m-BERT, XLM) that cover most common
languages, pretrained multilingual sentence em-
beddings models do not generally perform well
in downstream tasks for less-resourced languages
like Greek (Koutsikakis et al., 2020). Further-
more, given that the vector spaces between lan-
guages are not aligned, sentences with the same
content in different languages could be mapped to
different locations in the common vector space.
To overcome this obstacle, we trained a Greek
sentence embeddings model on parallel EN-EL
(English-Greek) sentence pairs following a mul-
tilingual knowledge distillation approach (Reimers
and Gurevych, 2020a). Our Greek student model
(XLM-RoBERTa) was trained on parallel pairs to
produce vectors for the EN-EL sentences that are
close to the teacher’s pretrained English model ones
(DistilRoBERTa). Using the trained model, we
are able to compare the produced vector represen-
tations between the claim and each concatenated
candidate evidence sequence with regard to STS
in terms of cosine similarity and forward the best
candidate to the last phase of the claim validation
process, namely Natural Language Inference.

3.2.6 Natural Language Inference

The last step of our process leverages NLI to
determine whether the user claim (hypothesis)
is entailed by, contradicted, or neutral to the
most relevant evidence (premise) of the previous
phase. To tackle the aforementioned multilin-
guality issues of pretrained language models on
less-resourced languages, we finetuned a Greek
sentence-transformers Cross-Encoder (Reimers
and Gurevych, 2019) (XLM-RoBERTa-base) model
for the NLI task. The model was trained on the
Greek and English version of the combined SNLI
(Bowman et al., 2015) and MultiNLI (Williams

et al., 2018) corpora (AllNLI). We used the English-
to-Greek machine translation model by Papadopou-
los et al., 2021 to create the Greek version of
the AllNLI dataset. The trained model takes the
premise-hypothesis pair as input and predicts one
of the following labels for each case: "contradic-
tion": c, "entailment": e or "neutral": n. The logits
for each class are then converted to probabilities
using the softmax function. These labels along
with their probability scores can be used to assess
whether the claim is verified by the accumulated
knowledge of the candidate evidence.

4 Experiments

4.1 Setup

The technical details for each building block of
FarFetched are provided below:

News Collection and Storage: The news-
please (Hamborg et al., 2017) Python library was
used to ingest an initial corpus of news articles to
support our experiments. The root URLs of two
popular Greek news sites served as the starting
point in order to recursively crawl news from a
diverse topic spectrum, spanning from 2018 un-
til 2021. We collected 13,236 articles, containing
31,358 sections in total. A Neo4j graph DBMS was
used to store the crawled articles and sections as
nodes and create their in-between relationships.

Entity Linking: A Python script producing
POST requests to the JSI Wikifier web API (Brank
et al., 2017a) was implemented to annotate the ar-
ticle sections and enrich the graph database with
WikiData entities. A total of 2,516 WikiData enti-
ties of different types (e.g. sovereign states, cities,
humans, organizations, academic institutions etc.)
were identified in the crawled articles. A pageR-
ankSqThreshold of 0.80 was set for pruning the
annotations on the basis of their pagerank score.

Evidence Constructor: We implemented Al-
gorithm 1 as a Python script that executes a
parametrizable Cypher query to construct candidate
evidence sequences; the identified entities in the
claim are used as parameters and the concatenated
article sections that link these entities together are
returned. For our experiments, the maximum num-
ber of relationships between the alternating Sec-
tions and Entities was set to 2(n − 1) (shortest
path), while the script returns candidate evidence
sequences in descending order based on path length.
These parameters can be modified if longer candi-
date evidence sequences are required.
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Semantic Similarity: We finetuned a bilin-
gual (Greek-English) XLM-RoBERTa-base model
(~270M parameters with 12-layers, 768-hidden-
state, 3072 feed-forward hidden-state, 8-heads)
using 340MB of parallel (EN-EL) sentences
from various sources (e.g. OPUS, Wikimatrix,
Tatoeba) leveraging the sentence-transformers li-
brary (Reimers and Gurevych, 2020b). The model
was trained for 4 epochs with a batch size of 16 on a
machine with a single NVIDIA GeForce RTX3080
(10GB of VRAM) for a total of 28 GPU-hours
(single run).

Natural Language Inference: We finetuned
a Cross-Encoder XLM-RoBERTa-base model of
the same architecture on the created Greek-
English AllNLI dataset (100MB) using sentence-
transformers. The model was trained on the same
hardware setting for a single epoch, using a train
batch size of 6 for 22 GPU-hours (single run).

4.2 Main results

In this section we perform a quantitative and quali-
tative demonstration of FarFetched’s overall perfor-
mance and also provide individual results for our
STS and NLI models based on benchmark datasets.

4.2.1 End-to-end performance
Given the particularity of FarFetched in evidence
collection (data originating from constantly up-
dating web content), a quantitative evaluation of
its performance is quite challenging. To combat
the lack of relevant benchmarks for the Greek lan-
guage, we leveraged the FEVER dataset by Thorne
et al. 2018, which models the assessment of truth-
fulness of written claims as a joint information
retrieval and natural language inference task using
evidence from Wikipedia. Each row of the dataset
comprises a claim in free text, a list of evidence in-
formation including a URL to the Wikipedia page
of the corresponding evidence and an annotated
label (SUPPORTS, REFUTES, NOT ENOUGH
INFO). We manually translated a subset of 150
claims from the FEVER validation set from English
to Greek and populated the graph database with
the content of the corresponding Wikipedia URLs,
which was automatically translated into Greek (due
to its size), using the NMT model by Papadopoulos
et al., 2021. We report FarFetched’s performance
in terms of accuracy, precision, recall and F1-score
on Table 1.

The results indicate a balanced precision and
recall for the REFUTES and SUPPORTS classes,

Label Precision Recall F1-score
NOT ENOUGH INFO .36 .80 .49

REFUTES .91 .72 .80
SUPPORTS .84 .70 .76

Weighted Average .82 .73 .75
Label accuracy (overall) .73

Table 1: FarFetched claim validation performance on
Greek FEVER subset.

while precision is relatively lower for the NOT
ENOUGH INFO case. This can be partially at-
tributed to the challenges of applying wikification
on the automatically translated evidence content,
leading to some claims not being linked to their
corresponding evidence. Although the above re-
sults are not directly comparable to those of simi-
lar systems tested on the original English FEVER
dataset, they show a significant gain over the base-
line model of Thorne et al. 2018 (label accuracy
of 0.49). Based on a large comparative study con-
ducted by Bekoulis et al. 2021, FarFetched scores
in the upper 30th percentile in terms of accuracy
(scores ranging from 0.45 to 0.84); however, to the
best of our knowledge none of these systems covers
the Greek language.

We also provide a set of qualitative examples
based on real data that aim at showcasing the ca-
pabilities of our system while also acknowledging
the dynamicity of the evidence collection process.
These scenarios are translated into English to fa-
cilitate readability. They include two parts each
and are shown in Tables 2, 3 and 4. The original
examples (in Greek) are available in the Appendix.

In Scenario 1, two contradicting user claims (1a,
1b) with the same entity mentions are provided by
the user (Table 2). Since they refer to the same
entities, the Evidence Constructor returns the same
candidate evidence sequences for both claims in
order to evaluate their validity. The most relevant
one (STS score in bold) is selected for the NLI
phase, where the verdict is that the evidence entails
the first claim (1a) and contradicts the second (1b).

In Scenario 2, we investigate the sensitivity of
our approach in exploiting new information to eval-
uate a claim (Table 3). The claim initially triggers
the Evidence Constructor which returns multiple
candidate evidence sequences, in descending STS
order (yellow rows). During the NLI evaluation
phase, the verdict is entailment, but with a low
probability of 0.571 (2a). The same hypothesis is
evaluated in Scenario 2b, after the addition of new
information appended to the evidence list (blue
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User Claim
(Scenario 1)

NLI score

Denmark and Austria believe that the Euro-
pean Union should increase aid to refugees.
(1a)

c: 0.014
e: 0.958
n: 0.028

Denmark disagrees with Austria on the
management of immigration issues in the
European Union. (1b)

c: 0.951
e: 0.002
n: 0.047

Candidate Evidence Sequences (↓ similarity)
Austria and Denmark also want to increase EU support
for countries hosting refugees near crisis hotspots so that
they do not travel to Europe.
• STS Score: 0.8505
Checked by police at the Airport Police Departments ...
the foreigners presented forged travel documents ... in or-
der to leave the country for other EU countries like France,
Germany, Italy, Austria, the Netherlands, Denmark, Spain
and Norway.
• STS Score: 0.2283

Table 2: Demonstration of FarFetched on Scenario 1.

row). The new evidence is clearly more relevant
to the claim at hand, which is successfully identi-
fied by FarFetched’s STS component that selects it
as the best candidate, providing a more confident
entailment score of 0.891 (2b). This shift in NLI
verdict is visualized in Figure 5. Since FarFetched
relies on the constantly updating evidence, moni-
toring such shifts could be useful for identifying
trend changes, especially for cases that benefit from
long-term planning (business, market, politics etc.)

Figure 5: Shift in NLI verdict from Scenario 2a to Sce-
nario 2b of Table 3.

Scenario 3 is similar to 2, as one claim is eval-
uated on an initial set of candidate evidence se-
quences (3a) followed by a new relevant article
section with contradicting evidence collected by
the Evidence Collector in 3b (Table 4). However,
in this case the new evidence is an excerpt from a
person’s interview. While our approach correctly
identifies the relevance of this new evidence to the
claim thus affecting the NLI verdict, it does not
distinguish between opinions and factual evidence.
This is discussed in more detail in Section 5.

User Claim
(Scenario 2)

NLI score
initial (2a)

NLI score
updated (2b)

The United States plans to
impose sanctions on Iran.

c: 0.170
e: 0.571
n: 0.259

c: 0.012
e: 0.891
n: 0.097

Candidate Evidence Sequences (↓ similarity)
Iran faces dilemma over whether to comply of Washing-
ton or will lead to collapse. The sanctions that came back
in force today, will force the government of the Islamic
Republic to accept the US claims regarding the Iranian
nuclear program and Iranian activities in the Middle East
East because, otherwise, the regime will be in danger to
collapse, claimed Israel Kats, the Israeli minister responsi-
ble for Information Services.
• STS Score: 0.6665
Why Greece was exempted from US sanctions on Iran.
New US sanctions on oil exports from Iran have been in
force since November 5.
• STS Score: 0.6324
"We are always in favor of diplomacy and talks ... But
the Conversations need honesty ... The US is pushing
again sanctions on Iran and withdraw from the nuclear
deal "(of 2015) and then they want to have conversations
with us", Rohani said in a speech that was broadcast live
on television.
• STS Score: 0.5151
NEW: Following the collapse of the last talks between the
US and Iran, the announcement of additional sanctions is
expected in the coming days.
• STS Score: 0.7195

Table 3: Demonstration of FarFetched on Scenario 2.

User Claim
(Scenario 3)

NLI score
initial (3a)

NLI score
updated (3b)

Apple is trying to compete
with Netflix in the produc-
tion of television content.

c: 0.004
e: 0.967
n: 0.029

c: 0.982
e: 0.008
n: 0.010

Candidate Evidence Sequences (↓ similarity)
Apple is expected to spend about $ 2 billion this year
creating original content that it hopes will compete with
Netflix, Hulu and Amazon, already established in the
television audience.
• STS Score: 0.7107
NEW: "We’re not trying to compete with Netflix on TV,"
an Apple spokesman said in an interview.
• STS Score: 0.7134

Table 4: Demonstration of FarFetched on Scenario 3.

4.2.2 STS performance
The performance of our semantic similarity model
was evaluated on the test subset of the STS2017
benchmark dataset (Cer et al., 2017). Given that the
original dataset does not provide sentence pairs in
Greek, we manually created a cross-lingual version
for the English-Greek pair. The performance is
measured using Pearson (r) and Spearman (ρ) cor-
relation between the predicted and gold similarity
scores (Table 5). We also provide results regard-
ing translation matching accuracy, evaluating the
source and target language embeddings in terms
of cosine similarity. Our model achieves a slightly
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better performance in both evaluations compared
to the current state-of-the-art multilingual model
by Reimers and Gurevych, 2019.

Model
STS2017 Translation

Matching

r ρ
Acc.
(en2el)

Acc.
(el2en)

STS-XLM-RoBERTa-
base (Ours) 83.30 84.32 98.05 97.80

Paraphrase-
multilingual-mpnet-
base-v2 (UKP-TUDA)

82.71 82.70 97.50 97.35

Table 5: STS model comparison on EN-EL version of
STS2017 and in terms of translation matching accuracy.

4.2.3 NLI performance
We benchmark our trained NLI model on the Greek
subset of the XNLI dataset (Conneau et al., 2018)
that contains 5,010 premise-hypothesis pairs (Ta-
ble 6). Despite not having used the XNLI dataset
during the training phase, we achieve a 1% gain
over the multilingual XLM-R (Conneau et al.,
2020) and are on par with the monolingual Greek-
BERT by Koutsikakis et al., 2020. Since our
model was trained on a mixture of Greek and En-
glish sentence pairs, it is more suitable for corpora
that also contain English terms (e.g. technology,
science topics) without suffering from the under-
representability of the Greek language occurring in
multilingual models.

Model F1-score
NLI-XLM-RoBERTa-base (Ours) 78.3
Greek-BERT (AUEB) 78.6 ± 0.62
XLM-RoBERTa-base (Facebook) 77.3 ± 0.41
M-BERT (Google AI Language) 73.5 ± 0.49

Table 6: NLI model comparison in terms of F1-score
on the Greek subset of XNLI-test dataset.

5 Limitations

We acknowledge that FarFetched is possible to
encounter errors in 3 main areas; these limitations
are briefly addressed below.

Entity Linking: Highly ambiguous entities and
name variations pose challenges to any entity link-
ing method. Since we claim that our approach is
entity-centric, a wrong entity annotation may lead
to irrelevant candidate evidence sequences and in-
crease the probability of "neutral" NLI verdicts.
Moreover, the tunable sensitivity of the integrated
wikification module implies a trade-off between
a precision-oriented and a recall-oriented strategy,

the latter resulting in more annotated articles, but
also being prone to false-positive annotations.

Evidence Construction: This initial version of
our approach relies solely on the STS compari-
son between the evidence and the claim, based on
a shortest path approach as discussed in Section
3.2.4. In cases that involve a larger number of
entities in the user claim, calculating the shortest
path between the alternating Entity-Section nodes
can be computationally cumbersome. Moreover,
there is no guarantee that the shortest path is able
to capture the most relevant candidate evidence
sequences; to this end, outputting the top n best
candidates is considered, providing a user with an
overview of the extracted news excerpts together
with their NLI outcome. Finally, neither a tempo-
ral evaluation of the evidence with regard to the
claim nor a distinction between opinions and facts
is considered; all candidates are treated as equal.

Natural Language Inference: Recognizing the
entailment between a pair of sentences partially
depends on the tense and aspect of the predica-
tions. Tense plays an important role in determin-
ing the temporal location of the predication (i.e.
past, present or future), while the aspectual auxil-
iaries signify an event’s internal constituency (e.g.
whether an action is completed or in progress).
While the work of Kober et al., 2019 indicates that
language models substantially encode morphosyn-
tactic information regarding tense and aspect, they
are unable to reason based only on these properties.
To this end, claims with a high presence of such
semantic properties should be avoided.

6 Conclusions

In this work, we presented a novel approach for
claim validation and reasoning based on the accu-
mulated knowledge from the continuous ingestion
and processing of news articles. FarFetched is
able to evaluate the validity of any arbitrary textual
claim by automatically retrieving and aggregating
evidence from multiple sources, relying on the pil-
lars of entity linking, semantic textual similarity
and natural language inference.

We showcased the effectiveness of our method
on the FEVER benchmark as well as on diverse
scenarios and acknowledged its limitations. As
byproducts of our work, we trained and open-
sourced an NLI and an STS model for the less-
resourced Greek language, achieving state-of-the-
art performance on the XNLI and STS2017 bench-
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marks respectively. While our framework fills the
gap in automated claim validation for Greek, its
modular architecture allows it to be repurposed for
any language for which the corresponding models
exist.

For future work, we intend to address the limita-
tions of our method mentioned in Section 5, focus-
ing primarily on an optimal entity linking setting,
as well as on a more robust strategy for construct-
ing relevant candidate evidence sequences.
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A Appendix: Original examples (in
Greek) of Tables 2, 3 and 4.

User Claim
(Scenario 1)

NLI score

Η Δανία και η Αυστρία πιστεύουν ότι
η Ευρωπαϊκή ΄Ενωση πρέπει να αυξήσει
τη βοήθεια προς τους πρόσφυγες. (1a)

c: 0.014
e: 0.958
n: 0.028

Η Δανία διαφωνεί με την Αυστρία
σχετικά με τη διαχείριση των μετανασ-
τευτικών θεμάτων στην Ευρωπαϊκή
΄Ενωση. (1b)

c: 0.951
e: 0.002
n: 0.047

Candidate Evidence Sequences (↓ similarity)
Η Αυστρία και η Δανία θέλουν να ενισχυθεί επίσης
η υποστήριξη της ΕΕ προς κράτη που υποδέχον-
ται πρόσφυγες κοντά σε εστίες κρίσεις, ώστε οι
πρόσφυγες αυτοί να μην ταξιδεύουν προς την Ευ-
ρώπη.
• STS Score: 0.8505
Σε έλεγχο από αστυνομικούς των Αστυνομικών
Τμημάτων Αερολιμένων ... οι αλλοδαποί επέδειξαν
πλαστά ταξιδιωτικά έγγραφα προκειμένου να
αναχωρήσουν από τη χώρα για άλλες χώρες της
ΕΕ όπως η Γαλλία, Γερμανία, Ιταλία, Αυστρία,
Ολλανδία, Δανία, Ισπανία και Νορβηγία.
• STS Score: 0.2283

Table 7: Demonstration of FarFetched on Scenario 1 in
Greek language.

