
DADC 2022

The First Workshop on Dynamic Adversarial Data Collection
(DADC)

Proceedings of the Workshop

July 14, 2022

The DADC organizers gratefully acknowledge the support from the following
sponsors.

Platinum

Gold

ii

©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-94-0

iii

Preface

This volume contains papers from the First Workshop on Dynamic Adversarial Data Collection (DADC),
held at NAACL 2022.
Dynamic Adversarial Data Collection (DADC) has been gaining traction in the community as a promi-
sing approach to improving data collection practices, model evaluation and performance. DADC allows
us to collect human-written data dynamically with models in the loop. Humans can be tasked with fin-
ding adversarial examples that fool current state-of-the-art models (SOTA), for example, or they can
cooperate with models to find interesting examples. This offers two benefits: it allows us to gauge how
good contemporary SOTA methods really are; and it yields data that may be used to train even stronger
models by specifically targeting their current weaknesses.
The first workshop on DADC and corresponding shared task focus on three currently under-explored
themes: i) understanding how humans can be incentivized to creatively identify and target model wea-
knesses to increase their chances of fooling the model; ii) how humans and machines can cooperate to
produce the most useful data; and iii) how the interaction between humans and machines can further
drive performance improvements, both from the perspectives of traditional evaluation metrics as well as
those of robustness and fairness.

iv

Organizing Committee

General Chairs

Max Bartolo, University College London
Hannah Rose Kirk, University of Oxford
Pedro Rodriguez, FAIR Labs, Seattle
Katerina Margatina, University of Sheffield
Tristan Thrush, Hugging Face
Robin Jia, University of Southern California

Advisory Committee

Pontus Stenetorp, University College London
Adina Williams, FAIR, NYC
Douwe Kiela, Hugging Face

v

Program Committee

Program Committee

Giorgos Vernikos, EPFL & HEIG-VD
John P. Lalor, University of Notre Dame
Maharshi Gor, University of Maryland, College Park
Pasquale Minervini, University College London
Paul Rottger, University of Oxford
Shi Feng, University of Maryland, College Park
Unso Eun Seo Jo, Stanford University & HuggingFace

Invited Speakers

Anna Rogers, University of Copenhagen
Sam Bowman, New York University
Jordan Boyd-Graber, University of Maryland
Lora Aroyo, Google
Tongshuang Wu, Carnegie Mellon University

vi

Keynote Talk: What kinds of questions have we been asking?
A taxonomy for QA/RC benchmarks

Anna Rogers
University of Copenhagen

Abstract: This talk provides an overview of the current landscape of resources for Question Answering
and Reading comprehension, highlighting the current lacunae for future work. I will also present a new
taxonomy of “skills” targeted by QA/RC datasets and discuss various ways in which questions may be
unanswerable.

Bio: Anna Rogers is an Assistant Professor in the Center for Social Data Science at the University of
Copenhagen. She is also a visiting researcher with the RIKEN Center for Computational Science. An-
na’s main research area is Natural Language Processing, in particular model analysis and evaluation of
natural language understanding systems.

vii

Keynote Talk: Why Adversarially-Collected Test Sets Don’t
Work as Benchmarks

Sam Bowman
New York University

Abstract: Dynamic and/or adversarial data collection can be quite useful as a way of collecting training
data for machine-learning models, identifying the conditions under which these models fail, and con-
ducting online head-to-head comparisons between models. However, it is essentially impossible to use
these practices to build usable static benchmark datasets for use in evaluating or comparing future new
models. I defend this point using a mix of conceptual and empirical points, focusing on the claims (i) that
adversarial data collection can skew the distribution of phenomena such as to make it unrepresentative
of the intended task, and (ii) that adversarial data collection can arbitrarily shift the rankings of models
on its resulting test sets to disfavor systems that are qualitatively similar to the current state of the art.

Bio: Sam Bowman is an Assistant Professor at New York University and a Visiting Researcher (Sabbati-
cal) at Anthropic. His research interests include the study of artificial neural network models for natural
language understanding, with a focus on building high-quality training and evaluation data, applying the-
se models to scientific questions in syntax and semantics, and contributing to work on language model
alignment and control.

viii

Keynote Talk: Incentives for Experts to Create Adversarial
QA and Fact-Checking Examples

Jordan Boyd-Graber
University of Maryland

Abstract: I’ll discuss two examples of our work putting experienced writers in front of a retrieval-driven
adversarial authoring system: question writing and fact-checking. For question answering, we develop
a retrieval-based adversarial authoring platform and create incentives to get people to use our system
in the first place, write interesting questions humans can answer, and challenge a QA system. While
the best humans lose to computer QA systems on normal questions, computers struggle to answer our
adversarial questions. We then turn to fact checking, creating a new game (Fool Me Twice) to solicit
difficult-to-verify claims—that can be either true or false—and to test how difficult the claims are both
for humans and computers. We argue that the focus on retrieval is important for knowledge-based ad-
versarial examples because it highlights diverse information, prevents frustration in authors, and takes
advantage of users’ expertise.

Bio: Jordan Boyd-Graber is an Associate Professor in the University of Maryland Computer Scien-
ce Department (tenure home), Institute of Advanced Computer Studies, iSchool, and Language Science
Center. Previously, he was an Assistant Professor at Colorado’s Department of Computer Science (tenure
granted in 2017). Jordan’s research focuses on making machine learning more useful, more interpretable,
and able to learn and interact from humans.

ix

Keynote Talk: Data Excellence: Better Data for Better AI
Lora Aroyo

Google

Abstract: The efficacy of machine learning (ML) models depends on both algorithms and data. Training
data defines what we want our models to learn, and testing data provides the means by which their em-
pirical progress is measured. Benchmark datasets define the entire world within which models exist and
operate, yet research continues to focus on critiquing and improving the algorithmic aspect of the models
rather than critiquing and improving the data with which our models operate. If “data is the new oil,”
we are still missing work on the refineries by which the data itself could be optimized for more effective
use. In this talk, I will discuss data excellence and lessons learned from software engineering to achieve
the scare and rigor in assessing data quality.

Bio: Lora Aroyo is Research Scientist at Google Research, NYC, where she works on research for Data
Excellence by specifically focussing on metrics and strategies to measure quality of human-labeled data
in a reliable and transparent way. Lora is an active member of the Human Computation, User Modeling
and Semantic Web communities. She is president of the User Modeling community UM Inc, which
serves as a steering committee for the ACM Conference Series “User Modeling, Adaptation and Perso-
nalization” (UMAP) sponsored by SIGCHI and SIGWEB. She is also a member of the ACM SIGCHI
conferences board. Prior to joining Google, Lora was a computer science professor at the VU University
Amsterdam.

x

Keynote Talk: Model-in-the-loop Data Collection: What
Roles does the Model Play?

Tongshuang Wu
Carnegie Mellon University

Abstract: Assistive models have been shown useful for supporting humans in creating challenging da-
tasets, but how exactly do they help? In this talk, I will discuss different roles of assistive models in
counterfactual data collection (i.e., perturbing existing text inputs to gain insight into task model decision
boundaries), and the characteristics associated with these roles. I will use three examples (CheckList,
Polyjuice, Tailor) to demonstrate how our objectives shift when we perturb texts for evaluation, explana-
tion, and improvement, and how that change the corresponding assistive models from enhancing human
goals (requiring model controllability) to competing with human bias (requiring careful data reranking).
I will conclude by exploring additional roles that these models can play to become more effective.

