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Abstract

While entity retrieval models continue to ad-
vance their capabilities, our understanding of
their wide-ranging applications is limited, espe-
cially in domain-specific settings. We high-
lighted this issue by using recent general-
domain entity-linking models, LUKE and
GENRE, to inject external knowledge into a
question-answering (QA) model for a financial
QA task with a hybrid tabular-textual dataset.
We found that both models improved the base-
line model by 1.57% overall and 8.86% on
textual data. Nonetheless, the challenge re-
mains as they still struggle to handle tabular in-
puts. We subsequently conducted a comprehen-
sive attention-weight analysis, revealing how
LUKE utilizes external knowledge supplied by
GENRE. The analysis also elaborates how the
injection of symbolic knowledge can be helpful
and what needs further improvement, paving
the way for future research on this challenging
QA task and advancing our understanding of
how a language model incorporates external
knowledge.

1 Introduction

Decades of development in question-answering re-
search have seen numerous methods focusing on
unstructured text, structured knowledge bases, or
semi-structured tables. Recent work (Zhu et al.,
2021) has discovered a new challenge in apply-
ing these techniques to the financial domain. The
study proposed a QA task on financial reports com-
piled as a Tabular And Textual dataset for Question
Answering (TAT-QA). Each question has an asso-
ciated table and multiple paragraphs, making a hy-
brid data structure. TAT-QA requires a certain level
of financial knowledge to extract evidence from ta-
bles and texts, making it an appropriate choice for
our study. Our motivation is to examine whether in-
jecting symbolic knowledge help the model better
understand financial concepts.

As shown in Figure 1, we can inject the entity in-
formation of companies (dbpedia:BCE_Inc), finan-
cial terms (dbpedia:Share_repurchase), and com-
mon knowledge (dbpedia:Europe), among others.
The coverage and accuracy of the information de-
pend on the entity linking method. Nevertheless,
we expect certain common entities to appear in a
text-question or table-question pair. We hypothe-
sized that this commonality helps the QA model to
focus on the target answer spans, and our analysis
provided evidence to confirm the hypothesis.

In summary, we introduced the knowledge-
infused question answering (KIQA) model for
tabular-textual data. We designed our experiment to
evaluate the end-to-end results and investigate the
strengths and weaknesses of the injection method
to provide insights for future research. Our main
contributions are as follows:

• We proposed, evaluated, and compared KIQA
in different settings, improving the perfor-
mance of the baseline method.

• We conducted an exhaustive attention-weight
analysis of the entity-linking model we ap-
plied to our study.

Our analysis aims at understanding how lan-
guage models utilize symbolic knowledge. We
intend for this work to stimulate more studies into
the mechanism of these models as we advance their
capabilities and applications.

2 Related Works

2.1 Question Answering
Numerous QA datasets focus on textual data, such
as SQuAD (Rajpurkar et al., 2016), tabular data,
such as SQA (Iyyer et al., 2017) and a mixture of
tables and texts (Chen et al., 2020). TAT-QA com-
bines both tabular and textual input and requires
numerical reasoning. We are interested in TAT-QA
due to its practical applications since it consists of
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Figure 1: KIQA injects entity information commonly
found in TAT-QA’s tables, texts, and questions into the
QA model. Some questions may require external knowl-
edge to reason. For example, to answer Q2, the model
needs to understand which cells in the table refer to a
region.

real-world financial reports annotated and verified
by experts. It also requires the model to under-
stand financial concepts, making it suitable for our
purposes.

TAT-QA proposed a baseline model called
TagOp, which performs sequence tagging and sym-
bolic reasoning using operators. Their experiment
includes baseline textual QA models, a tabular
model, and a hybrid model. TagOp significantly
outperformed all baseline models; thus, we decided
to base our model on it.