User Claim
(Scenario 2)

NLI score
initial (2a)

NLI score
updated (2b)

Οι Ηνωμένες Πολιτείες
σχεδιάζουν να επιβάλ-
λουν κυρώσεις στο Ιράν.

c: 0.170
e: 0.571
n: 0.259

c: 0.012
e: 0.891
n: 0.097

Candidate Evidence Sequences (↓ similarity)
Το Ιράν μπροστά στο δίλημμα αν θα συμμορφωθεί
προς τις υποδείξεις της Ουάσινγκτον ή θα οδηγη-
θεί σε κατάρρευση Οι κυρώσεις που επανήλθαν σε
ισχύ σήμερα, θα αναγκάσουν την κυβέρνηση της Ισ-
λαμικής Δημοκρατίας να δεχθεί τις αξιώσεις των
ΗΠΑ όσον αφορά το ιρανικό πυρηνικό πρόγραμμα
και τις ιρανικές δραστηριότητες στην περιοχή της
Μέσης Ανατολής διότι, σε διαφορετική περίπτωση,
το καθεστώς θα κινδυνεύσει να καταρρεύσει, υπ-
οστήριξε ο Ισραέλ Κατς, ο ισραηλινός υπουργός αρ-
μόδιος για τις Υπηρεσίες Πληροφοριών.
• STS Score: 0.6665
Γιατί εξαιρέθηκε η Ελλάδα από τις αμερικανικές
κυρώσεις στο Ιράν. Από τις 5 Νοεμβρίου βρίσκονται
σε ισχύ οι νέες κυρώσεις των ΗΠΑ για εξαγωγές
πετρελαίου από το Ιράν.
• STS Score: 0.6324
«Είμαστε πάντα υπέρ της διπλωματίας και των
συνομιλιών ... ΄Ομως οι συνομιλίες χρειάζονται εν-
τιμότητα ... Οι ΗΠΑ επιβάλλουν εκ νέου κυρώ-
σεις στο Ιράν και αποσύρονται από την πυρηνική
συμφωνία (του 2015) και μετά θέλουν να κάνουν
συνομιλίες μαζί μας», δήλωσε ο Ροχανί σε ομιλία
του που μεταδόθηκε ζωντανά από την τηλεόραση.
• STS Score: 0.5151
Μετά το ναυάγιο των τελευταίων συνομιλιών μεταξύ
ΗΠΑ και Ιράν αναμένεται η ανακοίνωση επιπλέον
κυρώσεων τις επόμενες ημέρες.
• STS Score: 0.7195

Table 8: Demonstration of FarFetched on Scenario 2 in
Greek language.

User Claim
(Scenario 3)

NLI score
initial (3a)

NLI score
updated (3b)

Η Apple προσπαθεί να
ανταγωνιστεί την Netflix
στην παραγωγή τηλεοπ-
τικού περιεχομένου.

c: 0.004
e: 0.967
n: 0.029

c: 0.982
e: 0.008
n: 0.010

Candidate Evidence Sequences (↓ similarity)
Η Apple αναμένεται να δαπανήσει φέτος περίπου
2 δισεκατομμύρια δολάρια με σκοπό τη δημιουργία
πρωτότυπου περιεχομένου που ελπίζει ότι θα ανταγ-
ωνιστεί τις ήδη εδραιωμένες στο τηλεοπτικό κοινό
υπηρεσίες των Netflix, Hulu και Amazon.
• STS Score: 0.7107
«Δεν προσπαθούμε να ανταγωνιστούμε το Netflix
στην τηλεόραση», δήλωσε εκπρόσωπος της Apple σε
συνέντευξή του.
• STS Score: 0.7134

Table 9: Demonstration of FarFetched on Scenario 3 in
Greek language.
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Abstract

Natural Language Processing (NLP) tasks
in non-dominant and low-resource languages
have not experienced significant progress. Al-
though pre-trained BERT models are available,
GPU-dependency, large memory requirement,
and data scarcity often limit their applicabil-
ity. As a solution, this paper proposes a fusion
chain architecture comprised of one or more
layers of CNN, LSTM, and BiLSTM and iden-
tifies precise configuration and chain length.
The study shows that a simpler, CPU-trainable
non-BERT fusion CNN + BiLSTM + CNN
is sufficient to surpass the textual classifica-
tion performance of the BERT-related mod-
els in resource-limited languages and environ-
ments. The fusion architecture competitively
approaches the state-of-the-art accuracy in sev-
eral Bengali NLP tasks and a six-class emo-
tion detection task for a newly developed Ben-
gali dataset. Interestingly, the performance of
the identified fusion model, for instance, CNN
+ BiLSTM + CNN, also holds for other low-
resource languages and environments. Effi-
cacy study shows that the CNN + BiLSTM
+ CNN model outperforms BERT implemen-
tation for Vietnamese languages and performs
almost equally in English NLP tasks experi-
encing artificial data scarcity. For the GLUE
benchmark and other datasets such as Emotion,
IMDB, and Intent classification, the CNN +
BiLSTM + CNN model often surpasses or com-
petes with BERT-base, TinyBERT, DistilBERT,
and mBERT. Besides, a position-sensitive self-
attention layer role further improves the fusion
models’ performance in the Bengali emotion
classification. The models are also compress-
ible to as low as≈ 5× smaller through pruning
and retraining, making them more viable for
resource-constrained environments. Together,
this study may help NLP practitioners and serve
as a blueprint for NLP model choices in textual
classification for low-resource languages and
environments.

1 Introduction

Many developed nations are now considering deep
learning approaches for tackling textual toxicity
in social media. But countries lacking substan-
tial socio-economic capacity and technological
infrastructures are lagging. The current trend
of NLP research evolves mainly around a few
dominant languages, leaving NLP research for
many low-resource languages unattended or less
explored (Joshi et al., 2020). The NLP tasks in low-
resource languages generally suffer from excep-
tionally scarce resources, ranging from lack of an-
notated data to insufficient computational facilities.
In contrast, most NLP breakthroughs that achieve
high accuracy are computationally intensive, mak-
ing it more challenging for societies suffering from
inadequate technological infrastructures. For in-
stance, while the bidirectional transformer BERT
has about 340 millions parameters (Devlin et al.,
2018), a more advanced model GPT-3 (Brown et al.,
2020), has about 170 billions parameters, requiring
extensive GPU/TPU support and memory storage
that may be unaffordable for low-resource societies.
As a result, low-resource languages and environ-
ments are frequently left out with little attention
from the NLP community (Joshi et al., 2020).

Further complicating matters, the serverless free
deployment of deep learning models, as com-
monly done using Amazon Web Services (AWS)
and Google Cloud Platform (GCP), is restric-
tive for larger model size (Han et al., 2015a,b).
Also, latency increases with increasing memory
requirement and model size, suggesting memory-
intensive device GPU/TPU for faster inference and
response. These additional financial costs limit ac-
cess to BERT models for NLP community works in
resource-constrained environments (Strubell et al.,
2019). One intriguing question thus arises: could
computationally less-expensive non-BERT mod-
els reduce GP/TPU dependency and associated fi-
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nancial cost without affecting the classification ac-
curacy for textual classification in a low-resource
context?

The multilingual-BERT (mBERT) (Devlin et al.,
2018; Pires et al., 2019) and its reduced versions
(Abdaoui et al., 2020), other compressed BERT
modifications, such as TinyBERT (Jiao et al., 2019),
MobileBERT (Sun et al., 2020), are a few viable
models proposed for many languages and contexts,
including the low-resource ones. Nevertheless,
these models require additional fine-tuning and
training for target-specific NLP tasks, requiring
GPU/TPU support even in a resource-constrained
context. Also, size of these models may not be
optimal for deployment in low-end devices. So,
textual classification in many non-dominant lan-
guages remains rudimentary, leaving the communi-
ties unequipped against the increasing toxicity and
abusive comments on social platforms. Besides,
many textual classification tasks do not require a
rigorous use of linguistic semantics. So, models
that are structured well against the semantics, for
instance, the BERT models, may not always be the
most optimal choice in NLP tasks less dependent
on language semantics. Thus, a viable trade-off be-
tween the deployability, scarce resources, and DNN
models’ accuracy in NLP tasks for low-resource
languages and environments needs unraveling.

As a solution, this study integrates local and
global dependencies in sentences by bringing alter-
native DNN models into a hybrid model structure,
namely the fusion chain models. Subsequently, a
rigorous architecture search identifies deployable
DNN models for low-resource languages, with an
improved understanding on a few intriguing ques-
tions such as:

• How effective are the homogeneous (of sim-
ilar layers) and heterogeneous (of different
layers) form of fusion of one or more DNN
layers in textual classification tasks?

• What chain length is optimal to maintain accu-
racy and reduce the difference between train-
ing and validation loss?

• How helpful the self-attention is for fusion
models, and what is its optimal position?

We identify that classification accuracy is sensi-
tive to fusion chain length, beyond which classifi-
cation accuracy deteriorates considerably. Subse-
quent exploration of the identified fusion models
reveals a position-sensitive performance of the self-

attention layer for the newly annotated six-class
Bengali emotion dataset.

1 2 N
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Network Architecture Search (NAS)

⋮
⋯

Figure 1: The word embedding layer acts as the input
for the fusion of DNN layers during the NAS process. In
the NAS, CNN, LSTM or BiLSTM layer are all consid-
ered as the initial layer, however the subsequent layers
depended on the type of initial layer chosen finally re-
sulting the three alternative chain-structures. The output
from the DNN fusion requires pruning and retraining to
generate the deployable models.

2 Related Works

Previous works attempted alternative deep learning
models in NLP tasks for low-resource languages
and environments. For instance, using a teacher-
student framework, the BERT distillation with sim-
pler models such as CBoW + FFN and BiLSTM
as the student models for the limited availability of
labeled data (Wasserblat et al., 2020). While such
models are more deployable in low-end devices,
the training still relies on a memory-hungry and
costly setup requiring GPU/TPU as well as large
unlabelled data for student model training. Alterna-
tive approaches consider freezing the BERT-layer
outcomes by assessing their roles in the classifi-
cation process (Grießhaber et al., 2020), requiring
GPU/TPU support to train. Also, the sequence of
frozen layers may vary across alternative datasets,
and hence, the accuracy for a particular set of
frozen layers becomes context-dependent. Instead,
we investigate if a simple, CPU-trainable CNN and
RNN fusion layer stack can achieve textual classi-
fication accuracy in NLP tasks where syntactical
knowledge is less influential than the keywords
or sentiment-based phrases. To find out such al-
ternative non-BERT models, we propose fusion-
chain architecture comprising one or more CNN
and RNN layers and perform a rigorous network
architecture search (NAS). Interestingly, the NAS
process identifies a few optimal candidate mod-
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els capable of achieving accuracy comparable to
the baseline models, as elaborated further in the
subsequent sections.

The emergence of more advanced deep neural
networks capable of learning the word orders and
information dependency in sentences replaces the
classical machine learning models (Mikolov et al.,
2013) in many NLP tasks. Precisely, the neu-
ral network models of the form of RNN (LSTM,
BiLSTM) or CNN independently, or in combina-
tion with a pre-trained word embedding facility
such as word2vec (Mikolov et al., 2013), fasttext
(Joulin et al., 2016), have become the standard
alternatives. For instance, Dynamic CNN archi-
tecture (DCNN) performs semantic modeling to
identify words’ short and long-range relations in
sentences (Kalchbrenner et al., 2014). Whereas the
CNN-based models are good at local and position-
invariant feature extraction, the LSTM/BiLSTM
models explicitly treat sentences as a sequence of
words and capture sentence-level (for instance, syn-
tactical (Zhu et al., 2015)) dependencies. Also, a
few alternative attempts integrate local and global
textual dependencies using CNN and RNN archi-
tectures (known as hybrid models) to improve accu-
racy of textual classification reviewed thoroughly
in (Minaee et al., 2021).

Intriguingly, the hybrid models also appear
promising for target-specific sequential analysis,
as evident from quantifying the function of specific
DNA sequences (Quang and Xie, 2016). Named
Entity Recognition (NER) tasks also employ a hy-
brid approach by merging BiLSTM and CNN mod-
els (Chiu and Nichols, 2016). One of the initial
works leveraging the advantages of both CNN and
RNN architectures for textual classification is the
Convolutional-LSTM (C-LSTM). Precisely, in C-
LSTM, n-gram features extracted by a CNN layer
are fed to the LSTM layer for learning the intra-
sentence sequential dependence of words (Zhou
et al., 2015). Authors in (Zhang et al., 2016) also
tried a hybrid model with LSTM outputs fed to
a CNN layer in document modeling. Alternative
models include an attention mechanism with ei-
ther CNN or RNN architecture to optimize textual
classification performance further. For instance,
Attention-Based Bidirectional Long Short-Term
Memory Networks (Att-BLSTM) capture the po-
sition variant semantic information from the sen-
tences (Basiri et al., 2021). Another study imple-
ments an attention-based Convolutional Neural Net-

work (ABCNN) to model a pair of sentences (Yin
et al., 2016). However, most of the studied hybrid
models are single and two-layer models and did
not explore the relevance of a larger stacking depth
in textual classification tasks. The optimal fusion
length and the order of the layers are still debat-
able and context-dependent. Besides, these CPU-
implementable models facilitate the exploration
and deployment of DNN models in low-resourced
environments devoid of adequate advanced com-
puting devices and facilities.

Algorithm 1 Fusion chain generation in NAS

Require: Input and Embedding Layer
Require: N = Max. fusion chain length
Require: RNN = LSTM | BiLSTM
Require: Initial Fusion Layer = CNN | RNN
Ensure: i = RandomNumber (1 to N − 1)

Fusion Model = Initial Fusion Layer
for

x← 0 to i do
if x is even then

Layer← RNN
else if x is odd then

Layer← CNN
end if
Append Layer to Fusion model
Append GlobalMaxPooling, Output Layer
Return: Fusion model
if Fusion chain length > N then

BREAK
end if

end for

3 Models and Methods

3.1 Proposed fusion chain models

Alternative DNN versions possess different
strengths in NLP tasks. For instance, CNN (LeCun
et al., 1998) models are good at position invariant
text classification tasks, whereas the RNN (Elman,
1990) models are more pertinent for sequential pro-
cessing of the input texts. However, the basic RNN
structure frequently suffers from vanishing gradient
problems, and the improved RNN variants are—
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) (Cho et al., 2014). Many NLP tasks such as
sentiment analysis, emotion detection, have strik-
ing similarity, as the attributes are largely keywords
dependent. Because of the sequential structures of
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a) b) c)

Figure 2: a, b, c) Optimal chain length for the three alternative fusion chain models studied extensively as part of
the NAS.

LSTM and GRU, and their ability to remember
previous text sequences, they perform well where
context-dependencies are crucial (Yin et al., 2017).
Another variant of LSTM, the Bidirectional LSTM
(BiLSTM), comprises two LSTMs taking input se-
quence in forward and reverse directions, exhibits
improved performance over single-LSTM in many
applications (Huang et al., 2015). While each deep
learning variant has its strength, a legitimate ques-
tion thus arises—if a fusion model, formed with
the DNN variants in a fusion chain, enhance per-
formance of textual classification. An immediate
next interesting question thus becomes the optimal
chain length of the proposed fusion model.

3.2 Optimal length of the fusion chain
Textual classification accuracy depends on the con-
text length of a word in a sentence. Fusing mul-
tiple DNN layers can increase the context length,
but the optimal stacking depth for the DNN layers
remains elusive and requires unravelling. The pro-
posed fusion architecture follows a generic struc-
ture— it starts with an input layer, followed by
an embedding layer that generates an embedding
matrix for the given input sentence. A DNN layer
is introduced immediately next to the embedding
layer. Subsequently, additional DNN layers are
added to form a fusion chain model of DNN lay-
ers, as schematically shown in Fig. 1. We per-
formed random search for an the optimal fusion
chain length, using several performance objectives,
including the higher classification accuracy. The
network architecture search (NAS) for an optimal
chain length randomly generates even and odd num-
bers to decide if the next stacking to be done by
an LSTM/BiLSTM (for even) or CNN (for odd)
layer. The current fusion process does not consider
similar DNN layers to be stacked together. The
maximum length of fusion chain considered in the
NAS is eight, beyond which the classification accu-

racy becomes considerably low (data not shown).
The NAS process for optimal fusion chain length
is summarized in algorithm 1.

3.3 Generalized random search

We implemented a generalized random search for
a set of hyper-parameters in Keras (Chollet et al.,
2018) and used it in all the experiments conducted
for the analysis of fusion chain models. Interest-
ingly, the random search process needs manual tun-
ing of only one parameter, namely the maximum
word length of a sentence that affects the shape
of attention and LSTM layers. With this little tun-
ing, the search process as developed in this study
remains applicable for other similar textual classi-
fication tasks. Each layer in the random search is
accompanied by an activation layer, a batch normal-
ization layer, and a dropout layer to minimize the
overfitting error. The CNN and RNN layers here
also include kernel, bias, and activity regularizers
(see the supplemental data for details).

3.4 Metrics used for comparison

The initial architecture search uses classification
accuracy on the test dataset and the loss differ-
ence (LD = validation loss - training loss) as the
performance metrics. The classification accuracy
is defined as (TP + TN)/(TP + TN + FP + FN)
with TP, TN, FP, FN are true positive, true nega-
tive, false positive, and false negative, respectively.
The random search also considers early stopping
to control the overfitting error 1. For a compari-
son between the baseline models and the CNN +
BiLSTM + CNN fusion model, we also considered
other metrics, such as the number of parameters (#
params), number of floating point operations (#
FLOPs). Generally, experiments conducted in this
study consider a 80% (training) and 20% (testing)

1Data and codes are available here in this link
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Table 1: Performance of alternative fusion models for
the new 6-class emotion Bengali dataset.

Model structure Accuracy (T) LD
Classical Machine Learning Models

1. SVM 41.93 NA
2. KNN 72.79 NA
3. Random Forest 81.43 NA

Fusion models
4. CNN + CNN + CNN 85.62 0.491
5. LSTM + LSTM 85.43 0.541
6. CNN + LSTM + CNN 86.61 0.283
7. LSTM + CNN + LSTM 85.74 0.483
8. BiLSTM + BiLSTM 86.54 0.126
9. BiLSTM + CNN + CNN 85.25 0.143
10. CNN + BiLSTM + CNN 84.54 -0.058
11. BiLSTM + LSTM 85.14 0.206
12. BiLSTM + LSTM + BiLSTM 85.49 0.057
13. BiLSTM + CNN + BiLSTM 85.86 -0.005

Fusion models + attention
14. CNN + attn. + BiLSTM + CNN 86.83
15. CNN + attn. + LSTM + CNN 86.91

BERT models
16. mBERT 86.62 0.457
17. Bangla BERT 86.17 0.177

split, and use fasttext (Joulin et al., 2016) as word
embedding method.

3.5 Datasets
The study considers datasets across different lan-
guages and contexts for the efficacy demonstration
of CNN + BiLSTM + CNN fusion. We developed
a new Bengali corpus for 6-class emotion classifi-
cation, as well as used other previously developed
Bengali datasets for different NLP tasks– i) Six-
class emotion Bengali dataset (Das et al., 2021), ii)
Hate Speech Bengali dataset (Romim et al., 2021),
and iii) DeepHateExplainer Bengali dataset (Karim
et al., 2020). As examples of non-Bengali lan-
guages that relate the low-resource contexts, we
consider the Vietnamese (Ho et al., 2019) and In-
donesian (Saputri et al., 2018) datasets. The low-
resource contexts in English considers an artificial
data scarcity for the Stanford Sentiment Treebank
2 (SST-2), (Socher et al., 2013), emotion classi-
fication dataset (Emotion) (Saravia et al., 2018),
and the Internet Movie Database (IMDB) review
dataset (Maas et al., 2011). Finally, the efficacy
study of the CNN + BiLSTM + CNN fusion model
also considers evaluating the model on the on the
General Language Understanding Evaluation the
GLUE benchmark (Wang et al., 2018); however,
we used randomly chosen 250 samples only from
each classes to mimic artificial data scarcity.