Bio: Sherry Tongshuang Wu is an Assistant Professor at the Human Computer Interaction Institute at
Carnegie Mellon University (CMU HCII), holding a courtesy appointment at the Language Technolgoy
Institute (CMU LTI). Sherry’s research lies at the intersection of Human-Computer Interaction (HCI) and
Natural Language Processing (NLP). She aims to understand and support people coping with imperfect
AI models, both when the model is under active development, and after it is deployed for end users.

xi

Table of Contents

Resilience of Named Entity Recognition Models under Adversarial Attack
Sudeshna Das and Jiaul Paik. .1

GreaseVision: Rewriting the Rules of the Interface
Siddhartha Datta, Konrad Kollnig and Nigel Shadbolt . 7

Posthoc Verification and the Fallibility of the Ground Truth
Yifan Ding, Nicholas Botzer and Tim Weninger . 23

Overconfidence in the Face of Ambiguity with Adversarial Data
Margaret Li and Julian Michael . 30

longhorns at DADC 2022: How many linguists does it take to fool a Question Answering model? A
systematic approach to adversarial attacks.

Venelin Kovatchev, Trina Chatterjee, Venkata S Govindarajan, Jifan Chen, Eunsol Choi, Gabriella
Chronis, Anubrata Das, Katrin Erk, Matthew Lease, Junyi Jessy Li, Yating Wu and Kyle Mahowald 41

Collecting high-quality adversarial data for machine reading comprehension tasks with humans and
models in the loop

Damian Y. Romero Diaz, Magdalena Anioł and John Culnan . 53

Generalized Quantifiers as a Source of Error in Multilingual NLU Benchmarks
Ruixiang Cui, Daniel Hershcovich and Anders Søgaard . 61

Adversarially Constructed Evaluation Sets Are More Challenging, but May Not Be Fair
Jason Phang, Angelica Chen, William Huang and Samuel R. Bowman . 62

xii

Program

Thursday, July 14, 2022

09:00 - 09:10 Opening Remarks

09:10 - 09:25 Collaborative Progress: ML Commons Introduction

09:25 - 10:00 Invited Talk 1: Anna Rogers

10:00 - 10:35 Invited Talk 2: Jordan Boyd-Graber

10:35 - 10:50 Break

10:50 - 11:10 Best Paper Talk:

Overconfidence in the Face of Ambiguity with Adversarial Data
Margaret Li and Julian Michael

11:10 - 11:45 Invited Talk 3: Sam Bowman

11:45 - 12:20 Invited Talk 4: Lora Aroyo

12:20 - 13:20 Lunch

13:20 - 13:55 Invited Talk 5: Sherry Tongshuang Wu

13:55 - 14:55 Panel: The Future of Data Collection

14:55 - 15:10 Break

15:10 - 15:20 Introduction to the DADC Shared Task: Max Bartolo

15:20 - 15:40 Shared Task Winners’ Presentations

15:40 - 16:55 Poster Session

xiii

Thursday, July 14, 2022 (continued)

Resilience of Named Entity Recognition Models under Adversarial Attack
Sudeshna Das and Jiaul Paik

GreaseVision: Rewriting the Rules of the Interface
Siddhartha Datta, Konrad Kollnig and Nigel Shadbolt

Posthoc Verification and the Fallibility of the Ground Truth
Yifan Ding, Nicholas Botzer and Tim Weninger

Overconfidence in the Face of Ambiguity with Adversarial Data
Margaret Li and Julian Michael

longhorns at DADC 2022: How many linguists does it take to fool a Question
Answering model? A systematic approach to adversarial attacks.
Venelin Kovatchev, Trina Chatterjee, Venkata S Govindarajan, Jifan Chen, Eun-
sol Choi, Gabriella Chronis, Anubrata Das, Katrin Erk, Matthew Lease, Junyi
Jessy Li, Yating Wu and Kyle Mahowald

Collecting high-quality adversarial data for machine reading comprehension
tasks with humans and models in the loop
Damian Y. Romero Diaz, Magdalena Anioł and John Culnan

Generalized Quantifiers as a Source of Error in Multilingual NLU Benchmarks
Ruixiang Cui, Daniel Hershcovich and Anders Søgaard

Adversarially Constructed Evaluation Sets Are More Challenging, but May Not
Be Fair
Jason Phang, Angelica Chen, William Huang and Samuel R. Bowman

16:55 - 17:00 Closing Session

xiv

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 1 - 6
July 14, 2022 ©2022 Association for Computational Linguistics

Resilience of Named Entity Recognition Models Under Adversarial Attack

Sudeshna Das
Indian Institute of Technology

Kharagpur
sudeshna.das@iitkgp.ac.in

Jiaul H Paik
Indian Institute of Technology

Kharagpur
jiaul@cet.iitkgp.ac.in

Abstract
Named entity recognition (NER) is a popu-
lar language processing task with wide appli-
cations. Progress in NER has been notewor-
thy, as evidenced by the F1 scores obtained
on standard datasets. In practice, however, the
end-user uses an NER model on their dataset
out-of-the-box, on text that may not be pris-
tine. In this paper we present four model-
agnostic adversarial attacks to gauge the re-
silience of NER models in such scenarios.
Our experiments on four state-of-the-art NER
methods with five English datasets suggest that
the NER models are over-reliant on case infor-
mation and do not utilise contextual informa-
tion well. As such, they are highly susceptible
to adversarial attacks based on these features.

1 Introduction

Named entity recognition (NER) is a popular lan-
guage processing task that involves identifying
and classifying named entities in text (Mayhew
et al., 2020). Progress in NER has been rapid
and noteworthy, especially in the current age of
deep learning (Li et al., 2020). The general im-
petus in deep learning-based NER has been to de-
velop models that incorporate context better (Ak-
bik et al., 2018; Devlin et al., 2019; Manning et al.,
2014) and are resilient to noise such as inconsis-
tencies in case information (Mayhew et al., 2019;
Bodapati et al., 2019; Mayhew et al., 2020). There
has, however, been modest focus on determining
the extent to which state-of-the-art NER models
succeed in doing so. Identifying the weaknesses of
NER models can help drive focused work to ame-
liorate them and move NER beyond marginal im-
provements in F1 scores (Stanislawek et al., 2019).

Adversarial attacks designed for NLP mod-
els largely focus on classification tasks (Wal-
lace et al., 2019; Ren et al., 2019; Jia et al.,
2019; Wallace et al., 2019; Papernot et al., 2016).
Many existing studies work with vector represen-
tations (Ebrahimi et al., 2018; Zhao et al., 2018),

which are not intuitively interpretable by humans.
Such methods require white-box access to the
models (Ren et al., 2019). The additional require-
ment of human intervention to adjudge the quality
of adversarial samples generated may also be in-
volved (Alzantot et al., 2018).