2.2 Entity Linking

There are several entity-retrieval models currently
available, e.g., BLINK (Li et al., 2020), EntQA
(Zhang et al., 2022). However, we decided to use
LUKE (Yamada et al., 2020), a pre-trained lan-
guage model with entity-aware self-attention, since
it outputs contextualized representations of words
and entities, which we can adapt to TagOp’s archi-

tecture. LUKE, adapting RoBERTa’s architecture
(Liu et al., 2019), consists of a modified multi-layer
bidirectional transformer that takes words and en-
tities as input tokens. The modified transformer
adds query matrices that allow the entity-aware
attention mechanism to attend to both words and
entities as it computes the attention scores. This ad-
ditional calculation allows LUKE to directly model
the relationships among words and entities.

While masked entities are part of LUKE’s pre-
training data, its experiment showed that explic-
itly adding entity information to the model’s in-
put yielded the best result. Thus, we used the
GENRE (Generative ENtity REtrieval) (Cao et al.,
2021) model to retrieve entities in TAT-QA and
input the additional information to LUKE. Based
on a pre-trained language model BART (Lewis
et al., 2020), GENRE retrieves entities by generat-
ing their unique names autoregressively using con-
strained beam search. Given an input text sequence,
the model outputs the same sequence with special
tokens indicating mentions, followed by the entity’s
unique Wikipedia page title after each mention. For
example, an output for "In 2018, BCE repurchased
3,085,697 ...," is "In 2018, [BCE](BCE_Inc) [re-
purchased](Share_repurchase) 3,085,697 ..."

3 KIQA Model

KIQA is a QA model built from TagOp, a baseline
model for the TAT-QA dataset, to evaluate sym-
bolic knowledge injection into a QA model for a
domain-specific dataset with tabular and textual
structure. With the stated objective, we strictly
applied the architecture of TagOp but replaced
the underlying LM, RoBERTa, with LUKE to ob-
tain knowledge-infused representations. Following
TagOp, KIQA consists of three main components:
1) Evidence Extraction, 2) Reasoning and 3)Knowl-
edge Injection.

3.1 Evidence Extraction

The evidence extraction module predicts answer
spans using sequential Inside-Outside (IO) tagging
Ramshaw and Marcus, 1999. TagOp takes in an
input sequence of the question, flattened table, and
relevant paragraphs. The preprocessing step con-
catenates all table cell tokens into a continuous
string without separating tokens. We split KIQA
into two modules, shown in Figure 2; the first mod-
ule (KIQATagOP) is identical to TagOp, while the
second module (KIQAText) only processes the ques-
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Figure 2: KIQA adopts TagOp’s architecture with additional modules to handle knowledge injection. We used
GENRE to retrieve entities (bottom block) and then extracted answer spans using LUKE (middle blocks). The
model performs reasoning (upper-right block) on the hybrid answer spans (middle-right block). These two blocks
on the right side without entity injection are comparable to TagOp. We replaced the reasoner’s text span predictions
with outputs from the text-only extractor (middle-left block) in certain experimental conditions.

tion and paragraphs. Our decision to introduce
(KIQAText) stemmed from our preliminary inves-
tigation, which indicated that LUKE and GENRE
did not perform as well on the tabular data as on the
textual data. The idea was to replace KIQA TagOp’s
prediction on textual input with KIQAText’s output
and measure the difference. Although the inputs
are different, we applied the same two-layer feed-
forward network (FFN) with GELU Hendrycks and
Gimpel, 2016 activation for tag prediction:

ptag
t = softmax(FFN(ht)) (1)

where ht is the representation of sub-token t.

3.2 Reasoning
Reasoning in TAT-QA’s context involves identi-
fying and applying an operation, such as arith-
metic calculation, to the tagged sequence. Three
TAGOP’s components perform symbolic reason-
ing: operator, number order, and scale classifiers.
All three classifiers are two-layer feed-forward net-
works with GELU activation. TagOp defines ten
operators: span-in-text, cell-in-table, spans, sum,
count, average, multiplication, division, difference,
and change ratio. Following our early investiga-
tion, we decided to merge span-based prediction,