3.6 Baseline models
We compare CNN + BiLSTM + CNN and other
fusion models as identified against the models pre-

viously introduced for resource-constrained envi-
ronments. A few such models are BERT-base (un-
cased) (Devlin et al., 2018), mBERT (Abdaoui
et al., 2020), DistilBERT (Sanh et al., 2019), and
TinyBERT (Jiao et al., 2019). The chosen mod-
els are all BERT related, and a few of which,
for instance, DistilBERT, and TinyBERT, come
with reduced size and additional fine-tuning for the
resource-constrained environments and low-end de-
vices. Besides the GLU benchmark, the mBERT is
also used for the textual classification in Bengali.

4 Results and Discussion

Optimal fusion chain length of fusion models:
The NAS process identifies (see Fig. 2a, b, c) that
stacking unlimited DNN layers do not improve per-
formance of the fusion models. Instead, the accu-
racy and LD of the textual classification deteriorate
after the chain length attains an optimal value. In-
terestingly, chain-structure of length three or fewer
layers yield the optimal performance (shown in
Fig. 2a, b, c) irrespective of the fact whether fusion
models start with any of the CNN, LSTM, BiLSTM
layers. The NAS considers three fusion chains:

• CNN + LSTM + CNN + LSTM + . . . + CNN
• LSTM + CNN + LSTM + CNN + . . . + LSTM
• BiLSTM + CNN + BiLSTM + . . . + BiLSTM

A comparison between the competing models
for our newly developed corpus of emotion
classification reveals that accuracy deteriorates as
the chain length goes beyond three. As it appeared,
the accuracy gradually reduces to lower values
as the length increases beyond three (shown in
Fig. 2a, b, c). Among the models with a chain
length of three or less, a model with a chain length
of three is the smallest in LD values among the
three allowed chains. A fusion chain that starts
with a CNN layer attains the lowest validation
loss and is explored further in subsequent analysis
by replacing the LSTM layer with a BiLSTM layer.

GLUE benchmark with artificial data scarcity:
The GLUE benchmark datasets have different
sentence classification tasks. The performance
evaluation of CNN + BiLSTM + CNN for all
the categories has been done by assuming an
artificial data scarcity. Precisely, the artificial
scarcity considers only 250 samples from each
class. As reported, the proposed CNN + BiLSTM
+ CNN model frequently outperforms baseline

196



Table 2: Efficacy study of CNN + BiLSTM + CNN fusion model considers GLUE benchmark datasets. Here, M and
B stand for Millions and Billions, respectively. Only 250 samples were collected randomly to mimic a low-resource
setup artificially for each class, among which 80% and 20% were for training and testing purposes. Here, accuracy
colored in red is the highest, whereas the bold black is the next highest accuracy attained. The baseline models are
all pre-trained versions available in https://huggingface.co/models

Model # Params # FLOPs CoLA WNLI QQP QNLI RTE

BERT-base 109M 22.04B 63 46 61 70 75
mBERT 110M 22.04B 64 49 66 73 71
DistilBERT 52.2M 22.04B 65 47 65 74 76
TinyBERT 14.5M 0.119B 48 39 49 53 57
CNN + BiLSTM + CNN 0.4M 1.50M 64 65 71 73 81
CNN + LSTM + CNN 0.37M 1.43M 60 64 69 74 81

CNN + BiLSTM 0.38M 1.47M 62 62 70 71 79

Table 3: Comparison between CNN + BiLSTM + CNN
model and BERT with frozen layers as in (Grießhaber
et al., 2020) for 1000 randomly selected samples from
SST-2 dataset (Socher et al., 2013).

Methods Model structure SST-2

BERT
no frozen layer 0.78± 0.059
layer 1,2,3 frozen 0.80± 0.045
layer 9,10,11 frozen 0.84± 0.013

Fusion CNN + BiLSTM + CNN 0.80

models and approximates the rest for all different
classification tasks available in GLUE benchmark
(shown in Table 2). For instance, the comparison
considers both the SST-2 (Socher et al., 2013)
and CoLA (Warstadt et al., 2019) datasets for
the single sentence classification task, and the
CNN + BiLSTM + CNN model achieves the
second-highest accuracy (64% for CoLA) marked
as bold black with Distilled BERT accuracy at
the top with 65% accuracy. Interestingly, in 4
sentence inference task (dataset RTE (Bentivogli
et al., 2009)), the CNN + BiLSTM + CNN model
achieves 81% accuracy exceeding all the other
baseline models in the presence of artificial
scarcity. In another inference task dataset, QNLI
(Rajpurkar et al., 2016), the fusion model CNN
+ LSTM + CNN attains the maximum accuracy
(74%) with CNN + BiLSTM + CNN and mBERT
following it with an accuracy of 73%. The GLUE
benchmark also includes three-sentence similarity
tasks, and the CNN + BiLSTM+ CNN performed
equally well for datasets such as QQP (Chen et al.,
2018) with the highest and immediate next best
performances with 71% and 70%, respectively.
These experiments on different NLP tasks of the
GLUE benchmark demonstrate the ability of CNN
+ BiLSTM + CNN models to perform better in
data scarcity and low-end computational facilities.

Fusion and BERT models have comparable ac-

curacy for a newly developed Bengali corpus:
A few fusion chain models perform closely with
BERT models for Bengali 6-class emotion cor-
pus we developed (see supplemental information).
Precisely, the Bangla BERT and mBERT models
achieve 86.17% and 86.62%, whereas the CNN +
LSTM + CNN fusion model reports an accuracy
86.61% (Table 1, row 6). The accuracy further
improves for the same dataset with a self-attention
layer added immediately after the initial CNN layer
with an accuracy of 86.83% and 86.91% respec-
tively (Table 1, row 14, 15). We primarily empha-
sized on minimizing overfitting error by lowering
the difference between the validation loss and train-
ing. As observed, fusion models containig BiL-
STM layers demonstrate a tendency of lowering
the LD (Table 1, row: 8, 9, 10, 12, 13), and in fact,
obtains the lowest LD = 0.057 among alternative
fusion models. Interestingly, the fusion models per-
formed very closely with the mBERT model, and
in fact, outperformed mBERT in lowering the gen-
eralization error. For instance, reported mBERT
LD = 0.457 (Table 1, row 16), whereas the CNN
+ LSTM + CNN model has a low LD = 0.28. The
fusion models also perform well across other Ben-
gali text classification datasets. For instance, CNN
+ BiLSTM + CNN model outperforms mBERT
and BanglaBERT implementation for the reported
dataset in (Das et al., 2021). In another dataset of
Bengali hate speech detection (Romim et al., 2021),
the fusion model with self-attention CNN + attn. +
BiLSTM + CNN outperforms all the previous DNN
and ML implementations, as evident from Table 4.
However, for the dataset in (Karim et al., 2020), the
fusion models fail to match the BERT-variants’ per-
formance (see Table 4) and surpass only the other
DNN models. However, these datasets generally
contain few thousands of samples for each classes,
and do not necessarily represent data scarcity. Fur-
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Table 4: Performance comparison between fusion mod-
els and alternative DNN and BERT models for vari-
ous NLP-tasks in Bengali language. Here, A ≡ self-
attention layer.

Group Model structure Accuracy (%) Ref.
Six-class emotion Bengali dataset (Das et al., 2021)

DNN

CNN + A + LSTM + CNN 64.26
Ours

CNN + A + BiLSTM + CNN 65.24
CNN + A + GRU + CNN 64.73
CNN + BiLSTM 55.68 (2021)
BiLSTM 58.08 (2021)

BERT
mBERT 64.63

(2021)Bangla-BERT 62.24
XLM-R 69.61

Hate Speech Bengali dataset (Romim et al., 2021)
ML SVM 87.80 (2021)

DNN

fasttext + LSTM 84.30
(2021)fasttext + BiLSTM 86.55

word2vec + LSTM 83.85
CNN + A + BiLSTM + CNN 88.65 Ours

DeepHateExplainer (Karim et al., 2020)

DNN
LSTM 75

(2020)
BiLSTM 78
CNN + A + BiLSTM + CNN 83.56 Ours

BERT
Bangla-BERT 86

(2020)mBERT-cased 85
XML-Roberta 87

ther exploration of the fusion models for other
low-resources languages and contexts reveal the
resilience of the identified models. For instance,
the IMDB dataset (Maas et al., 2011) and the Emo-
tion dataset (Saravia et al., 2018) were randomly
reduced to mimick low-resource contexts. Sub-
sequently, mBERT performance for the reduced
datasets (5%, 10% for IMDB and 0.01%, 0.02%
for Emotion) was compared against the fusion mod-
els’ performance.

As appeared in Table 4, fusion models out-
performed in all instances; in fact, it performed
significantly better for the smaller dataset size
considered. Ability of fusion models also remain
equally competitive in other English NLP tasks,
as demonstrated from classification accuracy
comparison (see Table 6) between the fusion
models and other BERT, DNN based implementa-
tion as in (Larson et al., 2019). Specifically, the
fusion models attain a comparable accuracy of
93.62%, 93.28% as opposed to BERT-base’s 94.4%
reported in (Larson et al., 2019). Interestingly, the
proposed method also perform competitively with
the other low-resource fine-tuning, for instance, the
freezing of BERT-layer approach as in (Grießhaber
et al., 2020). Precisely, the CNN + BiLSTM +
CNN model achieves higher accuracy than the
BERT-base model reported, and almost equally
perform to other tuned BERT-models of frozen
layers, for a randomly selected 1000 samples from

Table 5: Training cost comparison between the baseline
and fusion models using the average time per epoch for
all the GLUE benchmark datasets studied.

Model
Average Time per Epoch (second)

CoLA WNLI QQP QNLI RTE

BERT-base 1286 1321 895 1421 783
mBERT 2540 1721 1296 2671 1026
DistilBERT 783 982 662 941 386
TinyBERT 19.6 24.4 19.8 24.4 18.8
CNN + BiLSTM

+ CNN
1.92 3.36 3.33 3.36 2.21

CNN + LSTM
+ CNN

1.25 3.26 2.25 3.18 1.11

CNN + BiLSTM 1.23 4.21 3 4.16 2.58

Table 6: Performance comparison between fusion mod-
els and alternative DNN and transformers models across
different languages and datasets. Here, A ≡ attn.

Method Model structure Accuracy (%) Ref.

Artificial scarcity: (5%, 10%) of IMDB dataset (Maas et al., 2011)
Fusion CNN + A + BiLSTM + CNN (84.79,85.10) Ours
BERT mBERT (81.40, 84.79) -

Scarcity: (0.01%, 0.02%) Emotion dataset (Saravia et al., 2018)
Fusion CNN + A + LSTM + CNN (84.65,89.87) Ours
BERT mBERT (79.5, 89.57) -

100% of Intent Classification dataset (Larson et al., 2019)
BERT BERT-base 94.3

(2019)
Others

CNN 89.8
MLP 90.1

Fusion
CNN + BiLSTM + CNN 93.62

Ours
CNN + LSTM + CNN 93.28

100% of the Vietnamese dataset (Ho et al., 2019)

Fusion
CNN + LSTM + CNN 54.76

OursCNN + BiLSTM + CNN 54.54
BERT BERT-base 53.18

100% of the Indonesian dataset (Saputri et al., 2018)

Fusion
CNN + LSTM + CNN 54.76

OursCNN + BiLSTM + CNN 54.54
BERT BERT-base 53.18

the SST-2 dataset (see Table 3).

Position-sensitive self-attention role of fusion
models in new Bengali corpus: An attention layer
may aid in capturing the necessary information
for a sequence to sequence model. We also in-
vestigated how adding a self-attention layer to the
fusion model affects the accuracy of the the newly
developed 6-class Bengali emotion corpus. How-
ever, an immediate question arises—what the op-
timal position of the attention layer be within a
fusion chain. To answer this, we execute four dif-
ferent experiments, utilizing a self-attention layer
in four alternative places: between the embedding
and the first CNN layer, between the first CNN
layer and the first LSTM layer, between the first
LSTM layer and the second CNN layer, and be-
tween the second CNN layer and the final output
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a) b) c)

Figure 3: Performance comparison between the fusion (CNN + attn. + LSTM/BiLSTM + CNN) and mBERT model
on 25%, 50%, 75% and 100% of a new 6-class Bengali emotion dataset. The dataset was split randomly to produce
an artificial scarcity. In Fig. 3a-b, the green (square), red (circle), blue (asterisks), and yellow (diamond) lines
represent CNN + attn. + LSTM + CNN (Fusion: LSTM), CNN + attn. + BiLSTM + CNN (Fusion: BiLSTM),
mBERT and BanglaBERT models’ performance, respectively. a) Accuracy comparison of all the four models for
varying data size. b) The loss difference (LD) progression for different data sizes– the smaller the loss, the better the
performance is. c) An inclusion of a self-attention layer improves fusion models’ performance (blue lines).

Table 7: Deployable form for a few DNN-based fusion models before and after the pruning and retraining for the
six-class Bengali emotion dataset developed in this study.

Serial Fusion architecture Retrained Accuracy Accuracy Size (zip, MB)
Before pruning After Pruning Before Pruning After Pruning

1 LSTM + LSTM 86.19 85.43 85.18 33.45 6.32
2 CNN + LSTM + CNN 86.36 86.61 85.54 34.81 6.60
3 LSTM + CNN + LSTM 85.28 85.74 84.24 34.27 6.45

layer. As observed, the model provides an accuracy
of 85.79% and a loss difference of 0.205 if the at-
tention layer is placed between the embedding and
the first DNN layer. Interestingly, the accuracy in-
creased to 86.68%, and the loss difference reduced
to 0.164 if the attention layer posits between the
first CNN and first LSTM layer. It was the highest
accuracy produced and the lowest loss difference of
0.164 among the alternative self-attention position
tried. An attention layer between the LSTM and the
second CNN layers generates shape mismatch and
stops the model from training. Final experiment
that places attention between the second CNN and
output layer produces an accuracy of 85.79% with
a 0.285 loss difference. These experiments show
that for the 6-class Bengali emotion classification,
a position-sensitive attention layer makes a differ-
ence in classification accuracy and reduces over-
fitting error. The accuracy improvement because
of the self-attention layer still holds if an artificial
scarcity for the new corpus is produced by consid-
ering 25%, 50%, 75% of the complete dataset, as
shown in Fig. 3c. However, further analysis with
other datasets and languages would clarify whether
self-attention layer roles, as observed here in Fig. 3,
are context-dependent or generic, and are beyond
the scope of this study.

Fusion models robustly perform in data scarcity:
One intriguing query on the fusion model would be

to assess its ability to perform in data scarcity. An
experiment designed to compare how the proposed
fusion models and mBERT perform in data scarcity
randomly segregates the Bengali 6-class emotion
dataset into 25%, 50%, 75%, and 100% categories.
The artificial data scarcity is analogous to the low-
resource contexts, mimicking the lack of sufficient
annotated data common for many low-resource lan-
guages. The comparison considers CNN + attn.
+ LSTM + CNN and CNN + attn. + BiLSTM +
CNN and compare with mBERT. The fusion mod-
els perform better for the 25% case and match or
surpass the mBERT performance in other scarce
data cases (shown in Fig. 3a). Besides, the fusion
models decrease LD in all the artificially produced
scarce cases studied. A close comparison (Fig. 3b)
shows that the LD of mBERT (blue line) remains
way above the LDs reported by the fusion mod-
els. For the 25% case, the LD value is doubled for
mBERT, indicating an advantage of fusion models
in low-resource contexts.

Fusion models are computationally less expen-
sive: Along with other factors, the computational
cost of an NLP model also depends on its size and
the FLOPs count. A comparison of these metrics
between the baseline models and the fusion models
exhibits that fusion models are more advantageous
for a small number of annotated samples (shown
in Table 2). For instance, the fusion model CNN
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+ BiLSTM/LSTM + CNN roughly does 100 times
fewer FLOPs. Also, for most GLUE datasets, the
fusion model outperforms the TinyBERT in the
presence of data scarcity. Some of the BERT mod-
els demonstrate equal accuracy for some GLUE
benchmark datasets. However, these models are
computationally extensive because of their high
#Params and #FLOPs. Although costs related to
FLOPs are decreasing, it requires hardware up-
gradation from GPU to TPU. Whereas the GPU
itself is a computationally extensive device in low-
resource environments, let alone the use of TPU.
So, the low #FLOPs requirement in CNN + BiL-
STM + CNN provides an edge over the memory-
hungry BERT models in low-resource contexts. Be-
sides, the possibility of a low computational cost
of the CNN + BiLSTM + CNN model can also be
predicted by comparing the average time per epoch
calculation, an ensemble representation of all the
individual times per epoch for alternative GLUE
benchmark data considered. The average time per
epoch over GLUE benchmark data is about 3 sec-
onds for the CNN + BiLSTM + CNN model. In
contrast, the same becomes as high as 1000 sec-
onds or more for the different baseline models im-
plemented in the experiment.

Besides, pruning and retraining reduce the fusion
models further and increase their deployability in
low-end devices and web platforms. Precisely, the
CNN + LSTM + CNN model achieves almost a 5×
reduction in size from 34.81MB to a model size of
6.60MB, as in Table 7. The TinyBERT model may
be as small as about 16MB, but it is pre-trained
in the English language requiring further tuning in
other languages for better accuracy. For instance, in
experiments on a Bengali 6-class emotion dataset,
the TinyBERT, pre-trained in English, achieves an
accuracy of 33.42%. This accuracy drops to 24%
if annotated data is reduced to 25%. So, Tiny-
BERT requires training of the pre-trained model
and suffers because of data scarcity. Whereas, for
the proposed fusion model CNN + BiLST/LSTM
+ CNN, the initial accuracy (86.61) is almost re-
trievable (86.36) upon pruning and retraining (data
shown in Table 7). Also, the model size reduces to
around 5MB after pruning compared to the 16MB
of the pre-trained TinyBERT.

5 Conclusion

Generally, the RNN and CNN models are compu-
tationally less intensive but compromise accuracy

in textual classification. In contrast, BERT-variants
and other advanced transformer-based implemen-
tations demonstrate improved performance but are
computationally intensive. This study analyzed a
few low-resource textual classification contexts to
identify CPU-trainable and comparatively smaller
deployable DNN models sufficiently accurate in
textual classification tasks. These identified less-
intensive DNN fusion models attained accuracy
that frequently surpasses BERT performance in
low-resource contexts. Interestingly, the efficacy of
CNN + BiLSTM + CNN remains equally applica-
ble in other alternative languages, tasks. This study
also demonstrates that the fusion models are all
CPU-trainable, making them easily accessible for
communities suffering from an infrastructural defi-
ciency. Moreover, low-resource languages always
suffer from smaller corpus, infrequent research ini-
tiatives, and a lack of intensive computational fa-
cilities. These hinder the potential deployment of
DNN models to monitor toxic and abusive elements
in the ever-increasing social media platforms. Be-
cause of its relatively small size and acceptable
classification accuracy, the fusion models are a suit-
able alternative to computationally intensive BERT
variants for deployment in low-end devices.