Adversarial NER has broadly seen two types of
approaches: (a) adversarial training, and (b) ad-
versarial evaluation. Adversarial training of NER
models involves introducing small perturbations in
the training data to make models robust (Bekoulis
et al., 2018). Such perturbations are introduced
in the text representation level (Wang et al., 2020;
Bai et al., 2020; Huang et al., 2022). The adversar-
ial evaluation of NER models, on the other hand,
involves benchmarking the models on syntheti-
cally generated data (Lin et al., 2021; Simoncini
and Spanakis, 2021). We follow the latter line of
investigation.

We present four model-agnostic adversarial at-
tacks targeted at NER models. Our task-specific
approach allows us to generate natural language
adversaries that work with pre-trained models and
are easily interpretable by humans. In principle,
our work is similar to the label-preserving substi-
tutions explored by Ren et al. (2019) and the word-
substitution methods explored by Alzantot et al.
(2018), although they do not evaluate their meth-
ods on NER. Generating adversarial data for eval-
uating NER models is explored by Simoncini and
Spanakis (2021) using BERT to replace and/or add
non-named entity tokens to text. Lin et al. (2021)
also use pre-trained BERT to generate context-
level adversarial attacks to evaluate NER mod-
els. In contrast to their work, we use simple rule-
based methods for generating adversarial data.
Our method has the advantage of not requiring re-
training or fine-tuning of pre-trained models.

The datasets and models we use are all openly
available, aiding reproducibility.1 Further, our ex-

1https://github.com/das-sudeshna/adversarial-ner

1

Table 1: Data description: frequency of named entities.

periments do not require white-box access to the
models.

2 Data

We use five openly available general do-
main datasets that contain the enamex
classes (LOCATION, PERSON, & ORGANI-
ZATION) (Nadeau and Sekine, 2007), for this
study.

CoNLL-2003 The CoNLL-2003 (CoNLL)
dataset consists of news articles from the Reuters
Corpus (Tjong Kim Sang and De Meulder, 2003).
In keeping with the standard evaluation schemes,
we report results only on the test split of the
dataset.

WikiGold The WikiGold dataset (WIKI) com-
prises of manually annotated English Wikipedia
articles (Balasuriya et al., 2009).

FIRE NER 2013 The English dataset (FIRE)
from the NER for Indian Languages task at FIRE
2013 comprises of text crawled from Indian web-
sites as well as Wikipedia articles.

NIST IE-ER 1999 IEER refers to the gold
standard NEWSWIRE development test data for
the NIST 1999 IE-ER Evaluation available with
NLTK (Steven Bird and Klein, 2009).

GMB 2.2 The Groningen Meaning Bank 2.2
dataset comprises of public domain texts that in-
clude news articles, stories, jokes, and transcripts.
NLP tools are used to provide a preliminary anno-
tation which is then updated by a combination of
human experts, NLP tools, and crowd-sourcing to
yield a silver-standard corpus (Bos et al., 2017).

3 Methods

We use four named entity recognizers for our ex-
periments, all of which are open-source. Of these,
spaCy is the current state-of-the-art in terms of
document processing speed (Choi et al., 2015) and
Flair is near the current state-of-the-art.2

2The F1 score of the current state-of-the-art model is
0.935. (Flair’s F1 score is 0.931.) Since a pre-trained model

Flair NER The Flair named entity recognizer
is based on neural character embeddings. It uses
contextual neural string embeddings that are ob-
tained by pre-training on large, unlabelled cor-
pora. Every sentence is represented in the form
of string embeddings which are then stacked with
pre-computed uncased GloVe embeddings, before
being passed through a BiLSTM-CRF architecture
that generates labels for each word (Akbik et al.,
2018).

spaCy NER spaCy’s named entity recognizer
employs a transition-based entity recognition
methodology where state changes are triggered
by actions. It uses trigram CNNs with residual
connections that transform context-independent
vectors into context-sensitive vectors (Honnibal,
2016).

CoreNLP NER CoreNLP NER (Manning et al.,
2014) is based on linear chain Conditional Ran-
dom Field (CRF) sequence models of arbitrary or-
der (Finkel et al., 2005). For our experiments, we
use the caseless model that ignores capitalization
as well as the Truecase annotator that attempts to
rectify incorrect casing, in addition to the default
model.

DeepPavlov NER DeepPavlov’s named entity
recognition model uses the English cased model
of BERT with 12 layers, 768 hidden nodes, 12 at-
tention heads, and 110M parameters (Devlin et al.,
2019). The first sub-word representation of each
word is passed through a dense layer to generate
labels (Burtsev et al., 2018).

Figure 1: Dataset variants. Class* denotes named en-
tities that should desirably be misclassified from their
context.

4 Adversarial Attacks

In this section we describe the design of two broad
types of adversarial attacks on NER models.

is not publicly available, we choose not to include it in our
experiments. We strongly believe that this does not affect the
conclusions of our work.

2

4.1 Case-based Adversarial Attacks

Case is one of the strongest indicators of named
entities in English (Mayhew et al., 2020) and it is
well known that case affects the performance of
NER models (Mayhew et al., 2019; Bodapati et al.,
2019). We formulate two adversarial attacks that
emulate data where (i) case information may be
unavailable, such as informal texts, and (ii) case
information is unreliable, such as text extracted
from PDF or OCR-ed documents.

4.1.1 Case Ablation
In case ablation, we drop the case information
while keeping the rest of the text intact. The case-
ablated named entities attempt to fool the NER
models into misclassifying them as non-entities.
This allows us to quantify what percentage of the
correctly identified named entities rely completely
on case information.

4.1.2 Case Aberration
In this setup, we randomly capitalise N percent
of the tokens in each dataset, where N is the per-
centage of actual named entity tokens in the corre-
sponding original text. The randomly capitalised
tokens attempt to fool the model into marking
them as named entities. We choose N rather than
an arbitrary value in order to maintain the distri-
bution of capitalised and lowercase tokens in the
datasets.

4.2 Context-based Adversarial Attacks

The surrounding text of a named entity is arguably
the most useful feature in identifying named enti-
ties. All the NER models we evaluate attempt to
capture context to leverage this information. We
formulate two adversarial attacks that attempt to
determine how well such information is captured
by these models.

4.2.1 Context Perturbation
We create local perturbations for named entities.
That is, we change the immediately surrounding
text of the named entities while retaining syntac-
tic structure and a semblance of semantics. To
achieve this, we replace named entities of each
class by named entities of the other two classes,
with an equal probability. The local context of
a named entity attempts to fool the NER model
into classifying it incorrectly. This attack is sim-
ilar in nature to the data augmentation procedure
used by Lin et al. (2021). However, they restrict

named entity substitutions within the same entity
class. Since we carry out inter-class entity sub-
stitutions, we posit that our method is better able
to detect when NER models rely on memorising
named entity tokens.

4.2.2 Context Alteration
We alter the context of named entities on a global
scale. To achieve this, we randomly select named
entities with equal probability and place them in
random locations in the text. In almost all cases,
the text becomes grammatically incorrect, as is il-
lustrated in Table 1. Thus, neither semantics nor
syntactic rules are maintained, effectively altering
the global contextual frame of named entities. In
this case, it is desirable for models to misclassify
named entities. That is, we consider a model to
be better if it is susceptible to this attack. This is
based on our hypothesis that a model that captures
context better should perform worse when the con-
text is meaningless.