i.e., KIQA outputs all predicted answer spans when
it predicts the operator as span-in-text, cell-in-table,
or spans. The number order classifier determines
the positions of two tokens with the highest prob-
ability for division, difference, and change-ratio
operations (e.g., the numerator and denominator in
the case of division). Lastly, the scale classifier can
output none, thousand, million, billion, or percent.
Since KIQAText only performs sequence tagging,
it does not require the reasoning classifiers. To
clarify, following TagOp’s definitions,

pop = softmax(FFN([CLS])) (2)

porder = softmax(FFN(avg(ht1, ht2))) (3)

pscale = softmax(FFN([[CLS];htab;hp])) (4)

where [CLS] is a sentence-level classification to-
ken, "avg" is averaging, ht1, ht2, htab, and hp are
the output representations of the top two tokens
and the averaged representations of the table and
paragraphs respectively.

3.3 Knowledge Injection

We injected symbolic knowledge to TagOp by intro-
ducing entity information obtained from GENRE to
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LUKE. LUKE’s transformer-based architecture al-
lows us to fine-tune the model on downstream tasks
such as QA. However, while the model learned to
utilize symbolic knowledge from pre-training, it
still needs additional entity information to maxi-
mize its performance (more detail in the discus-
sion section). We obtained this information from
GENRE (Cao et al., 2021). The entity retrieval
model outputs unique entities’ Wikipedia page ti-
tles, which we mapped to LUKE’s entity vocabu-
lary. We could map 76.92% of entities in the ques-
tions identified by GENRE to LUKE’s vocabulary,
averaging 1.78 entities per question. The coverage
is 78.42% (0.62 entities per cell) and 64.03% (2.91
entities per paragraph) for tables and paragraphs.

3.4 Training

We trained KIQATagOp and KIQAText separately to
measure the effect of the flattened tables, where the
input contains minimal syntactic structure, and ob-
serve how LUKE and GENRE learn and generalize.
Following TagOp, KIQA uses the sum of sequence
tagging, operator, scale, and order classification
losses (negative log-likelihood) in its optimization.
We used the development set of TAT-QA for evalu-
ating our fine-tuning to ensure consistency.

4 Experiments and Results

Our experimental settings aim to measure the effect
of injecting symbolic knowledge into a domain-
specific tabular/textual QA model. We chose the
financial domain for evaluation since research in-
volving knowledge-infused language models in this
domain is still limited. As for the dataset, TAT-QA
provides extensive and high-quality samples with
complex and realistic tabular and textual data.

4.1 Dataset

TAT-QA (Tabular And Textual dataset for Question
Answering) presents the challenges of performing
QA on tabular/textual financial reports. The dataset
consists of 16,552 questions with 2,757 hybrid con-
texts from 182 financial documents. Each sample
contains a question, a table with 3 ∼ 30 rows and
3 ∼ 6 columns, and a minimum of two relevant
paragraphs. Also included in the sample are the an-
swer and derivation, which explain the calculation
steps required to derive the answer. TAT-QA splits
into three parts, i.e., training (80%), development
(10%), and testing (10%). The labels in the test set
are not publicly available.

Group TagOp-based Text Span
Models Replacement

I RB, L, L&G -

II RB RB → RB
L L → L

L&G L&G → L&G

III RB RB → L
RB → L&G

Table 1: The TagOp-based models make prediction
on both tabular and textual data. In group II and III,
we replace the hybrid models’ text span predictions
with text-only models’ outputs (indicated by →). RB =
RoBERTa, L = LUKE, L&G = LUKE & GENRE.

4.2 Pipelines

We defined three groups of pipelines, each contain-
ing an ensemble of the three models we investi-
gated. The first group includes three pipelines eval-
uating RoBERTa, LUKE, and LUKE with the extra
entity information from GENRE (L&G). The sec-
ond group replaces KIQATagOp’s answer span pre-
dictions from the first group with their correspond-
ing KIQAText’s predictions for the span-in-text op-
erator. Specifically, we replaced KIQATagOp

RoBERTa with
KIQAText

RoBERTa and the same for LUKE and L&G.
The third group is a follow-up experiment based on
our analysis of the results from the first and second
groups. In this last group, we paired KIQATagOp

RoBERTa
with KIQAText

LUKE and KIQAText
L&G individually. We

summarized our pipelines in Table 1.