Further improvement of the fusion models may
consider a multichannel word-embedding tech-
nique, equipping the models better for out of vo-
cabulary words now common in the era of social
media platforms, POS-tagging to exploit the key
phrases of the sentiment better. Such extensions,
alone or in a cohort, can improve the fusion models
to tackle the long-term dependencies analysis by
forming phrases from the dependent and related
words in longer sentences. Overall, this work pro-
vides sufficiently accurate, computationally less in-
tensive CPU-trainable DNN models for NLP tasks
for low-resource languages and may serve as the
blueprint to identify the deployable NLP models
for low-resource languages and environments.
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Abstract

Aspect Term Extraction (ATE) is the task of
identifying the word(s) in a review text toward
which the author express an opinion. A major
challenges for ATE involve data scarcity that
hinder the training of deep sequence taggers to
identify rare targets. To overcome these issues,
we propose a novel method to better exploit
the available labeled data for ATE by comput-
ing effective complement sentences to augment
the input data and facilitate the aspect term
prediction. In particular, we introduce a multi-
step training procedure that first obtains opti-
mal complement representations and sentences
for training data with respect to a deep ATE
model. Afterward, we fine-tune the generative
language model GPT-2 to allow complement
sentence generation at test data. The REIN-
FORCE algorithm is employed to incorporate
different expected properties into the reward
function to perform the fine-tuning. We per-
form extensive experiments on the benchmark
datasets to demonstrate the benefits of the pro-
posed method that achieve the state-of-the-art
performance on different datasets.

1 Introduction

Aspect Term Extraction (ATE) is one of the funda-
mental tasks in Aspect-based Sentiment Analysis
(ABSA). Its goal is to recognize the terms upon
which a sentiment opinion is expressed in text. For
instance, in the sentence “The staff of the restaurant
were good but the quality of the food was terrible",
an ATE system should recognize the two aspect
terms (targets) “staff ” and “quality of food”. ATE
finds its applications in ABSA systems to identify
targets toward which sentiment analysis is done.

A major challenge for ATE is the lack of enough
training data. For instance, the widely-used Se-
mEval datasets, e.g., Res15 (Pontiki et al., 2015)
or Res16 (Pontiki et al., 2016), contain less than
2,000 training samples with only 20% of the words
appearing more than five times (Chen and Qian,

2020a). This small size of training data hinders the
deep sequence taggers to achieve optimal perfor-
mance, especially for the tail targets (i.e., targets
with few examples in the dataset) (He et al., 2018;
Chen and Qian, 2019). In order to alleviate this
issue, prior work has resorted to data augmentation
techniques to exploit additional training signals
from different sources, including data from related
tasks, e.g., ABSA (performing multi-tasking learn-
ing (Luo et al., 2020; Chen and Qian, 2020b)),
new labeled data for ATE produced by pre-trained
sequence-to-sequence models (Li et al., 2020), and
soft prompts that are generated by pre-trained lan-
guage models (Chen and Qian, 2020a). As such,
the critical requirements for such prior methods
involve annotation for related tasks of ATE (e.g.,
ABSA), or large in-domain corpora to train the
sequence-to-sequence/language models for data
generation (called external data). Unfortunately,
these requirements might be unavailable or very
expensive to obtain in different domains, making it
less applicable for various scenarios in practice.

To this end, this work aims to solve the issue of
data scarcity for ATE without relying on annotated
data for related tasks and large in-domain corpora.
In particular, our main proposal is to fine-tune ex-
isting large-scale language models so they can gen-
erate complement sentences for input sentences in
existing labeled datasets for ATE (i.e., not using
external data as in prior works). Here, the motiva-
tion is that data scarcity might present a challenge
for ATE models, especially on tail examples with
rare aspect terms and context patterns (Chen and
Qian, 2020a). The complement sentence thus aims
to provide supporting evidence and facilitate the
recognition of aspect terms for the input sentences.

As such, our method first seeks to obtain com-
plement sentences for all the sentences in a given
ATE dataset via a multi-step training procedure.
In the first step, we train a base ATE model on
a labeled training dataset to encode the available
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knowledge about aspect terms in the dataset. How-
ever, due to data scarcity, the base model might not
be exposed sufficiently to aspect term patterns, thus
limiting the ability of the produced representations
for the input sentences to fully capture relevant
information/features for ATE. To achieve comple-
ment sentences for ATE datasets, in the second
step, we thus propose to learn optimal represen-
tation vectors/word embeddings that can be com-
bined (e.g., via adding) to improve the representa-
tion vectors from the base model for ATE (called
complement representations). Our motivation is
that the insufficient coverage of aspect term pat-
terns in the representations would cause the base
model to exhibit poor performance (i.e., high loss)
on the validation dataset. To this end, we propose
to infer the complement representations for each
validation sentence by incorporating them into the
base model as additional parameters and minimiz-
ing the loss of the augmented model on the val-
idation data. In the implementation, we divide
the training data for an ATE dataset into k folds.
By choosing one fold as validation data and treat-
ing the k − 1 remaining folds as training data, the
aforementioned procedure can return the optimal
complement representations for each sentence in
the validation fold. As such, we repeat this process
for k possible choices of the validation fold that in
all produce complement representations for each
sentence in the training data.

To employ the complement representations for
training data, we can introduce them into the base
model for retraining. However, this will cause a
mismatch in the test time where labels for sentences
are not available and the complement representa-
tions cannot be obtained. To this end, instead of
directly using the learned complement represen-
tations, we propose to first transform them into
complement sentences based on the GloVe word
embeddings (Pennington et al., 2014). This is done
by introducing constraints to encourage the learned
representation vectors to belong to the same space
with GloVe word embeddings. The complement
representations can then be mapped into comple-
ment sentences by finding the words whose GloVe
embeddings are closest to the complement repre-
sentations. In this way, each original training sen-
tence for ATE can be associated with a complement
sentence. Using pairs of original and complement
sentences as training data, in the next step, we
propose to train a generative model that can trans-

form the original sentences into their complement
versions. As such, in the test time, we can ap-
ply the generative model to generate complement
sentences for test data and use GloVe embeddings
to produce complement representation vectors for
data augmentation.

In this work, we propose to fine-tune the lan-
guage model GPT-2 (Radford et al., 2019) on the
original and complement sentence pairs to obtain
the generative model. Our motivation stems from
the small number of the pairs for the original and
complement sentences (due to the small size of
ATE datasets) that might not be sufficient to train
a generative model well. By leveraging the pre-
trained GPT-2 model, we expect that its language
priors can compensate for the data scarcity issue
and bootstrap the learning process from comple-
ment data. Finally, we use REINFORCE (Williams,
1992) to fine-tune GPT-2 to facilitate the enforce-
ment of expected properties for the generated sen-
tences (i.e, the similarity or the length compara-
bility with respect to the complement sentences
produced in prior step). We perform extensive eval-
uations for the proposed method on different bench-
mark datasets for ATE. Our experiments reveal the
superior performance and demonstrate the effec-
tiveness of the proposed method.

2 Model

Problem Definition: ATE is formulated as a se-
quence labeling problem. Formally, given the input
sentence S = [w1, w2, . . . , wn], the goal is to pre-
dict the gold label sequence Y = [y1, y2, . . . , yn]
where yi ∈ {B, I,O}, B stands for the “Beginning
of a target”, I stands for “Inside a target”, and O
stands for “Other”. Our proposed model consists of
a four-step procedure: (I) Training a base model for
ATE using the available labeled data, (II) Finding
the word representations of the optimal comple-
ment sentences for training data, (III) Fine-tuning a
the language model GPT-2 to produce complement
sentences for input sentences, and (IV) Training a
final ATE model on the training data augmented
with complement sentences.

2.1 Training a Base ATE Model (Step I)

For the first step, we train a base model on an avail-
able labeled ATE dataset. The trained model will
serve as a base to find the optimal complement rep-
resentations for input sentences of the ATE dataset
in the next step. To this end, we employ a Bi-LSTM
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base model. In particular, the input sentence S is
first fed into the pre-trained BERT model (Devlin
et al., 2019) to obtain the contextualized word em-
beddings X = [x1, x2, . . . , xn] (xi is the average
of the representation vectors for the wordpieces of
wi in the last layer of BERT). As such, to further
abstract the word embeddings X for ATE, we feed
X into a Bidirectional LSTM (Bi-LSTM) network
to obtain the hidden states H = [h1, h2, . . . , hn].
Afterward, the vectors in H are sent into a two-
layer feed-forward layer FF to generate the label
probability distribution P (·|S,wi) for i-th word:
P (·|S,wi) = FF (hi). Finally, to train the base
model, we use negative log-likelihood loss: Lb =
− 1
n

∑n
i=1 logP (yi|S,wi).

2.2 Finding Complement Representations
(Step II)

As mentioned in the introduction, the limited size
of the ATE datasets might prevent the base model
from being imposed sufficiently to training sam-
ples to learn necessary aspect term patterns in the
representations, potentially leading to inferior per-
formance (i.e., high loss on validation data), espe-
cially on tail targets. As such, it is necessary to en-
hance the representation learning capability of the
base model by imposing it to further information.
To achieve this goal, prior work has resorted to
data augmentation (Li et al., 2020) or soft-prompts
(Chen and Qian, 2020a) in which the training data
is augmented with new sentences (e.g., generated
by a pre-trained language model) to provide more
evidences for aspect terms. However, the limitation
of the prior work is that the generated sentences
to augment ATE data is either ignorant of the ATE
task (Chen and Qian, 2020a) or constrained on
some heuristics (i.e., replacing non-aspect terms
with other words generated by a language model)
(Li et al., 2020). As such, we argue that these data
augmentation methods might not achieve the opti-
mal augmentation for the available ATE data. We
thus posit that the optimal augmentation for an in-
put sentence is the one whose combination with the
sentence could directly reduce the objective loss on
validation data. Concretely, to find the optimal aug-
mentation for a sentence S in the validation data,
we search for the sentence S′ whose combination
with S (i.e., by adding their word representations)
could further reduce the objective loss Lb com-
puted on validation data. Since this augmentation
is optimized over validation data and not bound to

any heuristics-based constraints, we expect it to be
the optimal augmentation for the input sentence.
Note that the optimality of the sentence S′ is with
respect to the objective loss Lb and changing the
criteria could lead to a different sentence S′.

To find the optimal complement sentence S′ for
S in the validation data, since this is a discrete
variable, we first attempt to find the representation
vectors X ′ for its words wi. That is, S′ is param-
eterized by a set of learnable vectors X ′ which
are combined with the word embeddings X and
are updated with the objective loss Lb over valida-
tion data. In this work, the combination of X and
X ′ is defended as the sum of their corresponding
vectors xi and x′i. As such, the number of tokens
of X ′ should be equal to the number of tokens of
X , i.e., X ′ = [x′1, x

′
2, . . . , x

′
n]. In addition, the

dimension of the vectors should also match, i.e.,
|xi| = |x′i| = D, where D is the dimensionality
of the word embedding vectors. Hence, the total
number of parameters defined for all representation
vectors is N ×n×D, where N is the total number
of sentences in the validation set.

In the next step, we seek to optimize the rep-
resentation parameters complement sentences by
reducing the objective loss Lb over validation data.
In particular, for the sentence S with embeddings
X and the complement sentence S′ with parame-
ters (i.e., embeddings) X ′, we compute the sum
of the corresponding vectors for the i-th token:
x̂i = xi + λx′i where λ is a trade-off parameter
(i.e., the data augmentation in this work). The
vectors X̂ = [x̂1, x̂2, . . . , x̂n] will be sent to the
base model architecture (i.e., BiLSTM followed
by a feed-forward layer) to obtain the label distri-
bution P (·|S, S′, wi). As such, the objective loss
for this training step, i.e., Lf , is defined similar
to Lb: Lf = − 1

n

∑n
i=1 logP (yi|S, S′, wi) (com-

puted over validation data). Note that in this train-
ing step, the original parameters of the trained base
model is fixed so the only parameters to be updated
are the parameters for the complement sentences
S′, i.e., the vectors X ′.

Embedding Regularization: To further im-
prove the complement embeddings and facilitate
the mapping to complement sentences S′ later,
we introduce two additional regularization terms
for the learning objective of complement embed-
dings. The first regularization seeks to encourage
the complement embeddings X ′ to capture differ-
ent (i.e., complementary) information from those
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for the embeddings X of the input sentence S,
thus enhancing the contribution of complement
embeddings. In particular, we compute the rep-
resentation vectors RS and RS′ for the original
and complement sentences using the max-pooling
operation: RS = MAX_POOL(x1, x2, . . . , xn)
and RS′ = MAX_POOL(x′1, x

′
2, . . . , x

′
n). Af-

terward, the complementary nature of embeddings
is enforced by introducing the dot product Lreg
between RS and RS′ into the loss function for min-
imization (i.e., minimizing the similarity between
RS and RS′): Lreg = RS ⊙RS′ .

For the second regularization, we aim to align
the complement embeddings X ′ to the space of
the GloVe embeddings (Pennington et al., 2014)
to facilitate the transformation to complement sen-
tences in the next step. Here, we use the GloVe
embeddings for convenience and leave other pos-
sible pre-trained embeddings for future work. In
particular, for each vector x′i ∈ X ′, we use a feed-
forward network F to transform x′i into the vec-
tor F (x′i) of the same dimension with Glove em-
beddings. Afterward, we find the vector ei in the
GloVe embedding table that is closest to F (x′i)
based on the Euclidean distance. The Euclidean
distance between F (x′i) and ei is then incorporated
into the loss function to promote the alignment of
complement and GloVe embeddings: LGloV e =
1
n

∑n
i=1 ∥F (x′i)− ei∥22. Finally, the overall loss

function to learn the complement representations
X ′ is: Lemb = Lf + αregLreg + αGloV eLGloV e
where αreg and αGloV e are the trade-off parameters.
Note that the parameters for F are also optimized
in this process.

As such, this training step produces the com-
plement embedding X ′ for each sentence in the
validation data. To maximize the use of data, we
implement this training step in a 10-fold validation
fashion described in the introduction. In particular,
we train the base model on 9 folds of the training
data (i.e., Section 2.1) and use the remaining fold
for the validation data in the complement represen-
tation optimization. By alternating the choice of
validation fold, we can obtain a complement rep-
resentation sequence X ′ for each sentence in the
original training data.

2.3 Generating Complement Sentences (Step
III)

As mentioned in the introduction, the complement
embeddings X ′ can be used directly to augment

training data and train a model for ATE. However,
as the optimization for complement embeddings
cannot be done in the test time (due to the unavail-
ability of labels for data), the direct augmentation
will cause a mismatch between the training and
test phases. To enable the generation of comple-
ment embeddings in the test time, we thus propose
to first transform the complement embeddings X ′

into a complement sentence S′ = [w′
1, w

′
2, . . . , w

′
n]

where w′
i is the word whose Glove embedding

is closest to the transformed complement vector
F (x′i) for wi. The set of every pair (S, S′) for
sentences S in training data is then employed to
train a generative language model that seeks to con-
sume S and produce its complement sentence S′.
In this way, we can apply the generative model
in the test time to generate complement sentences
for test data, that, in turn, can be transformed into
complement embeddings by mapping words into
Glove embedding vectors for data augmentation.

One potential issue is that the number of origi-
nal and complement sentence pairs (S, S′) might
be small due to the limited size of ATE datasets,
thus hindering the training of effective generative
models for our complement sentence goal. As
such, we propose to leverage the language priors in
the pre-trained generative model GPT-2 (Radford
et al., 2019) as the bootstrap knowledge for the
complement generation. In particular, we propose
to fine-tune the GPT-2 model on the sentence pairs
(S, S′) in this step. The policy-gradient method
REINFORCE (Williams, 1992) is utilized for the
fine-tuning process to facilitate the incorporation
of different expected properties for complement
sentences. Concretely, the input to GPT-2 con-
sists of the S sentence “w1w2 . . . wnSEP ” from
which GPT-2 will generate the sentence S′′. To
compute the reward for the generated sentence S′′,
we propose three objectives: (1) Similarity with
Complement Sentence: The generated sentence
S′′ should be similar to the actual complement sen-
tence S′. To compute the similarity of the two
sentences, we employ the CIDEr score (Vedantam
et al., 2015) for S′′: Rsim = CIDEr(S′′); (2)
Length Penalty: As discussed earlier, since we
use sum of the corresponding word embeddings
of the original and complement sentences for data
augmentation, it is intuitive to encourage the gen-
erated sentences S′′ to have the same length as the
original sentence S. Thus, we introduce the length
penalty as a part of the reward: Rlen = ||S|−|S′′||;
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(3) Difference with Original Sentence: Similar
to embedding regularization Lreg presented ear-
lier for complement embeddings, here we also aim
to promote the semantic difference between the
generated sentence S′′ and the original sentence
S (for complementary information). To this end,
we represent each sentence using the max-pooled
representation of their word embeddings obtained
from the GloVe embedding table, i.e., R̂S and R̂S′′ .
Next, their dot-product is employed for the differ-
ence reward Rdiff = R̂S⊙R̂S′′ . Consequently, the
overall reward to train the generative model is com-
putes as R(S′′) = Rsim − βRlen − γRdiff . With
REINFORCE, we seek to minimize the negative
expected reward R(S′′) over the possible choices
of S′′: Ltune = −EŜ′′∼P (Ŝ′′|S)[R(Ŝ′′)]. The
policy gradient is then estimated by: ∇Ltune =
−EŜ′′∼P (Ŝ′′|S)[(R(Ŝ′′) − b)∇ logP (Ŝ′′|S)]. Us-
ing one roll-out sample, we further estimate
∇Ltune via the generated sentence S′′: ∇Ltune =
−(R(S′′)− b)∇ logP (Ŝ′′|S) where b is the base-
line to reduce variance. In this work, we obtain
the baseline b via: b = 1

|B|
∑|B|

i=1R(S′′
i ), where

|B| is the mini-batch size and S′′
i is the generated

sentence for the i-th sample in the mini-batch.

2.4 Training a Final ATE Model (Step IV)

To achieve a consistency in the training and testing
phase, we use the generated sentences from the fine-
tuned GPT-2 model as the complement sentences
for data augmentation in both phases. In particular,
for the training data, similar to the complement em-
bedding optimization Section 2.2, the fine-tuning
of GPT-2 is performed with 10-fold cross valida-
tion. In particular, the GPT-2 model is fine-tuned
on the (S, S′) pairs of 9 folds and then employed to
generate S′′ for each sentence in the remaining fold.
To this end, each sentence S in the training data
is associated with a generated sentence S′′. For
test data, we simply apply the fine-tuned GPT-2
model directly to generate a complement sentence
for each sentence in that data.

As such, for each sentence S (in the training
or test data), its complement sentence from GPT-
2 S′′ = [w′′

1 , w
′′
2 , . . . , w

′′
n] is first transformed

into a representation vector sequence X ′′ =
[x′′1, x

′′
2, . . . , x

′′
n] based on the mappings for their

words w′′
i from GloVe embeddings1. Next, the

1Note that the generated sentence S′′ might have a differ-
ent length from the original sentence S. For these cases, we
pad (with zero vectors) or truncate the vector sequence X ′′ to
have the same length as S.

Datasets Lap14 Res14 Res15 Res16
Type Train Test Train Test Train Test Train Test

Sentences 3045 800 3041 800 1315 685 2000 676
Aspects 2342 650 3686 1134 1209 547 1757 622

Table 1: Statistics of the SemEval datasets

augmented representation X̄ = [x̄1, x̄2, . . . , x̄n]
from the two sentences is computed by the sum
of their corresponding word representations: x̄i =
xi + λG(x′′i ), where G is a feed-forward network
to match the dimensions of the GloVe embedding
G(x′′i ) and xi. Finally, following the base ATE
architecture, the resulting vectors X̄ are sent to a
BiLSTM network followed by a feed-forward layer
to obtain the label distribution P (·|S, S′′, wi) for
the i-th word. This distribution is used for pre-
diction in the test phase while the training phase
employs the negative log-likelihood (over train-
ing data) to train the final ATE model: Lfinal =
− 1
n

∑n
i=1 logP (yi|S, S′′, wi).