5 Evaluation

We follow the CoNLL-2003 Shared Task guide-
lines to report the F1 scores (Tjong Kim Sang
and De Meulder, 2003). Compatible classes
are clubbed with the closest enamex class (such
as, GPE (Geo-political entity) is clubbed with
LOCATION for spaCy, BERT, and the GMB
dataset). The class labels present in different
datasets/produced by different models do not al-
ways have a close one-to-one correspondence to
the class labels in other datasets/produced by other
models. Thus, non-enamex entities are consid-
ered to be non-entities to provide a fair compar-
ison across datasets and models. NER models and
datasets also differ in their tagging schemes. Since
it is not possible to map IO tags to IOB or IOBES,
and IOB tags to IOBES (Cho et al., 2013), we map
all tags into the IO scheme. The mapping of com-
patible entity classes and tagging schemes causes
our evaluation results to differ from the officially
reported scores of these NER models.

Table 2: F1 scores on original datasets.

3

6 Results and Analysis

Table 2 shows the F1 scores of the models on
the original dataset. This gives us the benchmark
against which we compare the performance for the
different data variants.

Table 3: F1 scores on case ablated datasets. High F1
score and low percentage drops are desirable.

Table 4: F1 scores on case aberrated datasets. High F1
score and low percentage drops are desirable.

6.1 Case ablation

We observe significantly large performance drops
for every model with respect to model perfor-
mance on the original datasets. This is unsurpris-
ing, as case information is an important indicator
of named entities.

If we consider the CoreNLP-c scores as the up-
per bound (since this model is trained on caseless
data and hence, reflects the ability of NER mod-
els to work on caseless data), we still notice large
drops in F1 scores for the other models. This re-
flects the tendency of NER models to over-rely on
case information. Among the cased models, we
find BERT to be the better performer with Flair
trailing as a close competitor. This is an interesting

finding as it suggests that cased BERT is more re-
silient to case-based adversarial attacks than Flair,
which uses uncased GloVe embeddings.

6.2 Case aberration

We observe large drops in performance for the
case aberration attack. The performance for
CoreNLP-t is worse than that of CoreNLP-c,
which suggests that truecasing is not as effective as
caseless training. Among the case-sensitive mod-
els, we find Flair outperforming other models. The
performance drop for case aberration is slightly
less than that for case ablation.

Table 5: F1 scores on context perturbed datasets. High
F1 score and low percentage drops are desirable.

6.3 Context perturbation

Despite including mechanisms to incorporate con-
textual information, NER models show large per-
formance drops under context perturbation at-
tacks. Since an NER model is highly likely to have
come across “London" as a LOCATION and “Al-
ice" as a PERSON during training, it predicts them
as such, ignoring the local context in which they
appear. Despite large performance drops in gen-
eral, Flair outperforms other models for all five
datasets. This suggests that Flair captures local
context better, likely due to the use of character
embeddings.

Table 6: F1 scores on context altered datasets. High
percentage drops are desirable.

4

6.4 Context alteration

We note here that unlike the previous experiments,
it is desirable to have higher percentage drops in
performance for the context alteration attacks.3

All the models show drops in performance. This
hints at NER models having a tendency to learn
the names themselves during training, rather than
relying on the context in which the names ap-
pear. The magnitude of drops in performance is
generally less than that observed for context per-
turbation, which suggests that NER models cap-
ture the local context of named entities better than
their global context. Flair shows the largest per-
formance drops, closely trailed by BERT.

7 Discussion

The adversarial evaluation of NLP models rely
either on human-generated adversaries (Kaushik
et al., 2019) or automated adversary generation
with human-in-the-loop (Alzantot et al., 2018).
However, it is possible to do away with human in-
tervention for generating adversarial samples for
the task of NER, as we demonstrate. Further, un-
like existing work, our approach for adversarial
evaluation does not require any re-training or fine-
tuning of models for adversarial data creation.

The generalizability of NER models can also be
evaluated with the proposed approaches. In par-
ticular, context perturbation can be used as an al-
ternative to studying the effect of named entities
that have not been seen during training (Augen-
stein et al., 2017) with the same label.

8 Conclusions

In this paper, we present an adversarial evaluation
of four popular named-entity recognizers on five
English datasets. The four model-agnostic adver-
sarial attacks we present do not require white-box
access to pre-trained NER models. Our experi-
ments show that the popular NER models are over-
reliant on the case information and under-utilise
the contextual information. Since NER is a pre-
requisite for a large number of NLP tasks, further
work for improvement in these directions is war-
ranted.

3Lower F1 scores are also desirable. However, low F1
scores can also be caused due to a model being poor gener-
ally and not specifically due to the inability to capture global
context. Thus, we cannot draw concrete conclusions from the
absolute F1 scores.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 2890–2896.

Isabelle Augenstein, Leon Derczynski, and Kalina
Bontcheva. 2017. Generalisation in named entity
recognition: A quantitative analysis. Computer
Speech & Language, 44:61–83.

Yuxuan Bai, Yu Wang, Bin Xia, Yun Li, and Ziye Zhu.
2020. Adversarial named entity recognition with
pos label embedding. In 2020 International Joint
Conference on Neural Networks, pages 1–8. IEEE.

Dominic Balasuriya, Nicky Ringland, Joel Nothman,
Tara Murphy, and James R Curran. 2009. Named
entity recognition in wikipedia. In Proceedings
of the Workshop on The People’s Web Meets NLP,
pages 10–18.

Giannis Bekoulis, Johannes Deleu, Thomas Demeester,
and Chris Develder. 2018. Adversarial training for
multi-context joint entity and relation extraction. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 2830–
2836.

Sravan Bodapati, Hyokun Yun, and Yaser Al-Onaizan.
2019. Robustness to capitalization errors in named
entity recognition. In Proceedings of the 5th Work-
shop on Noisy User-generated Text, pages 237–242.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J
Venhuizen, and Johannes Bjerva. 2017. The gronin-
gen meaning bank. In Handbook of linguistic anno-
tation, pages 463–496.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yurii Kuratov, Denis Kuznetsov, et al.
2018. Deeppavlov: Open-source library for dia-
logue systems. In Proceedings of ACL 2018, pages
122–127.

Han-Cheol Cho et al. 2013. Named entity recognition
with multiple segment representations. Information
Processing & Management, 49(4):954–965.

Jinho D Choi, Joel Tetreault, and Amanda Stent. 2015.
It depends: Dependency parser comparison using a
web-based evaluation tool. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pages
387–396.

5

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4171–4186.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. Hotflip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics, pages 31–36.

Jenny Rose Finkel, Trond Grenager, and Christopher D
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 363–370.

Matthew Honnibal. 2016. spacy.

Peixin Huang, Xiang Zhao, Minghao Hu, Yang Fang,
Xinyi Li, and Weidong Xiao. 2022. Extract-select:
A span selection framework for nested named entity
recognition with generative adversarial training. In
Findings of the Association for Computational Lin-
guistics, pages 85–96.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to adversar-
ial word substitutions. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2019. Learning the difference that makes a dif-
ference with counterfactually-augmented data. In
International Conference on Learning Representa-
tions.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering.