4.3 Data Preprocessing

TagOp uses an automated approach to create labels
for sequence tagging. We found that their algorithm
does not always produce correct labeling. There-
fore, we performed a simple check by extracting
answer spans indicated in the labels, then executed
the operations and compared the predicted answers
with gold answers. Once we had identified the dis-
crepancies, we manually examined and corrected
them. However, due to the design of TagOp, we
could not fix all the errors. For example, TagOp
considers a table cell as a word, but some answers
do not cover the entire cell. Nevertheless, since
most labels are already valid, we have decided not
to pursue further correction for this study. The
strategy we employed was to train our models with
correct samples, then validate and test the models
with the entire development and test sets.
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4.4 Evaluation
Table 2 shows the test set’s results. The first row,
TagOp, is the scores reported in the TAT-QA pa-
per. The first pipeline of group I, RB or RoBERTa,
is our reimplementation of TagOp. We attribute
the boost from the original implementation to our
data preprocessing algorithm, including labeling
correction and elimination of invalid samples. The
change we made to the prediction, i.e., outputting
all answer spans for span-in-text, cell-in-table, and
spans, also contributed to the improvement.

Although the changes we made helped increase
the model’s performance, it appeared that injecting
external knowledge did not lead to further over-
all improvement. More importantly, RoBERTa
seemed to outperform LUKE and GENRE on tab-
ular data (table and hybrid). However, we no-
ticed that LUKE & GENRE consistently exceeds
RoBERTa in arithmetic operations and single-span
prediction. While the arithmetic score results from
multi-step prediction involving reasoning, single-
span answers are more straightforward to isolate
and measure the effect of knowledge infusion.

Based on group I and II results, we created the
third group of pipelines consisting of KIQATagOp

RoBERTa
paring with the text-based models KIQAText

RoBERTa,
KIQATagOp

Luke, and KIQAText
L&G. The results indicate that

injecting external knowledge into the textual part
of the data improves the QA model. Nonetheless,
due to the hybrid nature of the dataset, the overall
improvement is less dramatic. According to our
analysis of the training data, it is likely that the
high variance in the counting columns is due to the
small number of samples in this category.

5 Analysis

We have learned from our experimental results that
injecting entity information helped improve the
model’s performance on textual data. This conclu-
sion seems reasonable given that we did not provide
the model with the same information for the tab-
ular input. However, in some cases, the infused
text-only entity information negatively affects the
model’s ability to handle tabular input. Our analy-
sis attempts to answer the following questions:

• Q1: How does the injected external knowl-
edge contribute to the improvement?

• Q2: Why do the knowledge-infused models
underperform the baseline model on tabular
data?

5.1 Attention Weights

Figure 3: Top: Average and standard deviation of at-
tention scores by layer (0 ~23). Bottom: Average and
standard deviation of layer 22’s attention scores by at-
tention head (0 ~15).

We investigated Transformers’ (Vaswani et al.,
2017) attention weights α in different levels of ag-
gregation to determine how LUKE utilizes entity
information. Each Transformers layer consists of
multiple attention heads. LUKE employs entity-
aware self-attention, meaning that the model com-
putes the weights from both word and entity tokens:

Attention(Q,K,V) = αV (5)

α = softmax(
QKT

√
L

) (6)

where the query matrix Q ∈ RL×D can be one
of Qw2w, Qw2e, Qe2w, or Qe2e, depending on the
types of tokens (word or entity). K ∈ RL×D and
V ∈ RL×D denote key and value matrices. L is
the dimension of input embedding, and D is the
dimension of output embedding.

LUKE and RoBERTa (large model) consist of
24 layers of Transformers with 16 attention heads
on each level. RoBERTa has an input length of 512
tokens, while LUKE extends it to 549 to handle the
entity input, resulting in up to 549 × 549 attention
matrix. Taken together with the 1,668 samples
in TAT-QA’s development set, the analysis would
involve 12-billion data points.