3 Experiments

Datasets & Parameters: To evaluate the effec-
tiveness of the proposed method, we employ the
commonly used SemEval datasets for ATE. Specif-
ically, we use the datasets of SemEval 2014 Task 4
(Pontiki et al., 2014), i.e., Lap14 and Res14 reviews
for laptops and restaurants, and SemEval 2015 Task
12 (Pontiki et al., 2015) and SemEval 2016 Task 5
(Pontiki et al., 2016), i.e., Res15 and Res16 with re-
views for restaurants. Following prior work (Chen
and Qian, 2020a), we employ the official train/test
splits and randomly select 150 samples from train-
ing data as validation data for those datasets. Table
1 shows the statistics for the datasets.

In our experiments, we use the development set
of the Lap14 dataset to tune the hyper-parameters.
Based on our experiments, the following values are
selected: 200 dimensions for the BiLSTM layer
and the feed-forward layers; 1 layer for BiLSTM
and 2 layers for the feed-forward networks; the
BERTbase version for the encoding layer with fixed
parameters; GPT-2 small for sentence generation;
0.3 for the λ in the word vector augmentation; 0.1
for the trade-off parameters αreg and αGloV e in the
complement embedding optimization; 0.1 and 0.05
for the trade-off parameters β and γ in the reward
for GPT-2 fine-tuning; 0.3 for the learning rate for
the Adam optimizer; and 50 for batch-size.
Baselines: Following prior work, we compare our
model with: (1) the winners of the SemEval tasks:
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IHS-RD (Chernyshevich, 2014), DLIREC (Toh
and Wang, 2014), EliXa (San Vicente et al., 2015),
NLANGP (Toh and Su, 2016); (2) Deep joint mod-
els, i.e., jointly train ATE with Opinion Term Ex-
traction (OTE) or Aspect-Based Sentiment Analy-
sis (ABSA): RNCRF (Wang et al., 2016), MIN (Li
and Lam, 2017), CMLA (Mao et al., 2021), HAST
(Li et al., 2018), RACL (Chen and Qian, 2020b),
Dual-MRC (Mao et al., 2021); (3) Deep models
trained on ATE datasets augmented with external
in-domain corpora and resources: BiLSTM-CRF
(Li et al., 2020), Seq2Seq (Ma et al., 2019), BERT
(Li et al., 2020), DE-CNN (Xu et al., 2018), BERT-
PT (Li et al., 2020), SoftProto (Chen and Qian,
2020a). We also compare with CL-BERT (Yang
et al., 2020) which employs constituency trees for
ATE. For the evaluation metric, following prior
work, we report the F1 score for aspect term pre-
diction. A prediction is counted as correct if its
boundaries match the gold aspect term. We name
our model ATEOA which stands for Aspect Term
Extraction with Optimal Augmentation.

Results: The main results are shown in Table 2.
This table shows that the proposed model can effec-
tively improve the performance compared to exist-
ing joint inference and data augmentation methods.
This achievement is significant as the proposed
model does not utilize any external in-domain data
nor extra supervision from other related tasks. This
is important for domains with limited data where
collecting large-scale in-domain data or supervi-
sion from related tasks could be prohibitively ex-
pensive. Moreover, as the proposed model employs
pre-trained language models (i.e., GPT-2) to gen-
erate effective augmentation sentences for train-
ing/test data, it can directly benefit from growing
advances in pre-trained language models.

Ablation Study: The proposed ATEOA model is
trained in four major training steps. In this section,
we study the role of those proposed steps for the
performance of the ATE model. For each training
step, we aim to answer two questions: (i) Whether
the proposed step is beneficial for ATEOA? and (ii)
Is the current configuration for the step optimal? To
this end, we consider the following ablated models:
(1) - Base Model Training (Step I): This model
ignores step I to train a base ATE model in Section
2.1. In particular, step II for finding complement
embeddings will only employ an ATE base model
with randomly initialized parameters. Here, the
parameters for the base model are not fixed; they

IHS-RD 74.55 79.62 - -
DLIREC 73.78 84.01 - -
EliXa - - 70.04 -
NLANGP - - 67.12 72.34
RNCRF 78.42 84.93 67.74 69.72
MIN 77.58 - - 73.44
CMLA 77.80 85.29 70.73 72.77
HAST 79.52 85.61 71.46 73.61
RACL-BERT 81.99 85.37 72.82 -
Dual-MRC 82.51 86.60 75.08 -
BiLSTM-CRF 74.28 - - 71.44
Seq2Seq 78.68 - - 74.01
BERT 81.14 - - 75.89
DE-CNN 81.58 - - 75.19
BERT-PT 85.33 - - 80.29
SoftProto 83.19 87.39 73.27 76.98
CL-BERT 85.61 - - 81.14
ATEOA (ours) 86.71 88.99 75.41 82.58

Table 2: F1 scores on the test sets of the SemEval
datasets. The proposed model ATEOE is significantly
better than prior work (p < 0.05).

are jointly updated with the complement embed-
dings in step II of the training; (2) - Complement
Representation Finding (Step II): This model ex-
cludes step II of the training procedure that makes
the optimized complement representations unavail-
able for the fine-tuning of GPT-2 in step III. As
such, to achieve a fair access to the trained base
model in step I in this model, we change step III
by fine-tuning the GPT-2 model with the reward
of F1 score of the trained base model (from step
I) on the validation data. Here, the base model is
applied on the representation combinations of the
original and GPT-generated sentences (also using
GloVe embeddings for the words in the generated
sentences); (3) - Embedding Regularization Lreg:
This model removes the regularization loss Lreg in
step II of the training process; (4) - GloVe Align-
ment LGloV e: This model excludes the regular-
ization LGloV e for representation alignment with
GloVe in step II; (5) - Language Model (Step III):
This ablated models does not utilize step III, thus
eliminating the GPT-2 model trained over the orig-
inal and complement sentence pairs (S, S′). As
such, in step IV, we directly retrain the base model
on the augmented data with the complement rep-
resentations X ′ (i.e., xi + λx′i) and do not apply
data augmentation for test data (i.e., applying the
train model on xi directly); (6) - Language Model
+ FForward: This model is similar to (5) (i.e., ex-
cluding GPT-2 in step III). However, to allow the
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augmentation on test data, a feed-forward network
is trained on pairs (xi, x′i) to directly transform the
representation vectors xi of the original sentence S
into the complement representations for data aug-
mentation in both training and test phases of step
IV; (7) - Similarity Reward: For this model, we
do not use the similarity reward Rsim in the re-
ward function to fine-tune GPT-2 in step III; (8)
- Length Penalty: This model does not employ
the length penalty Rlen in the reward for tuning
GPT-2; (9) - Difference Reward: For this base-
line, the reward based on difference with original
sentence, i.e., Rdiff , is ablated from the reward
for GPT-2 fine-tuning; (10) - Final Training (Step
IV): This baseline skips the last step of the pro-
posed training procedure. As such, the combined
representations of the original sentence S and the
complement sentence S′′ generated by GPT-2 (i.e.,
xi + λG(x′′i )) are directly sent into the base ATE
model (trained over the entire training data) from
step I for prediction; and (11) - Generated Data in
Final Training: Finally, to demonstrate the benefit
of augmenting training data with generated sen-
tences from the fine-tuned GPT-2 model in step
IV, we report the performance of the base model
that is instead trained on the combination of the
word representations X and the optimized comple-
ment representations X ′, i.e., xi + λx′i in step II
(as in (5)). The fine-tuned GPT-2 model is still
used to generate complement sentences for data
augmentation in the test phase for this model.

The performance of the models on the test sets
of the SemEval datasets is reported in Table 3. This
table clearly shows that all training steps in the pro-
posed procedure are necessary as skipping any of
these steps will hurt the performance. In particular,
among the four steps, removing step III has the
most negative impact as the ablated model “- Lan-
guage Model” has the lowest performance across
datasets. We attribute the importance of step III to
its ability to enable augmentation consistency for
training and test data (i.e., the fine-tuned GPT-2
can generate complement sentences for both train-
ing and test data). This is further highlighted by
the worse performance of the “- Generated Data
in Final Training” model where the training data
is augmented with X ′, but GPT-generated data is
used to augment test data. Table 3 also shows that
among the three awards for GPT-2 fine-tuning, the
similarity reward is most important. This is ex-
pected as the primary goal of fine-tuning is to gen-

Model Lap14 Res14 Res15 Res16
ATEOA (Full) 86.71 88.99 75.41 82.58
- Base Model Training (Step I) 84.39 86.91 74.18 78.91
- Comp. Rep. Finding (Step II) 84.96 86.18 74.22 79.65
- Embedding Regularization Lreg 85.04 87.93 74.31 80.32
- Glove Alignment LGloV e 86.02 88.12 75.31 81.95
- Language Model (Step III) 84.22 85.91 73.17 78.91
- Language Model + FForward 84.13 86.94 73.22 80.51
- Similarity Reward 83.33 85.98 73.54 79.05
- Length Penalty 85.10 87.99 73.91 81.18
- Difference Reward 85.11 88.02 73.88 80.04
- Final Training (Step IV) 84.40 87.12 74.09 80.01
- Generated Data in Final Train. 84.01 86.92 73.81 79.88

Table 3: Performance of the ablated models on test sets.

erate sentences that are similar to the complement
sentences S′.

4 Analysis

Generative Language Models: As it is evident
in the ablation study, exploiting a pre-trained gen-
erative model (i.e., GPT-2) for ATEOA is prefer-
able since it can provide language priors to sup-
port the sentence generation learning from lim-
ited ATE datasets. In this section, we study how
the performance of the model changes if we al-
ter the generative language model used in step III
of ATEOA. Concretely, we compare the perfor-
mance of three different models: (1) GPT-2 (Rad-
ford et al., 2019): This transformer-based model
is pre-trained on WebText corpus. We examine its
small version with 117 million parameters; (2) T5
(Raffel et al., 2019): This language model employs
the encoder-decoder architecture in Transformer
for sequence-to-sequence tasks. We explore its
base version with 220 million parameters. We use
the input sentence S as the source sequence and
the complement sentence S′ as the target sequence
to fine-tune the T5 model; and (3) BART (Lewis
et al., 2019): This model is a transformer-based
auto-encoder language model. We also utilize its
base version with 139 million parameters. Similar
to T5, this is a sequence-to-sequence generative
model that is fine-tuned by treating S and S′ as the
source and target sequences respectively.

To compare the performance of the three lan-
guage models, we use them in the training step III
of the final ATE model and report the correspond-
ing performance. Furthermore, we compare the
language models on their capability to generate sen-
tences that are similar to the complement sentences
S′. In particular, using the Lap14 dataset, we seek
to find a complement sentence S′ for each sentence
in the test data portion with the proposed method.
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Language Model Lap14 Res14 Res15 Res16
GPT-2 86.71 88.99 75.41 82.58
BART 84.32 88.05 74.91 79.49
T5 84.18 86.95 73.16 79.15

Table 4: Performance of the final ATE model on test
sets with different language models in step III.

Language Model BLUE-4 METEOR ROUGE-1 ROUGE-2
GPT-2 12.05 12.25 31.89 10.33
BART 9.39 10.14 29.05 9.06
T5 13.10 11.92 30.33 8.95

Table 5: Similarity between the generated sentences
from the language models and the “ground-truth” com-
plement sentences on test data of Lap14.

To this end, a base model is first trained on the
training data portion using step I; the complement
representations X ′ are then computed for each sen-
tence in the test data portion using step II; each X ′

is then mapped into the complement sentence S′

with the GloVe embeddings. Here, S′ serves as the
“ground-truth” complement sentence for the test
sentences in our approach. Next, we use the fine-
tuned language model to generate the complement
sentence S′′ for each test sentence (i.e., prompting
the language model with test data). Finally, we
evaluate the similarity of the generated sentence
S′′ and the “ground-truth” complement sentence
S′ (for the test data) using ROUGE-1, ROUGE-2,
METEOR (Banerjee and Lavie, 2005) and BLUE4
as the similarity metrics. The results for this ex-
periment are shown in Tables 4 and 5. Both tables
clearly demonstrate the capacity of GPT-2 to gener-
ate better complement sentences to augment ATE
data (i.e., yielding better performance for ATE in
Table 4 and generating more similar sentences to
the obtained complement sentences S′ in Table 5).

Tail Aspect Term Analysis: Following prior
work (Chen and Qian, 2020a), we evaluate the per-
formance for our model on the tail aspect terms
in test data (i.e., aspect terms occurring less than
5 times in the training sets). As such, we com-
pare our model with prior work that reports their
performance in this analysis, i.e., DE-CNN (Xu
et al., 2018) and SoftProto (Chen and Qian, 2020a).
Note that we replace the contextualized BERT rep-
resentations (i.e., X) in our model with the GloVe
embeddings to achieve a fair comparison with prior
work in this section. The results are provided in Ta-
ble 6 that clearly shows the superiority of ATEOA
to recognize tail aspect terms and further highlights
the benefits of the proposed method.

Model Lap14 Res14 Res15 Res16
DE-CNN 74.37 77.61 70.00 70.68
SoftProto 79.85 82.22 76.80 70.93
ATEOA (ours) 81.92 83.69 77.39 73.49

Table 6: Performance for tail aspect terms on test data.

Case Study: To provide more insight into the
quality of the complement sentences generated
by the pre-trained GPT-2 model, Table 7 show-
cases some examples from the laptop and restau-
rant domains whose aspect terms can only be cor-
rectly predicted by our proposed method (i.e., prior
work fails to recognize aspect terms in these cases).
The table suggests that although the generated sen-
tences might not look natural, they clearly provide
more evidence and emphasis on the aspect terms
which makes the task easier for the ATE model.
Specifically, in the first example, the generated
complement sentence emphasizes the target word
“touchpad” in the original sentence by replicating
it and including the related word “mouse”. The
same pattern of emphasis can be seen in the sec-
ond example where the model excludes the word
“money” and includes the related word “Food” (that
are more related to the target word “meal”) in the
generated sentence.

5 Related Work

ATE has been first approached with rule-based
(Hu and Liu, 2004; Wu et al., 2009) or feature-
based (Li et al., 2010; Chen et al., 2014; Toh and
Su, 2016) methods. Recently, ATE methods have
focused on neural networks such as LSTM (Liu
et al., 2015), CNN (Xu et al., 2018) or Transformer
(Li et al., 2020). An ATE system can be used in
downstream applications such as sentiment analy-
sis (Wang et al., 2019; Pouran Ben Veyseh et al.,
2020b; Orbach et al., 2021) or opinion term extrac-
tion (Pouran Ben Veyseh et al., 2020a). One of
the challenges for this task is the scarcity of train-
ing data which hinders the training of large neural
networks. To alleviate this issue, two major direc-
tions have been explored in the literature: (I) Joint
Training, i.e., jointly solving ATE task with another
related task such as ABSA (Wang et al., 2016; Mao
et al., 2021; Chen and Qian, 2020b) or Opinion
Term Extraction (OTE) (Li and Lam, 2017; Dai
and Song, 2019); and (II) Data Augmentation, i.e.,
augmenting ATE models with in-domain unlabeled
data (Xu et al., 2018; Li et al., 2020; Chen and Qian,
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Input Sentences Generated Complement Sentences Targets
however , there are major issues with Although , exist some problems with the touchpad touchpad
the touchpad which render the device nearly useless . and mouse makes touchpad useless and touchpad useless
way too much money for such a terrible meal . Food costs so much for such a bad meal . meal

Table 7: Generated complement sentences by GPT-2.

2020a). In this work, we also propose a method
to augment the training data for ATE. However,
unlike prior work that requires large in-domain
corpus, our approach employs an existing large-
scale language model (i.e., GPT-2) to facilitate the
generation of complement sentences for the avail-
able ATE datasets. Using GPT-2 to address data
scarcity has been shown to be effective in other do-
mains and tasks (Papanikolaou and Pierleoni, 2020;
Pouran Ben Veyseh et al., 2021; Peng et al., 2020).
In this work, we demonstrate the viability of this
technique for aspect term extraction.

6 Conclusion

We introduce a new training procedure for Aspect
Term Extraction. In the proposed procedure, the
available ATE dataset is employed to train a deep
model which is further used to find complement
representations for input sentences in training data.
Later, to obtain the complement sentences at the in-
ference time, we tine-tune the pre-trained language
model GPT-2 to generate sentences similar to the
complement sentences found in the previous steps
(with GloVe mapping). Our extensive experiments
on benchmark datasets reveal the superiority of the
proposed model, leading to the state-of-the-art per-
formance for the datasets. Moreover, our analysis
show that all steps of the proposed procedure are
necessary and effective for the ATE task. In future,
we will explore the application of this procedure in
other related task such as OTE and ABSA.
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Abstract

The lack of resources for languages in the
Americas has proven to be a problem for the
creation of digital systems such as machine
translation, search engines, chat bots, and more.
The scarceness of digital resources for a lan-
guage causes a higher impact on populations
where the language is spoken by millions of
people. We introduce the first official large
combined corpus for deep learning of an indige-
nous South American low-resource language
spoken by millions called Quechua. Specifi-
cally, our curated corpus is created from text
gathered from the southern region of Peru
where a dialect of Quechua is spoken that has
not traditionally been used for digital systems
as a target dialect in the past. In order to make
our work repeatable by others, we also offer
a public, pre-trained, BERT model called Qu-
BERT which is the largest linguistic model ever
trained for any Quechua type, not just the south-
ern region dialect. We furthermore test our
corpus and its corresponding BERT model on
two major tasks: (1) named-entity recognition
(NER) and (2) part-of-speech (POS) tagging
by using state-of-the-art techniques where we
achieve results comparable to other work on
higher-resource languages. In this article, we
describe the methodology, challenges, and re-
sults from the creation of QuBERT which is on
on par with other state-of-the-art multilingual
models for natural language processing achiev-
ing between 71 and 74% F1 score on NER and
84–87% on POS tasks.

1 Introduction

With the availability of online digital resources
for computation and data storage, the capability
for executing natural language processing (NLP)
tasks such as named-entity recognition (NER), part-
of-speech (POS) tagging, and machine translation
(MT) on low-resource languages, languages with

few digital resources available, has increased. The
processing power and data available for experimen-
tation are unsurpassed in history and research (Ed-
wards, 2021) has shown that in the current decade
we are on track to overcome previous methods,
such as Moore’s law (Schaller, 1997), for predict-
ing computing time of experiments. This finding
is better observed on high-resources languages like
English and French where the amount of data that
exists is more than enough to take advantage of
the latest computing architectures. Unfortunately,
for other low-resource languages like Quechua, an
indigenous language spoken by millions in Peru,
South America, it is more difficult to create statisti-
cally significant NLP models due to the amount of
data needed (typically on the order of millions of
sentences). Therefore, it is critical to create public-
facing mechanisms for low-resource languages like
Quechua to help provide research collaboration
which will improve the quality for low-resource
language NLP systems. We aim to improve the
digital resources available for Quechua by curating
a large monolingual corpus for southern Quechua,
a dialect of Quechua spoken in the southern region
of Peru not commonly found in most literature.