Bill Yuchen Lin, Wenyang Gao, Jun Yan, Ryan
Moreno, and Xiang Ren. 2021. Rockner: A simple
method to create adversarial examples for evaluat-
ing the robustness of named entity recognition mod-
els. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
3728–3737.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational lin-
guistics, pages 55–60.

Stephen Mayhew, Gupta Nitish, and Dan Roth. 2020.
Robust named entity recognition with truecasing
pretraining. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 34, pages 8480–
8487.

Stephen Mayhew, Tatiana Tsygankova, and Dan Roth.
2019. ner and pos when nothing is capitalized. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing, pages 6257–6262.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

Nicolas Papernot, Patrick McDaniel, Ananthram
Swami, and Richard Harang. 2016. Crafting ad-
versarial input sequences for recurrent neural net-
works. In IEEE Military Communications Confer-
ence, pages 49–54. IEEE.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1085–1097.

Walter Simoncini and Gerasimos Spanakis. 2021. Se-
qattack: On adversarial attacks for named entity
recognition. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 308–318.

Tomasz Stanislawek, Anna Wróblewska, Alicja Wój-
cicka, Daniel Ziembicki, and Przemyslaw Biecek.
2019. Named entity recognition - is there a glass
ceiling? In Proceedings of the 23rd Conference on
Computational Natural Language Learning, pages
624–633.

Edward Loper Steven Bird and Ewan Klein. 2009. Nat-
ural Language Processing with Python.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
language-independent named entity recognition. In
Proceedings of the 7th conference on Natural lan-
guage learning at HLT-NAACL 2003, pages 142–
147.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
2153–2162.

Jiuniu Wang, Wenjia Xu, Xingyu Fu, Guangluan Xu,
and Yirong Wu. 2020. Astral: adversarial trained
lstm-cnn for named entity recognition. Knowledge-
Based Systems, 197:105842.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In 6th
International Conference on Learning Representa-
tions.

6

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 7 - 22
July 14, 2022 ©2022 Association for Computational Linguistics

GreaseVision: Rewriting the Rules of the Interface

Siddhartha Datta
University of Oxford

siddhartha.datta@cs.ox.ac.uk

Konrad Kollnig
University of Oxford

konrad.kollnig@cs.ox.ac.uk

Nigel Shadbolt
University of Oxford

nigel.shadbolt@cs.ox.ac.uk

Abstract

Digital harms can manifest across any inter-
face. Key problems in addressing these harms
include the high individuality of harms and the
fast-changing nature of digital systems. We put
forth GreaseVision, a collaborative human-in-
the-loop learning framework that enables end-
users to analyze their screenomes to annotate
harms as well as render overlay interventions.
We evaluate HITL intervention development
with a set of completed tasks in a cognitive
walkthrough, and test scalability with one-shot
element removal and fine-tuning hate speech
classification models. The contribution of the
framework and tool allow individual end-users
to study their usage history and create person-
alized interventions. Our contribution also en-
ables researchers to study the distribution of
multi-modal harms and interventions at scale.

1 Introduction

The design of good user interfaces can be challeng-
ing. In a fast changing world, however, with some-
times highly individual needs, traditional one-fits-
all software development faces difficulty in keeping
up with the pace of change and the breadth of user
requirements. At the same time, the digital world
is rife with a range of harms, from dark patterns
to hate speech to violence. This paper takes a step
back to improve the user experience in the digital
world. To achieve this, we put forward a new de-
sign philosophy for the development of software
interfaces that serves its users: GreaseVision.
Contributions: Our work aims to contribute a
novel interface modification framework, which we
call GreaseVision. At a structural-level, our frame-
work enables end-users to develop personalized in-
terface modifications, either individually or collab-
oratively. This is supported by the use of screenome
visualization, human-in-the-loop learning, and an
overlay/hooks-enabled low-code development plat-
form. Within the defined scopes, we enable the

aggregation of distributionally-wide end-user digi-
tal harms (self-reflection for end-users, or analyz-
ing the harms dataset of text, images and elements
for researchers), to further enable the modification
of user interfaces across a wide range of software
systems, supported by the usage of visual overlays,
autonomously developed by users, and enhanced by
scalable machine learning techniques. We provide
complete and reproducible implementation details
to enable researchers to not only study harms and
interventions, but other interface modification use
cases as well.
Structure: We introduce the challenge of end-user
interface modification in Sections 1 and 2 to curb
digital harms. We share our proposed method –
GreaseVision – in Section 3. We evaluate our
method in Section 4, and share final thoughts and
conclusions in Section 5.

2 Related Works & Problem

We summarize key related work here; for detailed
related works, we refer the reader to Appendix:
Section 6.2. Our motivating problem is the high
individuality of digital harms across a distribu-
tion of users. The harms landscape is quickly
changing with ever-changing digital systems, rang-
ing from heavily-biased content (e.g. disinforma-
tion, hate speech), self-harm (e.g. eating disor-
ders, self-cutting, suicide), cyber crime (e.g. cyber-
bullying, harassment, promotion of and recruit-
ment for extreme causes (e.g. terrorist organiza-
tions), to demographic-specific exploitation (e.g.
child-inappropriate content, social engineering at-
tacks) (HM, 2019; Pater and Mynatt, 2017; Wang
et al., 2017; Honary et al., 2020; Pater et al., 2019).
Though interface modification frameworks exist,
the distribution of the interface modifications (in-
terventions) are constrained to the development
efforts of an intervention developer, the availabil-
ity of interventions are skewed towards desktop
browsers (much sparser on mobile), and the efforts

7

Figure 1: Walkthrough of using GreaseVision-modified interfaces.

(a) User authentication: Se-
cure gateway to the user’s
screenomes, personal devices,
and intervention development
suite.

(b) Interface & interventions
selection: Listings of all reg-
istered devices/emulators on
server, as well as interven-
tions contributed by the users
or community using the tool
in Figure 3.

(c) Interface access: Accessing a
Linux desktop from another (Linux)
desktop browser.

(d) Inter-
face access:
Accessing
an Android
emulator
from another
Android host
device.

are highly interface-specific (an app version update
breaks code-based modification; videos cannot be
perturbed in real-time). Moreover, low-code de-
velopment platforms, that enable end-users to use
visual tools to construct programs, are mostly avail-
able for software creation, but few options exist for
software modification.

Due to the non-uniform distribution of users, the
diverging distribution of harms would require a
wide distribution of interventions. We hypothesize
we can generate this matching distribution of inter-
ventions by enabling end-users to render person-
alized interventions by themselves (i.e. removing
intervention developers from the ecosystem). To
test this hypothesis, we attempt to bind the harms
landscape to the interventions landscape by devel-
oping a collaborative human-in-the-loop system
where end-users can inspect their browsing history
and generate corresponding interventions.