The most straightforward approach is to average
the weights by layer, head, and sample. However,
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Table Hybrid Text
Model EM F1 A C M S A C M S A M S

TagOp 50.1 58.0 41.1 63.6 66.3 56.5 46.5 62.1 63.2 68.2 27.3 19.0 45.2

Group I: TagOp-based Models
RB 57.2 67.2 51.6 36.4 72.3 60.7 63.3 79.3 60.4 68.8 18.2 19.1 51.1

LUKE 54.3 64.8 47.4 72.7 65.1 57.8 48.9 62.1 62.3 75.5 27.3 14.3 51.1
L&G 56.4 66.4 53.7 27.3 65.1 59.0 55.4 51.7 58.5 72.9 27.3 19.1 52.3

Group II: TagOp-based & Text Models
RB 57.3 67.2 51.6 63.7 68.7 58.3 62.3 65.5 62.3 73.4 27.3 19.1 50.8

LUKE 56.4 66.1 52.8 45.5 68.7 55.4 58.6 34.5 61.3 75.0 27.3 19.1 51.1
L&G 57.2 66.6 53.7 27.3 65.1 59.5 55.4 51.7 58.5 75.0 27.3 19.1 54.8

Group III: TagOp-based (RB) & Text Models (LUKE & L&G)
RB 57.3 67.2 51.6 63.7 68.7 58.3 62.3 65.5 62.3 73.4 27.3 19.1 50.8

LUKE* 57.6 67.1 • • • 59.0 • • • 74.5 • • 51.7
L&G* 58.2 67.4 • • • 59.0 • • • 73.0 • • 55.3

Table 2: Evaluation of the first and second groups on the test set. The abbreviations are: RB = RoBERTa, A =
Arithmetic, C = Counting, M = Multi-span extraction, S = Single-span extraction. The detailed scores are exact
match (EM) scores. The underlined scores are the top scores in the group, and the top scores across all groups are in
bold. The test set does not include samples with the counting operation, so we removed them from the table. * For
group III, since we only replaced RoBERTa’s text span outputs with the text-only LUKE and L&G’s outputs, the
scores for A, C, and M are the same as those of RoBERTa (indicated by •).

since most tokens are unrelated to the entities, av-
eraging the entire input sequence would dampen
any indication of high attention paid to the entities.
We instead narrowed our focus to tokens within the
correct answer spans. In other words, where does
the model pay attention when it computes output
representations of the answer tokens?

Given an input sequence x = (x1, ..., xn) and
a target output y = (y1, ..., yn) ∈ {0, 1}, where
yi = 1 if yi belongs to an answer span s ∈ S,
let A ∈ Rn×n be an attention-weight matrix. We
selected ai ∈ A where yi = 1 to form a reduced
matrix Ã ∈ Rk×n, then averaged Ã along the first
dimension to produce vector b, representing aver-
aged attention weights of the answer tokens. Since
we are interested in all m samples individually, we
based our analysis on matrix B = [b1, ...,bm],
where:

b =

∑k
j=1 ãj

k
, Ã = [ã1, ..., ãn] (7)

First, we looked for the layers where the model
pays heightened attention to the entities. We ob-
tained this information by averaging B over each
layer’s attention heads, as shown in Figure 3 (a).
Interestingly, the standard deviations indicate that
the model pays special attention to the entities on

its top layers. In Figure 3 (b), we took a closer
look at layer 22 and found that attention head 9
seemed to specialize in the infused knowledge. We
observed a similar trend on layer 23 but chose to
analyze layer 22 as its standard deviation was the
highest among all layers.

5.2 Visualizing Attention

Figure 4 shows averaged attention weights by sam-
ple. We sorted the samples by their maximum
attention score among the entities since the model
tends to pay attention to specific entities rather than
all of them when computing the representations
of the target tokens. We refer to these maximum
scores as relevance scores. Since RoBERTa does
not have entity inputs, we sorted the samples based
on LUKE’s scores. While the sequence lengths
are varied, they all start with the sentence-level
classification token, followed by the question, flat-
tened table, and paragraphs. LUKE has additional
attention weights starting from b513 to b549. We
included Figure 6 as a reference for tabular and
textual input boundaries.