The initiative we present in this article can be
considered a major contribution and advancement
as means to improve the quality of NLP tasks for
the Quechua language. We outline the multiple
innovations and contributions provided below.

1. A considerably large, curated, monolingual
corpus of southern Quechua consisting of
nearly 450K segments.

2. A normalization technique applied to the cor-
pus based on finite-state transducers (FSTs)
(Rios, 2015; Rios and Göhring, 2016; Ortega
et al., 2020a).
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3. Several tokenization techniques applied to
the corpus, each made available for down-
load, including byte-pair encoding (BPE)
(Sennrich et al., 2015), BPE-Guided (Or-
tega et al., 2020a), and Prefix-Root-Postfix-
Encoding (PRPE) (Chen and Fazio, 2021;
Zuters et al., 2018).

4. A pre-trained transformer model based on
RoBERTa (Liu et al., 2019) called QuBERT
that uses the corpus along with the best per-
forming normalization and tokenization tech-
niques from items 2 and 3 above.

5. A comparison of the performance of the tech-
niques introduced in items 2 and 3 above on a
NER classification task.

6. A comparison of the performance of the tech-
niques introduced in items 2 and 3 above on a
POS classification task.

In order to cover our innovations and contribu-
tions, we highlight the details in several sections.
First, in Section 2, we describe the latest work
on Quechua and other techniques related to low-
resource NLP tasks such as the ones we introduce
on NER and POS. Next in Section 3, we provide
more background on the Quechua language by cov-
ering morphological, phonological, and other im-
portant grammatical details. Then, we describe
how we curated our corpus in Section 4. In Section
5, we provide details on the parameters and config-
uration for our models and tokenization techniques
which leads way to the experimental evaluation and
results from the NER and POS tasks in Section 6.
Finally, we wrap up with a few proposed lines of
future work and a conclusion in Section 7.

2 Related work

In this section we present several works that can be
considered state-of-the-art at this time for Quechua.
Since we are introducing several new contributions,
we briefly cover the most recent work and how it
related to each contribution mentioned.

First, concerning the introduction of the corpus,
we discuss work where corpora have been intro-
duced for public use. Like many low-resource NLP
projects, one of the several corpora that is often
used is the Opus1 (Tiedemann, 2012) corpus. It
contains text similar to ours in southern Quechua

1http://opus.nlpl.eu

(Quechua II, see more details on Quechua vari-
ants in Section 3); however, it contains biblical
text only. Other work (Ortega et al., 2020a) intro-
duced the JW300 corpus (Agić and Vulić, 2019);
their corpus was for one domain also. The corpus
we present contains entries from several diverse
sources while at the same time including Opus and
the JW300. Ortega et. al (Ortega et al., 2020a)
also presented a magazine selection known as Hi-
nantin which contained 250 non-biblical Quechua—
Spanish sentences found on-line2. While the Hi-
nantin magazine was a more diverse domain than
other Quechua corpora previously introduced, our
corpus is the largest and most diverse compiled
currently available.

Our second contribution consists of a normaliza-
tion technique used in previous work (Rios, 2015;
Rios and Göhring, 2016; Ortega et al., 2020a). The
work presented in this article uses the same normal-
ization technique (described further in Section 5)
but, to our knowledge, this is the first time that the
normalization technique has been used on a corpus
of this size for southern Quechua.

Thirdly, for Quechua, there has not been a tok-
enization comparison similar to the one presented
here. There are two works (Chen and Fazio, 2021;
Ortega et al., 2020a) that present approaches called
BPE-Guided and PRPE separately but their work
did not compare on such a varied corpus for named-
entity recognition or part-of-speech tasks, both of
their works for the machine translation task only.

The fourth, fifth, and sixth contributions are all
related to the first-time presentation of a deep learn-
ing transformer model for Quechua that is used
for NER and POS classification tasks. One of the
works that presented deep learning approaches for
Quechua is a shared task (Mager et al., 2021a)
from the first workshop on NLP for indigenous
languages of the America (Mager et al., 2021b).
Another work called indt5 (Nagoudi et al., 2021)
used an encoder-decoder model transformers based
on T5 (Raffel et al., 2020). Both models were
mainly used for translation and the data did not
contain nearly as much Quechua–Spanish text as
ours. (Ortega et al., 2020a) applied a deep learning
approach where quality was low due to the use of
the Opus corpus for training and Hinantin for test –
their deep learning approach was for machine trans-
lation also. Other work (Zheng et al., 2021; Liu
et al., 2020) has presented large corpora with trans-

2http://hinant.in
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former architectures but did not include Quechua as
one of the low-resource languages. The one work
that can be considered closest to ours in size and
technique is the work by Wongso et. al (Wongso
et al., 2021), they pre-trained mono-lingual models
on GPT-2 (Radford et al., 2019), BERT (Devlin
et al., 2019), and RoBERTa (Liu et al., 2019). Like
our work, they used a monolingual corpus which
consisted of a variety of text and evaluated the mod-
els on a sentiment classification task for Sudanese.
The main difference between their work and our
work is that our tasks are slightly different and are
based on Quechua. In order to better understand
why NLP tasks for Quechua can be more complex
than for other languages, we present more details
in the next section on the language.

3 Quechua language

Quechua is an indigenous language native to
several regions in South America, mainly Peru,
Ecuador, and Bolivia, and is spoken by nearly 8
million people. It is known (Pinnis et al., 2017;
Kann, 2019; Karakanta et al., 2018) to be a highly
inflective language based on its suffixes which ag-
glutinate. Due to its morphology, Quechua has
been found to be similar to other languages like
Finnish (Ortega et al., 2021, 2020b; Ortega and
Pillaipakkamnatt, 2018).

Linguistically, Quechua can be considered a
unique and even complex language due to the
highly polysynthetic nature and phonology. Slight
changes in morphemes (small sub-word units)
can modify a word’s meaning drastically. Since
Quechua is the South American language with the
highest amount of native speakers and those speak-
ers tend to introduce diverse accentuated tones on
different words depending on the locality, one can
assume that the combination of morphological and
tonal rules that cause inflection can make tasks like
the ones presented in this article (NER and POS)
difficult due to the high likelihood of non-common
meanings for sub-words and letters. For example,
by adding an accent to the letter ‘o’ in Quechua,
words become plural.

Quechua synthesis, or the synthetic index (Green-
berg, 1963) – the average number of morphemes
per word, is about two times larger than English.
English typically has around 1.5 morphemes per
word and Quechua has about 3 morphemes per
word. This high morphological complexity has
been described in detail in the past (Muysken,

1988); few have been able to overcome the chal-
lenges that low-resource languages like Quechua
present for digital processing. Quechua’s phonol-
ogy uses three vowels for the most part: a, i, and
u. Consonants, on the other hand, are numerous
and depending on the region where it is spoken,
Quechua can have up to 14 constants (Ortega et al.,
2020a). Generally speaking, lexemes are mono-
syllabic or bi-syllabic having two vowels (VV) or
two consonants (CC) that do not concur in the same
syllable. From a phonological perspective, the
scheme of any Quechua root is: (C)V(C)-CV(C)
(Cerrón-Palomino, 1994).

The region where Quechua is spoken can be con-
sidered important. Alfredo Torero (Torero, 1964)
reported that there are two main divisions of the
language (Quechua I and Quechua II). Quechua II
is mostly spoken in regions such as Ayacucho, Peru
and is considered a “southern” language. There are
several more dialects spoken and others (Adelaar,
2004) report several divisions for Quechua II; but,
in this article we focus specifically on the southern
version at a high-level.

A lot of the Quechua morphology has been doc-
umented in previous works (Rios et al., 2008; Rios,
2015; Muysken, 1988; Monson et al., 2006; Torero,
1964); however, there is not a clear consensus to
resolve all morphology issues that may arise. In
order to statistically determine which branch of
morphemes a verb phrases falls under can be diffi-
cult with Quechua since there are so few resources.
A short example sentence of how complex mor-
pheme determination can be is depicted in Table
1. In some cases, there are hundreds of options to
choose from when choosing which suffix to use for
a given Quechua word.

4 Corpus details

4.1 Monolingual
We consider the introduction of our monolingual
corpus on southern Quechua the largest corpus of
its kind to date. Table 4 gives a precise overview of
all of the corpora that we have combined in October
2021 in order to present our corpus publicly online3.
We have created the corpus from several sources.
The majority of corpora combined to create the
final corpus is a compilation of 50 monolingual
corpora from different sources on the web includ-
ing OSCAR (Suárez et al., 2019), JW300 (Agić and

3https://huggingface.co/datasets/
Llamacha/monolingual-quechua-iic
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Test sentence: Chantapis Biblianejta qotuchakuynejta ima yanapallawanchejtaj

Stemmed Morpheme Potential Suffixes
Chanta –pis –s
Biblia –niq –ta
qutachu –ku –y –niq –ta
ima
yanapa –lla –wa –nchik –ta
yanapalla –wa –nchik –ta

Table 1: The sub-segment suffix choices of a short sentence for a Quechua sentence. (Ortega et al., 2020a)

Vulić, 2019), and CC-100 (Conneau et al., 2020;
Wenzek et al., 2020). To our knowledge, these cor-
pora have not yet been introduced as one southern
Quechua corpus to the wider research community.
Additionally, our corpus contains other corpora
mentioned below (see Table 4 for a complete list)
that are not easily found on-line.

The introduction of our corpus is part of a larger
project called Llamacha4 focused on helping under-
resourced communities . In Llamacha, the authors
have begun to use the corpus directly as a form
of creating software tools able to help teachers
in regions of southern Peru where Quechua II is
spoken. Llamacha tools cover several use cases
such as government documents, children’s internet
tools, and more. This demand constitutes the main
reason we distribute this corpus for public use – it is
our hope that others from the research community
will get involved to help develop more tools that
can use our corpus.

With such a high demand for diverse perfor-
mance, we compiled our corpus to cover the do-
mains mentioned and more. Our compilation spans
across several domains including religion, eco-
nomics, health, social, political, justice and cul-
ture. We consulted several sources such as books
and stories from Andean narratives and the Peru-
vian Ministry of Education5 to collect data. Table
4 illustrates the entire data set which consists of
4,408,953 tokens and 384,184 sentences, including
what are known as “Chanka” and “Collao” vari-
ants, variants specific to the Quechua II branch. In
effect, we have created a corpus that is nearly ten
times larger than most widely used Quechua corpus
(Rios, 2015) until now which has eight combined
corpora, 47,547 tokens, and 3,614 sentences.

4https://llamacha.pe
5http://www.minedu.gob.pe/

4.2 Named-entity recognition and
part-of-speech

Both the NER and POS corpora were created using
the corpus introduced and are made publicly avail-
able online6. There are slight differences, nonethe-
less, between the amount of examples used that we
note in this section.

In order to create the NER and POS corpora
a team of ten annotators were selected. The an-
notators were university students and 7 of 10 of
them were native Quechua speakers. Nonetheless,
they were all students of what is known as a “In-
tercultural Bilingual Education” in Peru where stu-
dents are taught coursework in both Quechua and
Spanish. Annotation was performed using Label-
Studio7 to annotate sentences for NER and POS.

The NER corpus was built using 5,450 sen-
tences using the CoNLL2003 (Sang and De Meul-
der, 2003) format. Work was reviewed to ensure
that annotations were standardized and using an
BIO format annotating only the following tags:
Person (PER), Location (LOC) and Organization
(ORG). The POS corpus was built using 4,229 sen-
tences and annotated identical to previous work on
POS Rios (2015) for Quechua. Additionally, as a
way of having a more precise tagging strategy, we
used official dictionaries of “Chanka” and “Collao”
Quechua from the Peruvian Ministry of Education
to identify POS tag correctness.

5 Experimental settings

5.1 Tokenization

Our tokenization strategy is to include the state-
of-the-art techniques currently being used for
Quechua, regardless if it is Quechua I or II (Torero,
1964). We do this as a mechanism to show that

6https://github.com/Llamacha/QuBERT
7https://labelstud.io
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Text Ismael Montes Hatun Yachay Wasi Yachachiqkunap
BPE Ismael Montes H@@atun Yachay Wasi Yachachiqkuna@@p
PRPE Ismael Monte@@s Hatun Ya@@chay Wasi Yach@@achiq@@kuna@@p

BPE-Guided Is@@m@@a@@el Mon@@t@@es Hatun Yachay Wasi Yach@@achiq@@kunap

Table 2: The use of four word-tokenization techniques for Quechua.

the corpus presented in Section 4 can be used to
achieve high performance (around 80–90% accu-
racy) for tasks similar to high-resource languages
as a recent survey (Li et al., 2020) has shown.

We use the latest tokenization techniques which
focus on sub-word segmentation. (Haddow et al.,
2021; Chen and Fazio, 2021; Ortega et al., 2020a;
Sennrich et al., 2015) Byte-pair encoding (BPE)
(Sennrich et al., 2015) can be considered one of the
most widely-used approaches and a fundamental
technique that has served as a baseline for pre-
vious research (Ortega et al., 2021, 2020a,b) on
Quechua. The BPE approach is considered the
de-facto standard tokenization algorithm for ag-
glutinative languages (Chimalamarri and Sitaram,
2021). BPE represents text at the character-level
and then merges the most frequent pairs iteratively
until a pre-determined number of merge operations
have been reached. Our BPE tokenizer was trained
on the entire collective corpus from Section 4 with
a vocabulary size of 52,000.

Alternatively, we additionally experiment with
a popular extension of the BPE technique called
BPE-Guided (Ortega et al., 2020a), used for in-
creasing performance on Quechua machine transla-
tion. BPE-Guided is similar to the BPE approach in
that it iteratively “discovers” sub-word segmenta-
tion by jointly learning a vocabulary and character-
level segmentation. The extension offered by BPE-
Guided is that it introduces Quechua knowledge in
a a-priori manner by using the BPE algorithm for
excluding common suffixes found on Wikimedia8

before learning a vocabulary or segmentation. In
our experiments, we use the list of Quechua suf-
fixes introduced previously (Ortega et al., 2020a).

Another tokenization technique that has been
shown to perform better than BPE and BPE-
Guided on Quechua texts (Chen and Fazio, 2021)
is known as the Prefix-Root-Postfix-Encoding
(PRPE) (Zuters et al., 2018) technique. The PRPE

8https://en.wiktionary.org/wiki/
Category:Quechua_suffixes

algorithm separates words into three main divi-
sions: (1) a prefix, (2) a root, and (3) a postfix.
It completes this separation by first learning a sub-
word vocabulary through detecting potential pre-
fixes and post-fixes based on a heuristic. It then
aligns the prefixes and post-fixes into sub-strings of
a word to find potential roots. Once the roots have
been located, the text is segmented into sub-words
according to their statistical probability. Table 2
shows an example southern Quechua sentence tok-
enized by the three approaches mentioned.

Lastly, all text with exception of one experiment
(Text and BPE in Table 3) is normalized with the
Quechua toolkit (Rios, 2015) that uses finite-state
transducers (Mohri, 1997) to determine if words
belong to the same category and can be merged
into one. Rios (2015)[Section 2.5] describe their
normalization methodology which contains four
models that are based on morphology, the “normal-
ization” technique used in our experiments follows
their work which includes all four models.

5.2 Model Architecture

We call our model QuBERT because it is a trans-
former model based on BERT (Devlin et al., 2019).
More specifically, our model has been trained using
the RoBERTa (Devlin et al., 2018) enhancement to
BERT which can be considered higher-performing
for NER and POS tasks (Li et al., 2020). An exam-
ple of the model architecture is shown in Figure 1
which shows how our model produces NER classi-
fications given a Quechua sentence.

Our model has been first pre-trained with south-
ern Quechua text on 384,184 sentences. Then, we
fine tuned the model with 4,360 sentences for the
NER task and 3,383 sentences for the POS task.
For the training process, we used 6 hidden layers.
Each layer was 768 dimensions, giving us a total
of 84 million parameters. For optimization, we
used the Adam optimizer with hyper-parameter val-
ues of β1=0.9 and β2 = 0.99 along with a learning
rate of 2.7e-06. Lastly, we incorporated a weight
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Figure 1: Model architecture based on Bert (Devlin
et al., 2019).

decay factor of 0.1 to prevent overfitting. The pre-
training was for two epochs and a batch size of 64
with 12k iterations, before being fine-tuned on the
downstream task for 10 epochs and a batch size of
32. Initial development was done on a Google Co-
lab9 notebook, while models used for final testing
were pre-trained and fine-tuned on a single 16GB
NVIDIA Tesla V100 GPU.

6 Results

The results presented in this section show how well
QuBERT performs on two main tasks: NER and
POS. We feel that the contributions presented in
Section 1 are sufficient to warrant wider use of
our work; however, it is our intention to show that
the corpus, model, and experiments could provide
easy access for future work. We cover each task
(NER and POS) as separate sections below in or-
der to provide better insight into how the model
performs in different scenarios, specifically for the
different tokenization and normalization (called
“norm.” in Table 3) techniques mentioned in Sec-
tion 5. Nonetheless, we provide precision, recall,
and F1 scores in Table 3 for both tasks as an aggre-
gate to get an overall sense of how well our base
model performs on both tasks.

6.1 Named Entity Recognition
Figure 2 illustrates the accuracy from our model
on the NER task. We note that the accuracy scores

9https://colab.research.google.com

BPE Norm.
and
BPE

Norm.
and

PRPE

Norm.
and

BPE-
Guided

70.5

71

71.5

72

72.5

73

72.4

72.9
73

70.6

Tokenization approaches

A
cc

ur
ac

y
Figure 2: An accuracy comparison of tokenization
techniques on southern Quechua (Quechua II) using
a RoBERTa (Liu et al., 2019) model for named-entity
recognition (NER).

.

are somewhat lower than the state-of-the-art for
high-resource languages on the NER task (Li et al.,
2020). However, our F1 scores seems to be inline
with other newly published work on low resources
(Bouabdallaoui et al., 2022) (69–70%) for various
deep learning models). In future work, we plan
on adapting our model to more complex architec-
tures such as those found in SemEval-2022 Task
11 (Malmasi et al., 2022).

To further investigate the findings we report the
following findings10 based on these NER tags: B-
LOC, B-ORG, B-PER, I-LOC, I-ORG, I-PER, O.
When text was normalized and then tokenized with
BPE we noticed that I-ORG and I-PER were the
highest amount of true positives (227 and 196 re-
spectively) when compared to other tokenization
techniques. However, BPE without normalization
performed worse than other techniques on I-PER
classification, mainly classifying them as B-LOC.
BPE-Guided generally scored similar to BPE on
NER with a trend of being slightly lower than BPE.
PRPE scored better on I-LOC and I-ORG (306 and
227 respectively) than other techniques and was
able to achieve the highest accuracy of all tech-
niques.

From the illustration in Figure 2, we believe that

10For a complete confusion matrix, please refer to Appendix
Table 5.