We pursue a visual overlay modifications ap-
proach, extending on the work of GreaseTermina-
tor (Datta et al., 2021). The framework renders
overlay graphics over an underlay screen based on
detected GUI elements, images or text (as opposed
to implementing program code changes natively),
hence changes the interface rather than the func-
tionality of the software. To provide end-users with
input for self-reflection (Cho et al., 2021; Lyngs
et al., 2020a) and source data for generating in-
terventions, users can be shown their screenome
(Reeves et al., 2020, 2021), a record of a user’s digi-
tal experiences represented as a sequence of screen
images that they view and interact with over time
To connect the input (screenome) and output (in-

tervention), Human-in-the-Loop (HITL) learning
can be used for users to annotate their screenomes
for harmful text, images or GUI elements, and
these annotations can be used to develop interven-
tions. Wu et al. (2021) offers a detailed review of
HITL. Specifically, the procedure to generate in-
terventions using visual overlays will require the
one-shot detection of masks (e.g. GUI elements)
and few-shot learning and/or model fine-tuning of
image/text classification models.
System requirements: Based on the problem
and our collaborative HITL interface modification
approach, we establish the following technical re-
quirement (Requirement 1) and systemic require-
ment (Requirement 2) for our framework:

1. (Req 1) A complete feedback loop between
user input (train-time) and interface re-render
(test-time).

2. (Req 2) Prospects for scalability across the
distribution of interface modifications (with
respect to both harms landscape and render-
ing landscape).

3 GreaseVision

3.1 System Architecture: Binding the Harms
Ecosystem to the Interventions Ecosystem

We define the GreaseVision architecture, with
which end-users (system administrators) interact
with, as follows (Figure 6(b)): (i) the user logs into
the GreaseVision system to access amongst a set of
personal emulators and interventions (the system
admin has provisioned a set of emulated devices,
hosted on a server through a set of virtual machines
or docker containers for each emulator/interface,

8

Figure 2: Hooks adapted in GreaseVision to occlude distracting elements, censor hate speech, and obscure child-
inappropriate content.

(a) Occlusion of recommended
items on Twitter (before left, af-
ter right)

(b) Occlusion of recommended
items on Instagram (before left, af-
ter right)

(c) Text censoring (YouTube left,
Reddit right)

(d) Content mod-
eration (Google
Images, Tik-
Tok, YouTube,
YouKu)

and handling streaming of the emulators, handling
pre-requisites for the emulators, handling data mi-
grations, etc); (ii) the user selects their desired in-
terventions and continues browsing on their inter-
faces; (iii) after a time period, the user accesses
their screenome and annotates interface elements,
graphics, or text that they would like to generate
interventions off of, which then re-populate the list
of interventions available to members in a network.

In addition to the contributions stated in Sec-
tion 1, GreaseVision is an improved visual overlay
modification approach with respect to interface-
agnosticity and ease of use. We discuss the specific
aspects of GreaseTerminator we adopt in Grease-
Vision (hooks and overlays), and the technical im-
provements upon GreaseTerminator in Appendix:
Section 6.1, specifically latency, device support,
and interface-agnosticity.

In our current implementation, the user accesses
a web application (compatible with both desktop
and mobile browsers). With their login creden-
tials, the database loads the corresponding map-
ping of the user’s virtual machines/containers that
are shown in the interface selection page. The
central server carries information on accessing a
set of emulated devices (devices loaded locally on
the central server in our setup). Each emulator is
rendered in docker containers or virtual machines
where input commands can be redirected. The
database also loads the corresponding mapping of
available interventions (generated by the user, or by
the network of users) in the interventions selection
page. The database also loads the screenomes (im-
ages of all timestamped, browsed interfaces) in the

screenome visualization page. Primary input com-
mands for both desktop and mobile are encoded,
including keystroke entry (hardware keyboard, on-
screen keyboard), mouse/touch input (scrolling,
swiping, pinching, etc); input is locked to the coor-
dinates of the displayed screen image on the web
app (to avoid stray/accidental input commands),
and the coordinates correspond to each virtual ma-
chine/container’s display coordinates. Screen im-
ages are captured at a configurable framerate (we
set it to 60FPS), and the images are stored under a
directory mapped to the user. Generated masks and
fine-tuned models are stored under an interventions
directory and their intervention/file access is also
locked by mapped users. Interventions are applied
sequentially upon a screen image to return a per-
turbed/new image, which then updates the screen
image shown on the client web app.

3.2 Low-code Development: Binding
Screenomes to Interface Modifications

We make use of the three hooks from GreaseTer-
minator (text, mask, and model hooks), and link
it with the screenome visualization tool. While in
GreaseTerminator the hooks ease the intervention
development process for intervention developers
with previous programming knowledge, we fur-
ther generalize the intervention development pro-
cess for intervention developers to the extent that
even an end-user can craft their own interventions
without developer support nor expert knowledge.
GreaseTerminator enables intervention generation
(via hooks) and interface re-rendering (via over-
lays). The added GreaseVision contribution of con-

9

Figure 3: Screenome visualization page: The page offers the end-user the ability to traverse through the sequence
of timestamped screen images which compose their screenome. They can use bounding boxes to highlight GUI
elements, images or text. They can label these elements with specific encodings, such as mask- or text-.

necting these components with HITL learning and
screenome visualization to replace developers is
what exemplifies end-user autonomy and scalabil-
ity in personalized interventions.

An intersecting data source that enables both
end-user self-reflection (Cho et al., 2021; Lyngs
et al., 2020a) and interface re-rendering via overlay
(Datta et al., 2021) is the screenome. Specifically,
we can orchestrate a loop that receives input from
users and generates outputs for users. Through
GreaseVision, end-users can browse through their
own screen history, and beyond self-analysis, they
can constructively build interface modifications to
tackle specific needs. Extending on the interface
rendering approach of overlays and hook-based
intervention development, a generalizable design
pattern for GreaseTerminator-based interventions
is observed, where current few-shot/fine-tuning
techniques can reasonably approach many digital
harms, given appropriate extensions to the end-
user development suite. In the current develop-
ment suite (Figure 3), an end-user can inspect their
screenomes across all GreaseVision-enabled inter-
faces (ranging from iOS, Android to desktops), and
make use of image segment highlighting techniques
to annotate interface patterns to detect (typically
UI elements or image/text) and subsequently inter-
vene against these interface patterns. Specifically,
the interface images being stored and mapped to a
user is shown in time-series sequence to the user.
The user can go through the sequence of images
to reflect on their browsing behavior. The current
implementation focuses on one-shot detection of
masks and fine-tuning of image and text classifica-

tion models. When the user identifies a GUI ele-
ment they do not wish to see across interfaces and
apps, they highlight the region of the image, and
annotate it as mask-<name-of-intervention>, and
the mask hook will store a mask of intervention
<name-of-intervention>, which will then populate
a list of available interventions with this option,
and the user can choose to activate it during a
browsing session. When a user identifies text (im-
ages) that they do not wish to see of similar vari-
ations, they can highlight the text (image) region,
and annotate it as text-<name-of-intervention>

(image-<name-of-intervention>). The text hook will
extract the text via OCR, and fine-tune a pretrained
text classification model specifically for this type
of text <name-of-intervention>. For images, the
highlighted region will be cropped as input to fine-
tune a pretrained image classification model. The
corresponding text (image) occlusion intervention
will censor similar text (images) during the user’s
browsing sessions if activated.