Since we only injected entity information to the
textual part of the data, it is reasonable that the
model would pay more attention to the entities for
samples where the answer spans are in paragraphs.
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Figure 4: Attention weights of samples sorted by the
relevance scores, the maximum attention scores among
entities. The left side (a) is a heat map in log scale for
KIQATagOp

RoBERTa and the right side (b) is for KIQATagOp
L&G.

Figure 5: From top to bottom: (a) The average of
accumulated F1 scores sorted by the relevance score, (b)
the accumulated ratio of answer span locations in the
input sequences, (c) the relevance score (in log scale)
computed from the maximum attention weight among
entities.

This pattern is most visible in Figure 6 (a), where
the entity’s attention weights decrease as the model
attends more to the tabular part.

In Figure 4, we observed a pattern of difference
in attention weights among samples where LUKE
pays more attention to the entities. While the an-
swer spans in these samples are in the paragraphs,
RoBERTa seems to pay considerable attention to
the tabular inputs. On the other hand, LUKE seems
more focused on the textual part. This pattern
clearly shows that the infused knowledge helps
guide the model to narrow its focus to the more rele-
vant section. While we did not observe the opposite
effect since we did not inject entity information into
the tabular part, with an entity retrieval model capa-

Figure 6: Table and paragraph boundaries in terms of
attention weights. The left side (a) includes the scores
of the sentence-level classification tokens, questions,
and flattened tables. The right side (b) is the paragraph
tokens’ scores.

ble of linking tabular data, there is a possibility that
the model may behave as expected. Nevertheless,
this observation warrants further study on integrat-
ing entity retrieval models specializing in tabular
data.

5.3 Interpretation
We learned from the previous section that the entity
information helps guide the model to pay atten-
tion to the more relevant part of the input. The
next and crucial question is whether or not this
change of focus translates into improved accuracy.
We used the F1 score that exclusively measures
sequence-tagging prediction and omitted the rea-
soning operations to isolate the effect of knowledge
infusion. Our objective is to find patterns in the
model’s performance (Figure 5) in relation to how
the model utilizes the entity information (Figure 4)
that could explain the two questions we posed at
the beginning of the analysis.

We created the accumulated F1-score chart in
Figure 5 (a) based on the sorted attention weight
vectors as in the heat map in Figure 2. To clarify,
the score at the ith position on the x-axis is the
average of F1 scores from the first sample to the ith

sample. The corresponding ratio chart (b) is also an
accumulated ratio of the same sequence of samples,
i.e., the ratio of text and tabular-based questions in
the top-ith samples. However, the relevance score
is of the individual sample at the ith position.

The F1-score chart exhibits different patterns
at different sample ranges; therefore, we divided
our interpretation into four parts. The first part
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starts from the first sample to roughly the 50th

sample. While the F1 scores within this range are
high, their margin is minuscule, indicating that
the questions are relatively easy enough that the
baseline language model can predict the correct
answers without help from the infused knowledge.

The second part (approximately 50th∼200th) is
where LUKE & GENRE has the most advantage.
The rapid drop in the F1 scores across all models
means that the text-based questions are much more
difficult. The exact section in Figure 4 shows that
the infused knowledge is still highly relevant in
directing the model’s attention until this point. We
sampled question-answer pairs with the entity and
attention information from this part and will discuss
them in the following section.

The majority of the samples in the third part
(200th∼1000th) are table-based questions, as indi-
cated by the steady increase in their ratio. Accord-
ing to Figure 2, the model pays less attention to the
entities than the first two parts, although still notice-
ably higher than the fourth part. Since the answers
are in the tables but the entities link to mentions in
the paragraphs, they are not particularly useful. On
the contrary, the potentially unrelated information
weakens LUKE’s performance considerably.

The last part (1000th∼1668th), also primarily
table-based, is easier to answer than the previous
one. As the model mostly ignores entity informa-
tion, LUKE & GENRE’s performance recovers
steadily due to less interference.