219

https://colab.research.google.com


Tokenization Approach
NER POS

F1 Prec Recall F1 Prec Recall

Text and BPE 0.736 0.749 0.724 0.860 0.859 0.862
Text with norm. and BPE 0.741 0.753 0.729 0.861 0.861 0.862
Text with norm. and PRPE 0.741 0.753 0.730 0.867 0.866 0.868
Text with norm. and BPE-Guided 0.716 0.726 0.707 0.843 0.843 0.843

Table 3: A comparison of tokenization techniques on southern Quechua (Quechua II) using a RoBERTa (Liu et al.,
2019) model for classification. Normalization (norm.) is applied using the Quechua toolkit (Rios, 2015). Scores are
calculated at the token level and weighted-averaged by class.

the different techniques are closely related but it
is clear that the BPE-Guided approach was not as
successful for the NER task as it has been in the
past for machine translation (Ortega et al., 2020a).
We feel that this is probably due to the amount
of data introduced in our corpus which did not
contain as many matching suffixes as was done in
the previous work (Ortega et al., 2020a). Since this
is a first-time introduction of a deep learning model
for NER in Quechua, we believe that this can serve
as a baseline for future work.

6.2 POS tagging
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Figure 3: An accuracy comparison of tokenization
techniques on southern Quechua (Quechua II) using
a RoBERTa (Liu et al., 2019) model for part-of-speech
(POS) tagging.

.

The part-of-speech task seems to be more fitted for
our model since we are able to achieve accuracy
in the high 80% range as shown in Figure 3, sim-

ilar to other high-resource tasks(Li et al., 2020).
We feel that for POS tagging our model is optimal
given the current state-of-the-art. Also, our anno-
tations, while completed by a near-native speaker
were somewhat easier to complete due to the more
rigid classification of vocabulary-based words in
Quechua, essentially the annotator could look up
words and parts of speech when there was doubt.
In the future, as with the NER task, we fill that
we can achieve higher quality with professional
translators/annotators.

For POS tagging, unlike the NER task, we were
able to discern performance from our analysis
based on terms that could be found in a dictio-
nary.11 Adjectives, verbs and adverbs were mostly
correct by all tokenization techniques. Particularly,
PRPE outperformed other techniques with the cor-
rect classification of 262 adjectives when compared
to BPE (259) and BPE-Guided (235). PRPE also
performed slightly better on POS verb identifica-
tion than other techniques. BPE-Guided, on the
other hand, performed better with determinant de-
tection finding 43 true positives as opposed to 39
by PRPE and BPE.

7 Conclusion and future work

In this article, we have introduced a novel mono-
lingual corpus, curated and compiled for southern
Quechua. We have shown that the corpus can be
used for downstream tasks such as NER and POS
tagging by creating and releasing a deep learning
model based on BERT (Devlin et al., 2019) called
QuBERT. Additionally, we experimented with
the state-of-the-art tokenization techniques for pre-
processing and normalization in order to achieve
results similar to those found on high-resource lan-
guages.

11For a complete confusion matrix, please refer to Appendix
Table 6.
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In the future, we would like to experiment with
other model architectures for more complex NER
tasks such as those presented at SemEval-2022
(Malmasi et al., 2022), of particular interest is the
work from Wang et al. (2022). We would like to
include more native Quechua speaking annotators
in order to improve the data set even more. The
introduction of two or more annotators will allows
us to introduce models for tasks such as machine
translation, question-answering, and topic model-
ing where the reference data is even more important.
We believe that our work can serve as a baseline
for future work and invite other researchers to use
the contributions presented here for further inves-
tigative lines such as the ones we are considering:
online tools for native Quechua speakers and hu-
man interaction.
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A Appendix

The figures below represent several of the indi-
vidual differences between corpora and their cor-
responding language in Table 4 and tokenization
approaches for NER and POS in Tables 5 and 6
respectively.
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Corpus # Sentences # Tokens Dialect Year Dominio
jw300_2013 124,038 1,465,494 Chanka 2013 Religion
wikipedia_2021 96,560 1,009,631 Collao 2021 Miscellaneous
cc100-quechua 86,250 1,206,770 Collao 2018 Miscellaneous
jw300_2017 25,585 294,473 Collao 2017 Religion
microsoft 5,018 60,847 Collao 2021 Norma
que_community_2017 21,139 38,570 Collao 2017 Miscellaneous
tribunal_constitucional 1,148 32,974 Chanka 2021 Justice
tierra_vive 4,731 27,768 Collao 2013 Religion
conectamef 433 20,683 Collao 2016 Economy
unesco 937 16,933 Collao 2020 Program
oscar_quz 491 12,717 Collao 2020 Miscellaneous
constitucion_simplified_quz 999 12,217 Collao 1993 Norma
libro_quechua 781 11,476 Chanka 2002 Agreement
handbook_quy 2,297 11,350 Chanka 2019 Education
dw_quz 325 11,079 Collao 2009 Social
yaku_unumanta 283 10,787 Chanka 2013 Norma
uywaymanta 683 9,231 Collao 2015 Education
maria_mamani 987 9,179 Chanka 2011 Education
anta 451 8,839 Collao 2010 Education
Agreement _nacional_2014 356 8,355 Chanka 2014 Agreement
omnilife 336 8,184 Collao 2017 Health
pasado_violencia 373 8,001 Chanka 2008 Social
cosude_2009-2011_qu 536 7,959 Collao 2011 Social
fondo_monetario_internacional 291 7,227 Collao 2010 Economy
peru_suyupi 449 6,420 Chanka 2014 Education
fundacion_quz 440 5,776 Collao 2008 Social
greg_quz 185 5,505 Collao 2010 Narrative
imayna 250 5,425 Chanka 2008 Social
ahk_1968-2008_quz 391 5,186 Collao 2008 Economy
directiva 355 4,988 Chanka 2014 Resolution
achka 256 4,844 Chanka 2015 Education
cartillas 870 4,674 Chanka 2006 Education
lectura-favorita-chanka-2019 781 4,363 Chanka 2019 Education
lectura-favorita-cusco-2019 769 4,351 Collao 2019 Education
amerindia 321 4,280 Chanka 2000 Education
yachay_qipikuna 464 4,174 Collao 2009 Education
reglamento_simplified_quz 287 4,053 Collao 2008 Norma
focus_2008_quz 243 3,797 Collao 2008 Narrative
poder_judicial 154 3,347 Chanka 2021 Justice
focus_2007_quz 220 3,238 Collao 2007 Narrative
literatura 190 2,930 Chanka 1999 Culture
guia_collao 288 2,824 Collao 2015 Education
wikimedia 163 2,712 Collao 2021 Miscellaneous
docente 286 2,550 Chanka 2015 Education
convencion 115 2,548 Collao 1994 Agreement
yupaychaqa_ley 129 2,484 Chanka 2014 Norma
mikhunanchiskunamanta 127 1,925 Collao 2013 Social
tatoeba 428 1,778 Collao 2021 Miscellaneous
nanoquechua 92 1,431 Collao 2016 Culture
kallpa_qu 100 968 Collao 2019 Narrative
defensoria 60 882 Chanka 2021 Justice
yachay 62 756 Collao 2015 Culture
Total 384,184 4,408,953 - - -

Table 4: Details of each corpus included in the Southern Quechua corpus introduced.
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Tokenization Approach NER Class

B-LOC B-ORG B-PER I-LOC I-ORG I-PER O

BPE True Positive 453 81 189 300 226 162 477
False Positive 319 11 150 71 51 87 31
False Negative 64 37 79 171 80 207 82

Norm. and BPE True Positive 451 70 187 302 227 196 470
False Positive 299 8 138 83 51 94 32
False Negative 66 48 81 169 79 173 89

Norm. and PRPE True Positive 449 79 187 306 227 186 471
False Positive 304 14 135 95 53 74 28
False Negative 68 39 81 165 79 183 88

Norm. and BPE-Guided True Positive 453 71 176 299 222 156 466
False Positive 294 16 164 93 57 113 28
False Negative 64 47 92 172 84 213 93

Table 5: Breakdown of prediction results used to calculate weighted precision, recall, and F1 for the NER task .
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POS Class Algorithm

BPE Norm. and BPE Norm. and PRPE Norm. and BPE-Guided
adj. True Positive 253 259 262 235

False Positive 98 106 92 96
False Negative 143 137 134 160

verb True Positive 764 760 761 744
False Positive 77 86 72 98

False Negative 78 82 81 72
pron. True Positive 36 36 37 34

False Positive 14 13 13 18
False Negative 7 7 6 9

prep. True Positive 0 0 0 0
False Positive 0 1 0 0

False Negative 1 1 1 1
adv. True Positive 183 184 188 161

False Positive 57 53 56 51
False Negative 50 49 46 73

pron. indef. True Positive 0 1 1 1
False Positive 0 0 0 0

False Negative 2 1 1 1
adv. interr. True Positive 1 1 1 1

False Positive 0 0 0 0
False Negative 0 0 0 0

pron. interrog. True Positive 8 7 8 7
False Positive 5 2 5 2

False Negative 2 3 2 3
num. True Positive 0 0 0 0

False Positive 0 0 2 3
False Negative 5 5 5 5

conj. True Positive 7 8 8 8
False Positive 6 6 6 8

False Negative 5 4 4 4
det. True Positive 39 39 39 43

False Positive 33 36 33 38
False Negative 20 20 20 16

subj. True Positive 1380 1376 1386 1380
False Positive 138 124 131 193

False Negative 112 115 107 113
interj. True Positive 0 0 0 0

False Positive 0 0 0 5
False Negative 3 3 3 3

Table 6: Breakdown of prediction results used to calculate weighted precision, recall, and F1 for the POS task .
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Abstract

Highly accurate machine translation systems
are very important in societies and countries
where multilinguality is very common, and
where English often does not suffice. The In-
dian subcontinent (or South Asia) is such a re-
gion, with all the Indic languages currently be-
ing under-represented in the NLP ecosystem. It
is essential to thoroughly explore various tech-
niques to improve the performance of such low-
resource languages at least using the data avail-
able in open-source, which itself is something
not very explored in the Indic ecosystem. In our
work, we perform a study with a focus on im-
proving the performance of very-low-resource
South Asian languages, especially of countries
in addition to India. Specifically, we propose
how unified models can be built that can ex-
ploit the data from comparatively resource-rich
languages of the same region. We propose
strategies to unify different types of unexplored
scripts, especially Perso–Arabic scripts and In-
dic scripts to build multilingual models for all
the South Asian languages despite the script
barrier. We also study how augmentation tech-
niques like back-translation can be made use-
of to build unified models just using openly
available raw data, to understand what levels of
improvements can be expected for these Indic
languages.

1 Introduction

The Indian subcontinent is a well-studied linguis-
tic area (Emeneau, 1956), known as South Asian
sprachbund. The region is home to around a quar-
ter of the world’s population, with a total which is
projected to reach more than 2 billion in a decade.
Despite this, the progress in natural language pro-
cessing is significantly lacking for South Asian
languages (or Indic languages). Especially, ma-
chine translation is of core importance since South
Asia is largely a multilingual society, with more
than 25 languages recognized officially across the

subcontinent and more than 100s attested and spo-
ken. Although there are quite a few number of
works which have released datasets for languages
of India (Siripragada et al., 2020) and studied mul-
tilingual models for the same (Philip et al., 2019),
they are not exhaustively studied. In particular, the
Indic languages of other South Asian countries like
Pakistan, Nepal and Sri Lanka are almost never
studied together with the languages of India and
Bangladesh.

In this work, we aim to study all the available
Indic languages (of Indo-Aryan and Dravidian fam-
ilies) of all the above countries together, precisely
15 South Asian languages (listed in appendix A).
Especially, we propose a simple strategy to unify
digraphic languages like Hindi–Urdu, Sindhi and
Punjabi which are written in Indic scripts in In-
dia and Perso–Arabic scripts in Pakistan. We pro-
pose how one can build a script-agnostic encoder
which can generalize well across different types
of translation models, like code-mixed, roman (so-
cial media) and formal texts. We study for the first
time in literature backtranslation-based NMT for
all script-unified Indic languages together, which
provides significantly better performance than mod-
els trained only on parallel data, by using only
freely available monolingual data. We finally pro-
vide brief recommendations for researchers work-
ing in this Indic-NMT domain, and finally mention
how this work can be extended and its future scope.

2 Related works

Training multilingual models for neural machine
translation currently the go-to approach for signifi-
cantly improving the performance of low-resource
languages (Ngo et al., 2020). Especially sharing
of sub-word vocabulary among related languages
(of the same or similar families) is of more im-
portance to exploit the inter-relationships between
the languages (Khemchandani et al., 2021), so that
resource sharing from high-resource languages to
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Dataset as bn gu hi kn ml mr ne or pa sd si ta te ur

Samanantar 0.14 8.52 3.05 8.57 4.08 5.85 3.32 1.00 2.42 5.17 4.84
CVIT-PIB 0.04 0.20
Anuvaad* .003 0.02 0.02
PMI* 0.01
OPUS 0.03 2.25 0.12 1.89 8.53 8.69
U.Kathmandu 0.02
Charles Univ 0.01
MTurks 2012 0.03

Total 0.21 8.52 3.05 8.57 4.07 5.85 3.32 2.28 1.14 2.42 1.89 8.53 5.17 4.84 8.97

Table 1: Open-source parallel Indic corpora (in millions), totalling around 69M sentence-pairs

low-resource languages is achieved. Recent works
(Ramesh et al., 2021) have explored strategies to
train multilingual NMT for 11 languages of India,
both with and without shared vocabulary across
languages, demonstrating that vocabulary sharing
by script unification is significantly beneficial. It
is also common to convert all the text across all
languages to IPA (International Phonetic Alphabet)
or any common script, especially in speech-to-text
(Javed et al., 2021) and text-to-speech (Zhang et al.,
2021) to obtain a universal representation of text
across any language/script. In the case of South
Asian languages, it is more convenient to map all
scripts to a common Indic script (like Devanagari)
which is capable of representing all phonemes used
in the Indic families (Khare et al., 2021).

3 Background

This section sets provides the background required
for the subsequent sections.

3.1 Datasets

As mentioned earlier, our work only focuses on
open-source datasets inorder to explore how per-
formance can be improved for low-resource lan-
guages just using openly available data. Overall,
the datasets used in this work are mostly from the
general domain, and hyperlinks are provided to
access all the datasets. The next sub-section men-
tions the list of all aligned datasets used in this work
and further, the we mention the list of all available
monolingual data sources which we exploit in this
work for improving performance.

3.1.1 Parallel datasets
Table 1 shows the list of all parallel datasets used
for training our models. It is to be noted that

the Samanantar (Ramesh et al., 2021) is the ma-
jor source of data, for languages of India. To ex-
plore more languages as well as to study how the
above data is useful for other similar Indic lan-
guages, especially focusing on other related South
Asian countries, we gather more data from different
sources shown in the same table. Specifically, we
aim at increasing the amount of data obtainable for
Indo-Aryan languages not covered in Samanantar,
viz. Nepali, Sinhala, Sindhi and Urdu which are
predominantly spoken in Nepal, Sri Lanka and Pak-
istan respectively. In addition, we also manually
add new sources of data (marked *) from Anuvaad
corpus and PM India corpus which were not cov-
ered in the latest Samanantar v0.2 for Assamese
and Odia, although relatively very small in size.

3.1.2 Benchmark dataset

For test set, we use the FLoRes101 benchmark
(Goyal et al., 2021) which has data for 14 Indic
languages, manually translated from various do-
mains of English Wikipedia. Since this new bench-
mark does not have data for Sinhala, we evaluate
it on the initial FLoRes benchmark (Guzmán et al.,
2019). Note that we do not use the WAT 2021
MultiIndicMT testset (Nakazawa et al., 2021) for
benchmarking, since we find the data quite very
close to the distribution of the corresponding train-
ing data, as also observed by IndicBART (Dabre
et al., 2021). All BLEU scores reported in this pa-
per are computed using sacreBLEU (Post, 2018)
after generating translations with a beam decod-
ing size of 4. Note that we compare our scores
only against IndicBART (and experiment only with
same architecture), as they already demonstrate su-
perior scores over fine-tuned models like mBART
and the chosen model is lighter than pretrained
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models like mT5 or mBART50.

3.1.3 Monolingual data
Table 2 shows list of all monolingual corpora used
in this work. It is to be noted again that the
AI4Bharat IndicCorp is the major source of data
(row 1), for languages of India. For Indo-Aryan
languages of other South Asian countries, we con-
solidate most of the available open-source corpora
from different sources as shown in other rows of the
table. We also try to consolidate more data for very-
low-resource languages of India like Assamese and
Odia.

3.2 Script Unification

As explained earlier, script unification is essential
for sub-word vocabulary sharing between related
languages. It is essential for the unification to be
lossless so that the resultant dataset quality is not
affected. In literature, it is common to use Devana-
gari as the common script to unify all the Brahmic
scripts of India, although any script (like IPA) can
be used as the pivot. For example, for models
trained only for Dravidian languages, we use the
Malayalam script as the common representation
for the 4 languages: Kannada, Malayalam, Tamil
and Telugu. But Devanagari is predominantly cho-
sen since it is used for many languages like Hindi,
Nepali, Marathi, etc. as well as due to the fact that
it is one of the few Indic scripts which supports
almost all phonemes required for both the Indic
language families, not just Indo-Aryan for which
the script is predominantly used. One important
aspect of Devanagari is a diacritic called nuqta,
which is essentially a dot mark placed below the
main consonants to represent non-native phonemes.
Its primary use is to represent consonants of other
languages, including from different families like
Dravidian, Iranic (for Persian), Semitic (for Ara-
bic). Hence, using Devanagari for all Indic lan-
guages as a common script is preferable, including
languages like Urdu, Sindhi and Kashmiri which
are written in Perso–Arabic scripts. In the subse-
quent section, we explain how the latter is achieved,
which is an unexplored track in research.

3.2.1 Mapping Devanagari and Perso–Arabic
The Perso–Arabic script is an abjad, meaning that
it is based on a writing system which mostly has
only consonants (in its purest form). In addition, in
Perso–Arabic, two of the same consonants (w & y)
are used to indicate few long-vowels (respectively:

/u/, /o/ and /i/, /e/). So the reader of the script
mentally fills-in / interprets most of the vowels as
they read, based on their knowledge of the language
and context. Devanagari is an abugida, meaning
that it is an alphasyllabary system where the script
is generally expected to be almost phonetic with
all consonants and vowels represented. This makes
a direct mapping of Perso–Arabic consonants to
Devanagari slightly illegible for readers of usual
Devanagari due to lack of any vowels. Figure 1
below shows an example of raw mapping for the
Hindostani language.