Extending on model few-shot training and fine-
tuning, we can scale the accuracy of the models,
not just through improvements to these training
methods, but also by improving the data collection
dynamics. More specifically, based on the spec-
trum of personalized and overlapping intervention
needs for a distribution of users, we can leverage
model-human and human-human collaboration to
scale the generation of mask and model interven-
tions. In the case of mask hooks, end-users who
encounter certain harmful GUI elements (perhaps
due to exposure to specific apps or features prior to
other users) can tag and share the mask intervention

10

with other users collaboratively.
To collaboratively fine-tune models, users tag

text based on a general intervention/category la-
bel, that is used to group text together to form a
mini-dataset to fine-tune the model. An example
of this would be a network of users highlighting
racist text they come across in their screenomes that
made them uncomfortable during their browsing
sessions, and tagging them as text-racist, which
aggregates more sentences to fine-tune a text classi-
fication model responsible for detecting/classifying
text as racist or not, and subsequently occluding the
text for the network of users during their live brows-
ing sessions. The current premise is that users in a
network know a ground-truth label of the category
of the specific text they wish to detect and occlude,
and the crowd-sourced text of each of N categories
will yield corresponding N fine-tuned models. Col-
laborative labelling scales the rate in which text of
a specific category can be acquired, reducing the
burden on a single user while also diversifying the
fine-tune training set, while also proliferating the
fine-tuned models across a network of users and
not wasting effort re-training already fine-tuned
models of other users (i.e. increasing scalability of
crafting and usage of interventions).

4 Evaluation

We evaluate the usability of (Req 1) the HITL com-
ponent (usability for a single user with respect to
inputs/outputs; or "does our system help gener-
ate interventions?"), and (Req 2) the collaborative
component (improvement to usability for a single
user when multiple users are involved; or "does our
system scale with user numbers?") with cognitive
walkthroughs and scalability tests respectively.

4.1 Cognitive Walkthrough

Qualitatively, we perform a cognitive walk-
through (John and Packer, 1995; Rieman et al.,
1995) of the user experience to simulate the cogni-
tive process and explicit actions taken by an end-
user during usage of GreaseVision to access inter-
faces and craft interventions. In our walkthrough,
we as researchers presume the role of an end-user.
We state the walkthrough step in bold, data per-
taining to the task in italics, and descriptive eval-
uation in normal font. To evaluate the process of
constructing an intervention using our proposed
HITL system, we inspect the completion of a set
of required tasks based on criteria from Parasura-

man et al.’s (Parasuraman et al., 2000) 4 types of
automation applications, which aim to measure the
role of automation in the harms self-reflection and
intervention self-development process. The four
required tasks to be completed are:

1. Information Acquisition: Could a user col-
lect new data points to be used in intervention
crafting?

2. Information Analysis: Could a user analyze in-
terface data to inform them of potential harms
and interventions?

3. Decision & Action Selection: Could a user
act upon the analyzed information about the
harms they are exposed to, and develop inter-
ventions?

4. Action Implementation: Could a user deploy
the intervention in future browsing sessions?

User logs in (Figure 1a): The user enters their
username and password. These credentials are
stored in a database mapped to a specific (set of)
virtual machine(s) that contain the interfaces the
user registered for access. This is a standard step
for any secured or personalized system, where a
user is informed they are accessing data and infor-
mation that is tailored for their own usage.

User selects active interface and interventions
(Figure 1b): The user is shown a set of available
interventions, be it contributed by themselves or
other users in a network. They select their target
interventions, and select an interface to access dur-
ing this session. Based on their own configurations
(e.g. GreaseVision set up locally on their own com-
puter, or specific virtual machines set up for the
required interfaces), users can view the set of inter-
faces that they can access and use to facilitate their
digital experiences. The interface is available 24/7,
retains all their personal data and storage, is record-
ing their screenome data for review, and accessible
via a web browser from any other device/platform.
They are less constrained by the hardware limi-
tations of their personal device, and just need to
ensure the server of the interfaces has sufficient
compute resources to host the interface and run the
interventions. The populated interventions are also
important to the user, as it is a marketplace and
ecosystem of personalized and shareable interven-
tions. Users can populate interventions that they
themselves can generate through the screenome vi-
sualization tool, or access interventions collabora-
tively trained and contributed by multiple members
in their network. The interventions are also modu-

11

Figure 4: Removal of GUI elements (YouTube sharing metrics/buttons) across multiple target interfaces and
operating systems.

(a) Element removal on emulated desktop (MacOS) (b) Element removal
on emulated Android

(c) Element removal on
emulated iOS

Mask Min. masks Android app iOS app Mobile browser Desktop browser
Stories bar
- Twitter 1 ✓ ✓ - -
- Linkedin 1 ✓ ✓ - -
- Instagram 1 ✓ ✓ - -
Metrics/Sharing bar
- Facebook 2 ✓ ✓ ✓ ✓

- Instagram 2 ✓ ✓ ✓ ✓

- Twitter 2 ✓ ✓ ✓ ✓

- YouTube 2 ✓ ✓ ✓ ✓

- TikTok 2 ✓ ✓ ✓ ✓

Recommended items
- Twitter 2 ✓ ✓ ✓ ✓

- Facebook 2 ✓ ✓ ✓ ✓

Table 1: ✓ if element removal is successful, ✗ if
element removal is unsuccessful, — if the element
not available on an interface.

0 20 40 60 80 100
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y
Baseline
1 user, 5 sents/day
5 users, 5 sents/day
1 user, 10 sents/day
5 users, 10 sents/day
= 10 user, 5 sents/day
10 user, 10 sents/day

Figure 5: Convergence of few-shot/fine-tuned mod-
els on sub-groups of hate speech

lar enough that users are not restricted to a specific
combination of interventions, and are applied se-
quentially onto the interface without mismatch in
latency between the overlay and underlying inter-
face. As the capabilities of generating interventions
(e.g. more hooks) and rendering interfaces (e.g.
interface augmentation) become extended, so do
their ability to personalize their digital experience,
and generate a distribution of digital experiences to
match a similarly wide distribution of users. The
autonomy to deploy interventions, with enhanced
optionality through community-contributed inter-
ventions, before usage of an interface satisfies Task
4.

The user accesses the interface and browses
(Figure 1c): The user begins usage of the interface
through the browser from their desired host device,
be it mobile or desktop. They enter input to the
system, which is streamed to the virtual machine(s),
and interventions render overlay graphics to make
any required interface modifications. After the
user has chosen their desired interventions, the user
will enjoy an improved digital experience through

the lack of exposure to certain digital elements,
such as undesired text or GUI elements. The altered
viewing experience satisfies both Task 1 and 4; not
only is raw screen data being collected, but the
screen is being altered by deployed interventions
in the wild. The user cannot be harmed by what
they previously chose not to see, and what they do
see but no longer wish to see in the future, they
can annotate to remove in future viewings in the
screenome visualization tool. It is a cyclical loop
where users can redesign and self-improve their
browsing experiences through the use of unilateral
or user-driven tools.