5.4 Examples

Our examples, shown in Table 3, are from the third
part of our interpretation, where the injection of ex-
ternal knowledge contributes most to the model’s
performance. We only include the entity with the
highest attention score and its corresponding men-
tion in the text for each example. These examples
represent some aspects of the differences the in-
fusion made. In the first example, according to
the correct answer, the margin increased because
the total margin decreased slightly due to expenses
growth. RoBERTa was able to correctly predict
the first half of the answer span ("Excluding the
effects of currency rate fluctuations, our cloud and
license segment’s total"), which does not include
the primary point. The entity "Expense" seems to
highlight the relevance of the latter half, resulting
in LUKE’s complete prediction.

The second example is a precise instance of the

Q-113: Why did the cloud license segments
total margin increase ...?
Mention: ... due to expenses growth.
Entity: Expense
F1 scores: L&G = 1.00, RB = 0.54

Q-139: When is the impairment of goodwill
and tangible assets tested?
Mention: intangible assets is tested annually
Entity: Intangible asset
F1 scores: L&G = 0.38, RB = 0.00

Q-156: What was the reason for the increase
in the Adjusted EBITDA?
Mention: Adjusted EBITA was on the ...
Entity: Earnings before interest, taxes, depre-
ciation, and amortization
F1 scores: L&G = 1.00, RB = 0.68

Q-178: When does the company record an
accrued receivable?
Mention: ... prior to invoicing ...
Entity: Contractual term
F1 scores: L&G = 1.00, RB = 0.39

Table 3: Example KIQATagOp
L&G’s, including the entity with

maximum α and its corresponding mention.

more concentrated attention weights pattern we ob-
served in Figure 4. Although this seems to be a
complex case since no model could achieve a high
score, LUKE could partially predict the correct an-
swer. On the other hand, we examined RoBERTa’s
attention scores and found that the model was pay-
ing attention to the tabular part of the input.

In our opinion, while GENRE provided the pre-
cise information for EBITA, it does not seem to con-
tribute significantly to the improvement. RoBERTa
already partially captured the main reason for the
increase, while the mention "EBITA" only com-
pletes the beginning of the sentence (LUKE’s an-
swer: "Adjusted EBITA was on the prior-year level
as ... [main reason]"). Nonetheless, LUKE also
included the entire reason while RoBERTa missed
part of it, thus achieving a much better score on
this sample.

In the last example, while RoBERTa correctly
located the correct answer span, it also included
irrelevant adjacent text, negatively affecting the F1
score considerably.
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6 Discussion

The QA model used the infused knowledge to focus
on the more relevant information (Q1). However,
only 25.20 % of the answers are in the paragraphs,
explaining the limited improvement. We did not an-
ticipate the margin to be substantial since LUKE’s
EM score on the development set of the SQuAD
1.1 dataset (Rajpurkar et al., 2016) was only 1.01
% (88.9 → 89.8). Injecting entity information to
LUKE resulted in 0.21 % improvement (94.8 →
95.0). However, since our baseline score is much
lower, it was reasonable to expect a higher increase
(RoBERTa → LUKE & GENRE: 8.86 % for single
text spans). Our analysis revealed that the irrelevant
entity information interfered with the model’s deci-
sion, which is why the knowledge-infused models
underperformed the baseline model (Q2).

There is still a gap in TAT-QA’s tabular data
where GENRE did not perform well, requiring
further study involving entity-linking models spe-
cialized in tabular data. Solving the problem of
unrelated entity information interfering with the
model’s prediction is also another challenge.

7 Conclusion

We investigated the effect of external knowledge
infusion on a hybrid tabular/textual QA model in
the financial domain. The results indicated an im-
provement, especially to the textual part of the data.
Our attention-weight analysis shows the model’s
ability to utilize the injected knowledge and reveals
the challenges involving the hybrid structure of the
data. As a result, this study has paved the way for
future research to incorporate entity-linking models
specialized in tabular data and find a solution that
enables the model to integrate tabular and textual
symbolic knowledge more efficiently.
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