Urdu
 

Raw-Devanagari 
 

Hindi
 

English

پلس  نے چور کو پکڑ کے جیل مے ڈال دیا
 

पलस ने चवर कव पकड़ के जयल मे डाल दया
 

पुिलस ने चोर को पकड के जेल मे डाल िदया
 

The police caught the thief and put him in jail

Figure 1: Row-1: Perso–Arabic, Row-2: Devanagari-
transliteration, Row-3: Actual Hindi spelling, Row-4:
Translation

Despite this, we propose that NMT models are
capable of learning both abjad and abugida forms,
with a deeper understanding of the underlying lan-
guage. That is, we directly use the raw mapping
of Perso–Arabic consonants to Devanagari (with-
out any phonetic transcription) to train an unified
model. It is to be noted that there are some con-
sonants in Perso–Arabic for which, although the
phonemes are different, they represent the same
phone. Those consonants usually are mapped to
a single Devanagari phoneme. In our work, es-
pecially to generate Perso–Arabic texts, we re-
quire lossless mapping of each character from
Perso–Arabic. Hence we propose to map them
uniquely by creating new Devanagari consonants
using nuqta.We also open-source our transliterator
implementation as a python library1.

Upon training using the above unification, we
see that our model is capable of understanding that
the standard registers of Hindi & Urdu have the
same underlying language, with only differences
being in writing form and formal vocabulary. This
was verified by swapping the scripts used for Hindi
& Urdu to see if still produces legitimate outputs.
As later described in Section 5.1, while training,
we explicitly specify what is the expected output
script-type and language that is to be produced
by the model. Upon specifying Arabic as script
for Hindi and Devanagari as script for Urdu to the

1Indic-PersoArabic Script Converter

229

https://en.wikipedia.org/wiki/Nuqta
https://en.wikipedia.org/wiki/Hindustani_language
https://github.com/GokulNC/Indic-PersoArabic-Script-Converter


Dataset as bn gu hi kn ml mr ne or pa pnb sd si ta te ur

IndicCorp 2.38 77.7 46.6 77.3 56.5 67.9 41.6 10.1 35.3 47.8 60.5
Universitya 45 3.2 5.5
CC100 0.5 12.7 2.2 0.02 1.4 12.6 28
Wikipedia 0.3 0.4 0.3 1.2 0.4 0.6 1.3
Leipzig 0.06 4.2 0.04 0.06 0.007 0.4 1.1
Crawledb 2 4.8

Total 3.24 77.7 46.6 122.3 56.5 67.9 41.6 22.5 12.64 35.3 1.28 1.807 18.4 47.8 60.5 35.9

Table 2: Open-source monolingual Indic corpora (in millions), totalling 650M sentences

ahi: IIT-B Corpus, ne: JNU Corpus, ur: Charles University
bne: GitHub sources, si: FacebookDecade, News sources, SinMin

trained model, we found that the model still pro-
duced Urdu and Hindi sentences respectively. Now
we generate augmented data for Devanagari-Urdu
and Arabic-Hindi by transliterating 1M Hindi par-
allel data to PersoArabic (later unified again to
abjadi-Devanagari) and by transcribing 1M Urdu
parallel data to Devanagari using Sangam translit-
erator (Lehal and Saini, 2012). We fine-tune the
model for few epochs using this synthetic data. We
observe that even using such small fraction of data,
the model was able to easily generate translations
for Urdu in proper Devanagari and for Hindi in
proper-Arabic for unseen data, hence qualitatively
proving the hypothesis that the script-unified model
can also learn writing-system-agnostic features.

Furthermore, we perform something similar for
Sindhi language – Sindhi is majorly spoken in Pak-
istan by 30M people & written in Perso–Arabic
script; in India, it is spoken by around 2M people
& officially mandated to be written in Parivardhit-
Devanagari, an extended version of Devanagari.
Since all the Sindhi datasets available are in Perso–
Arabic, we use the same Sangam transliteration
API as mentioned above to generate Sindhi datasets
in Devanagari. We use data this as well to train
the models in Section 5, and find that the model
now was also able to produce (almost) same Sindhi
outputs for both the scripts. Note that we imple-
ment a similar but separate converter for Sindhi
script-unification, as the Perso–Arabic script for
Sindhi has significant difference from that of Urdu.
Also, since the amount of Sindhi corpus is very
low, we augment the dataset while training with
the following synthetic data – since Gujarati is
a closely-related language to Sindhi, we sample
2M random Gujarati translation-pairs and create
Arabic-Gujarati dataset and train for this artifical

language–script combination as well in the training
described in Section 5.1.

We would also like to point out that we do not
perform this for the Punjabi language, which is
written in an Indic script called Gurmukhi in India,
and using a Perso–Arabic alphabet called Shah-
mukhi in Pakistan. This is because all available
Punjabi datasets are in Gurmukhi, an almost pho-
netic script (similar to Devanagari). Hence we
directly use our transliterator to convert from Gur-
mukhi to Shahmukhi and return the translation if
required. But it was observed that due to the formal
nature of the Punjabi datasets, the generated trans-
lations were of Eastern-Punjabi literary standard,
hence the outputs may not always be mutually-
intelligible to speakers who are used to Western-
Punjabi literary standard. We do not find this is-
sue significant in the case of Sindhi, as the formal
Sindhi standards of both the countries do not differ
much.

3.2.2 Mapping Sinhala and Devanagari

Sinhala alphabet (of Sri Lanka) is mostly similar
in phonetics to most other alphabets of India, ex-
cept a couple of minor differences. Sinhala has
separate unicode points for representing 6 prenasal
consonants, whereas in Devanagari, they are repre-
sented as ligature of a nasal consonant with another
consonant, as shown in Figure 2. In addition, Sin-
hala also has short and long forms of the vowel
/æ/ which we also map to Devanagari uniquely, for
both dependent & independent vowels. The pub-
licly available transliterators (like the transliterate
sub-package in Indic-NLP-Library) are lossy, and
do not handle all these cases.
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Sinhala ඟ ඦ ඥ ඬ ඳ ඹ 
Devanagari � � � � � � 

Figure 2: Example mapping of pre-nasal consonants
between Sinhala and Devanagari

3.2.3 Mapping between Indic scripts

For all the remaining scripts in this work, the map-
ping is mostly straightforward due to the fact that
they follow the ISCII encoding scheme in which
equivalent phonemes are mapped at same offsets
in the unicode blocks. We use the AksharaMukha2

tool to perform lossless transliteration between
these Indic scripts.

3.3 Romanization of Indic languages

We also experiment with romanized models for
all Indic languages in our work to translate to En-
glish. In this sub-section, we briefly explain the
different ways using which we perform the roman-
ization. Generally, there is no standard way to per-
form romanization for Indic languages, since the
way one types it colloquially is quite personal in
style. Hence we perform romanization using mul-
tiple ways. This includes machine learning-based
romanization as well as rule-based romanization
techniques which covers different possible ways of
romanizing, which will be open-sourced3.

In brief, for each language, we first generate 4
variants of romanization:

1. Raw & case-insensitive ASCII transliteration
of the script (a readable lossy variant of the
Velthuis scheme). For example, vowel diacrit-
ics are dropped (like ı̄→i, ū→u, etc.).

2. Approximate colloquial transcription of the
script (taking into consideration phonologi-
cal mapping to English, schwa deletion, etc.),
and also involving language-specific random
substitutions of related roman representations
of consonants (like ph→f, v→w, etc.) and
vowels (like ı̄→ee, ū→oo, etc.)

3. Consonant-only romanization (including ini-
tial vowels), to simulate (extreme) social me-
dia short-hand typing (not done for Urdu &
Sindhi, as the roman variant-1 already does

2https://github.com/virtualvinodh/
aksharamukha

3https://github.com/GokulNC/
Indic-Romanizer

the same for languages that use Perso–Arabic
scripts).

4. ML-based romanization using the python-
library: LibIndicTrans4.

We further generate generate 2 batches of the full
dataset by mixing different variants of the above 4
romanizations at the word-level.

4 Indic to English MT

In this section, we explore different models for In-
dic to English translation using datasets mentioned
in section 3.1.1. Note that before training, we per-
form text normalization of all datasets using the
Indic-NLP-Library.

4.1 Experimental settings

The input sentence to the models is prepended with
the language-tag token, "__langcode__ ", inorder
to explicitly provides cues to the model about what
the source language is. All the models experi-
mented above are transformer-based, with the same
network and hyperparameter configurations as in
transformer-big (Vaswani et al., 2017), which has
6 encoder layers and 6 decoder layers inorder to
be consistent with the scores comparison against
the previous work (Dabre et al., 2021). For all
experiments, we use the sentence-piece tokenizer
(Kudo and Richardson, 2018) to build our sub-word
vocabulary, with vocabulary sizes for input and
output sides respectively 32000 (Indic side) and
16000 (English side). We use Marian-NMT toolkit
(Junczys-Dowmunt et al., 2018) to train all our
models, with mean cross-entropy as the loss func-
tion. Note that all models are trained from scratch.

4.2 Unified models

First, we build models from English specific to
Indo-Aryan (ia2en) and Dravidian (dr2en) lan-
guages to compare how these models perform with
respect to a model which is trained for both the
Indic language families (in2en). As explained in
section 3.2, we use Malayalam as the common
script for Dravidian model and Devanagari for Indo-
Aryan and Indic models.

Table 3 presents the performance across lan-
guages (ia2en and dr2en models are shown in same
row for simplicity). We see that the Indic model
trained on both the families outperform the scores

4https://github.com/libindic/
indic-trans
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Model as bn gu hi kn ml mr ne or pa sd si ta te ur
Indic-En

IndicBART - 30.7 33.6 36.0 27.4 30.4 30.0 - 28.6 34.2 - 8.5 27.7 32.7 -
ia2en, dr2en 21.4 30.2 32.8 36.1 25.3 27.7 28.9 35.1 28.4 34.2 24.1 12.8 22.5 29.6 24.9
in2en 23.9 31.8 33.9 36.8 28.1 30.7 30.7 36.2 31.3 35.3 24.1 15.1 27.7 33.0 25.1
rom_in2en 24.1 31.9 34.0 37.3 28.4 30.9 30.7 36.3 31.5 35.3 24.7 15.3 28.3 33.0 25.8

En-Indic
IndicBART - 17.3 22.6 31.3 16.7 14.2 14.7 - 10.1 21.9 - - 14.9 20.4 -
en2ia, en2dr 6.3 17.4 22.6 31.4 16.1 14.1 14.8 10.5 10.1 21.7 18.9 8.8 14.4 20.5 20.2
en2in 6.3 17.2 21.9 31.0 16.2 13.7 14.7 10.4 9.9 21.5 18.1 8.9 14.5 20.5 19.8
bt_en2in 9.9 18.9 23.1 34.2 18.7 16.2 16.1 17.1 14.3 23.9 23.7 14.1 17.2 22.3 22.3
bt_en2ia, bt_en2dr 10.8 19.8 23.7 36.1 20.0 17.3 16.8 17.6 16.7 24.3 24.2 14.1 17.2 22.9 23.6
t_bt_en2dr - - - - 20.1 17.5 - - - - - - 18.1 22.8 -

Table 3: Comparison of BLEU scores of different trained models of same network architecture on FLoRes101
benchmark (Goyal et al., 2021) along with the scores of the existing best open-source model trained on Samanantar,
taken from IndicBART paper (Dabre et al., 2021)

of family-specific models. This observation is con-
sistent with the results for many other languages,
where we see significant gains in accuracy with a
shared encoder, in-cases like many-to-one NMT
(Arivazhagan et al., 2019).

4.3 Script-agnostic model
We generate a romanized version of the paral-
lel dataset available as explained in Section 3.3,
which is typically 6x large in size due to different
ways of romanization the same data, and train a
Roman-Indic-to-English model (rom_in2en). Ta-
ble 3 shows the performance of this romanized
model. We see that the model is slightly better (on
the romanized benchmark) than the in2en model.
This can be attributed to the significant reduction
in alphabet size of the model: Devanagari usually
requires more than 80 characters (on average) to
represent all Indic languages; whereas in the ro-
man model, only 26 characters (though a bit lossy).
Based on manual analysis, we infer that romanized
models are slightly more robust to noise in inputs,
owing to the varied nature of the romanized data.
We also note that owing to increased amount of
data in abjad form (due to romanization variant-3,
shown in section 3.3), the performance of Sindhi
and Urdu (which use Arabic scripts) have signifi-
cantly improved.

In addition, to study how our model performs
with real-world code-switched (roman) data, we
attempt the Microsoft GLUECoS (Khanuja et al.,
2020) Machine Translation task5. We fine-tune our

5https://github.com/microsoft/

model on the training set of the above dataset, and
measure a validation BLEU score of 27.36. Un-
fortuanately, the leaderboard of the task is not yet
out. Upon manually checking the validation results,
we see that our model has performed reasonably
good despite the fact that the dataset is code-mixed
and romanization styles were somewhat different.
Although this is not a comparable result, we hope
that this is helpful in advancing further Indic-NMT
research on this benchmark.

5 English to Indic MT

In this section, we explore one-to-many NMT mod-
els for training English to Indic translator. We
initially train models using the parallel data, then
train few more models using synthetic data from
monolingual corpora to understand the level of im-
provement achievable using raw data.

5.1 Experimental settings
The input sentences to all the models is prepended
with a novel type of language-tag token, "__lang-
code__ __script-type__ ", inorder to explicitly pro-
vide cues to the model about what script-type is to
be produced (in-addition for the given language).
The possible script types are: 1. ’a’ to denote
Perso–Arabic writing system; 2. ’i’ to denote Indic
writing system; 3. ’t’ to denote Tamil alphabet,
which is a small subset of the Indic set.6

GLUECoS#code-mixed-machine-translation-task
6Tamil script is a lossy Indic alphabet, which has same

phonemes for unvoiced and voiced consonants (like ’k’ and
’g’), in-addition to a few other features (like aspirated con-
sonants) that are not explicitly supported in the script. In
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All the trained models follow the same network
configuration (transformer-big) as in the previous
experiments; see section 4.1. The sub-word vocab-
ulary sizes for input and output sides respectively
16000 (English side) and 32000 (Indic side).

5.2 Models trained only on parallel data
We initially train 3 different models (from English)
just using the parallel data: Dravidian (en2dr), Indo-
Aryan (en2ia) and Indic (en2in). The results are
shown in Table 3. We see that the performance
does not vary much between the family-specific
models and the common model. This observation
is consistent with the results for many other lan-
guages, where we see trivial to almost-no gains
in accuracy with a shared decoder, in-cases like
one-to-many NMT (Arivazhagan et al., 2019).

We experiment in the next subsection to under-
stand if a common model could be more beneficial
than family-specific models when a huge backtrans-
lated data is augmented with the (upsampled) orig-
inal data.

5.3 Models trained on parallel and
back-translated data

Using all the Indic monolingual data listed in Sec-
tion 3.1.3, we generate English sentences using the
rom_in2en model with a beam-search width of 6.
We then train 4 models (from English) after up-
sampling the parallel data and concatenating with
the backtranslated dataset: 1. bt_en2in: To all In-
dic languages after 5× upsampling; 2. bt_en2ia:
To Indo-Aryan languages after 6× upsampling; 3.
bt_en2dr: To Dravidian languages after 10× up-
sampling; 4. t_bt_en2dr: To Dravidian languages
after 7× normal upsampling, and 3× Tamilized-
augmented upsampling (by converting other Dra-
vidian alphabets to Tamil subset and marking their
script_type as ’t’ when prepending language to-
ken). The upsampling scale is decided such that
the amount of original parallel data and backtrans-
lated data are in ratio 1:2.

Table 3 shows the performance of all the 4 mod-
els. We see that, family-specific models perform
notably better than a common model (given a fixed
model size). Moreover, for the t_bt_en2dr model,
we observe a significant boost in accuracy for Tamil
after the Tamilized-data is augmented, and a trivial
improvement for Malayalam and Kannada com-
pared to bt_en2dr.

Section 5.3, we further clarify on how treating Tamil as a
special case could be helpful to improve its performance.

It is also seen that, our model easily outperforms
models which are fine-tuned from language mod-
els like IndicBART (Dabre et al., 2021). This is
because we use the same entire monolingual data
(Kakwani et al., 2020) which was used to pretrain
IndicBART, but along with supervised translation
signals in the form of backtranslated data.

For very-low resource languages (like Sindhi and
Sinhala), we notice very significant improvements
with back-translation, even with relatively lesser
amount of monolingul data.

6 Discussions and Conclusion

We demonstrate in this paper various methods to
achieve improvement in performance, especially
across South Asian languages which were not pre-
viously explored along with the languages of In-
dia. We believe our presented contributions are
more of exploratory nature, and make fundamental
proposals (like always building romanized mod-
els when the source side is Indic). Although the
fact that a unified model results in better perfor-
mance in low-resource scenarios has been discov-
ered by many prior work and hence not surprising,
our work merely focuses on quantitatively studying
the improvement in the case of Indic languages.
In this section, we provide general suggestions for
research groups working on NMT for Indic lan-
guages.

In general, to train model for any low-resource
Indic language to English, we recommend that data
from all the languages is used to train a multilingual
model.7 Especially, training a romanized model
would be more beneficial, since it would be a script-
agnostic model, and hence easily generalize for
code-mixed and social media texts.

For training English to any low-resource Indic
language, it maybe be preferable to train family-
specific models when working under resource-
contrained settings. Especially for languages of
the countries Pakistan, Bangladesh, Nepal and
Sri Lanka, we highly recommend and encourage
them to exploit the datasets made available by re-
searchers of India. If possible, it is highly recom-
mended to exploit the abundant monolingual data
and train models using backtranslated data.

7Works like (Dabre et al., 2021) have already shown why
multilingual models are more preferable for Indic languages,
so we do not redemonstrate it in our work.
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6.1 Limitations

As generally known, bigger models could push
the improvements even further than what we have
seen in our results. In fact, the recent work by
(Ramesh et al., 2022) show better results on the
FLoRes101 benchmark by using a transformer-4x
model even without using back-translated data. We
only benchmark on transformer-2x in this work for
consistent comparison, and to be more practical
during training and inference (as well as due to our
unaffordability of large infrastructure for such ex-
perimentations). Also, we only perform one round
of back-translation to study English to Indic mod-
els in Section 5.3. We encourage researchers to
study multiple rounds of back-translations (which
is out of scope for this paper).

Thorough anlaysis of the performance on code-
mixed (not code-switched) data using benchmarks
like PHINC (Srivastava and Singh, 2020) is re-
quired for the rom_in2en model in Section 4.3,
which is one of the on-going works in our research.
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APPENDIX

A Indic languages

Language (& family) ISO code Script(s) Countries

Assamese (Indo-Aryan) as Eastern Nagari India
Bengali (Indo-Aryan) bn Eastern Nagari Bangladesh, India
Gujrati (Indo-Aryan) gu Gujarati India
Hindostani (Indo-Aryan)
→ Hindi hi Devanagari India
→ Urdu ur Perso–Arabic Pakistan, India

Kannada (Dravidian) kn Kannada–Telugu India
Malayalam (Dravidian) ml Malayalam India
Marathi (Indo-Aryan) mr Marathi India
Nepali (Indo-Aryan) ne Devanagari Nepal
Oriya (Indo-Aryan) or Odia India

Panjabi (Indo-Aryan) pa
Gurmukhi India
Shahmukhi Pakistan

Sindhi (Indo-Aryan) sd
Perso–Arabic Pakistan
Parivardhita Devanagari India

Sinhala (Indo-Aryan) si Sinhala Sri Lanka
Tamil (Dravidian) ta Tamil India, Sri Lanka
Telugu (Dravidian) te Telugu India

Figure 3: List of all 15 South Asian languages studied in this work
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