The user browses their screenome to gener-
ate interventions (Figure 3): After a browsing
period, the user may opt to browse and view their
personal screenome. They enter the screenome vi-
sualization page to view recorded intervals of their
browsing activity across all interfaces, and they
can choose to annotate certain regions (image or
text) to generate interventions to re-populate the in-
terventions available. The user is given autonomy
in selecting and determining what aspects of the

12

interface, be it the static app interface of dynamic
content provisioned, that they no longer wish to
see in the future. Enabling the user to view their
screenome across all used digital interfaces (ex-
tending to mobile and desktop) to self-reflect and
analyze browsing or content patterns satisfies Task
2. Though the screenome provides the user raw
historical data, it may require additional processing
(e.g. automated analysis, charts) to avoid informa-
tion overload. Rather than waiting for a feedback
loop for the app/platform developers or altruistic
intervention developers to craft broad-spectrum in-
terventions that may or may not fit their personal
needs, the end-user can enjoy a personalized loop
of crafting and deploying interventions, almost in-
stantly for certain interventions such as element
masks. The user can enter metadata pertaining to
each highlighted harm, and not only contribute to
their own experience improvement, but also con-
tribute to the improvement of others who may not
have encountered or annotated the harm yet. By de-
veloping interventions based on their analysis, not
only for themselves but potentially for other users,
they could successfully achieve Task 3. Though
previously-stated as out of scope, to further sup-
port Task 3, other potential intervention modalities
such as augmentation could also be contributed by
a community of professional intervention devel-
opers/researchers (who redirect efforts from indi-
vidual interventions towards enhancing low-code
development tools).

The four tasks, used to determine whether a
complete feedback loop between input collec-
tion/processing and interface rendering through
HITL by a single user, could all be successfully
completed, thus GreaseVision satisfies Require-
ment 1.

4.2 Scalability Testing

To evaluate the collaborative component, we mea-
sure the improvement to the user experience of a
single user through the efforts of multiple users.
We evaluate through scalability testing (Meerts and
Graham, 2010), a type of load testing that mea-
sures a system’s ability to scale with respect to the
number of users. We simulate the usage of the
system to evaluate the scalable generation of one-
shot graphics (mask) detection, and scalable fine-
tuning/few-shot training of (text) models. We do
not replicate the scalability analysis on real users:
the fine-tuning mechanism is still the same, and the

main variable (in common) is the sentences high-
lighted (and their assigned labels and metadata, as
well as the quality of the annotations), though error
is expectedly higher in the real-world as the data
may be sampled differently and of lower annota-
tion quality. The primary utility of collaboration to
an individual end-user is the scaled reduction of ef-
fort in intervention development. We evaluate this
in terms of variety of individualized interventions
(variations of masks), and the time saved in con-
structing a single robust intervention (time needed
to construct an accurate model intervention).

Breadth of interface-agnostic masks (Table
1): We investigate the ease to annotate graphically-
consistent GUI elements for few-shot detection.
We sample elements to occlude that can exist across
a variety of interfaces. We evaluate the occlusion
of the stories bar (pre-dominantly only found on
mobile devices, not desktop/browsers); some inter-
vention tools exist on Android (Happening, 2021;
MaaarZ, 2019; Kollnig et al., 2021; Datta et al.,
2021) and iOS (Friendly, 2022), though the tools
are app- (and version-) specific. We evaluate the
occlusion of like/share metrics; there are mainly
desktop browser intervention tools (Grosser, 2012,
2018, 2019; hidelikes, 2022), and one Android in-
tervention tool (Datta et al., 2021). We evaluate
the occlusion of recommendations; there are inter-
vention tools that remove varying extents of the
interface on browsers (such as the entire newsfeed)
(West, 2012; Unhook, 2022). Existing implemen-
tations and interest in such interventions indicate
some users have overlapping interests in tackling
the removal or occlusion of such GUI elements,
though the implementations may not exist across
all interface platforms, and may not be robust to
version changes. For each intervention, we evalu-
ate on a range of target (emulated) interfaces. We
aim for the real-time occlusion of the specific GUI
element, and evaluate on native apps (for Android
and iOS) and browsers (Android mobile browser,
and Linux desktop browser).

For each of the GUI element cases, we make use
of the screenome visualization tool to annotate and
tag the minimum number of masks of the specific
elements we wish to block across a set of apps.
There tend to be small variations in the design of
the element between browsers and mobile, hence
we tend to require at least 1 mask from each device
type; Android and iOS apps tend to have similar
enough GUI elements that a single mask can be

13

reused between them. We tabulate in Table 1 the
successful generation and real-time occlusion of
all evaluated and applicable GUI elements. We ap-
pend screenshots of the removal of recommended
items from the Twitter and Instagram apps on An-
droid (Figure 2(a,b)). We append screenshots of the
demetrification (occlusion of like/share buttons and
metrics) of YouTube across desktop browsers (Ma-
cOS) and mobile browsers (Android, iOS) (Figure
4).

Convergence of few-shot/fine-tune trained
text models (Figure 5): We investigate the ac-
curacy gains from fine-tuning pretrained text mod-
els as a function of user numbers and annotated
sentence contributions. Specifically, we evaluate
the text censoring of hate speech, where the pri-
mary form of mitigation is still community stan-
dard guidelines and platform moderation, with a
few end-user tooling available (Bodyguard, 2019;
Datta et al., 2021). The premise of this empirical
evaluation is that we have a group of simualated
users N who each contribute N inputs (sentences)
of a specific target class (hate speech, specifically
against women) per timestep. With respect to a
baseline, which is a pretrained model fine-tuned
with all available sentences against women from a
hate speech dataset, we wish to observe how the test
accuracy of a model fine-tuned with M ×N sen-
tences varies over time. Our source of hate speech
for evaluation is the Dynamically Generated Hate
Speech Dataset (Vidgen et al., 2021), which con-
tains sentences of non-hate and hate labels, and also
classifies hate-labelled data by the target victim of
the text (e.g. women, muslim, jewish, black, disabled).
As we expect the M users to be labelling a spe-
cific niche of hate speech to censor, we specify
the subset of hate speech of women (train set count:
1,652; test set count: 187). We fine-tune a publicly-
available, pre-trained RoBERTa model (Hugging-
Face, 2022; Liu et al., 2019), which was trained on
a large corpus of English data (Wikipedia (Wiki-
media), BookCorpus (Zhu et al., 2015)). For each
constant number of users M and constant sentence
sampling rate N , at each timestep t, M × N × t
sentences are acquired of class hate against target
women; there are a total of 1,652 train set sentences
under these constraints (i.e. the max number of
sentences that can be acquired before it hits the
baseline accuracy), and to balance the class dis-
tribution, we retain all 15,184 train set non-hate

sentences. We evaluate the test accuracy of the fine-

tuned model on all 187 test set women-targeted
hate speech. We also vary M and N to observe
sensitivity of these parameters to the convergence
towards baseline test accuracy.

The rate of convergence of a finetuned model
is quicker when the number of users and con-
tributed sentences per timestep both increase, ap-
proximately when we reach at least 1,000 sentences
for the women hate speech category. The difference
in convergence rates indicate that a collaborative
approach to training can scale interventions devel-
opment, as opposed to training text classification
models from scratch and each user annotating text
alone.

The empirical results for this section are stated
in Table 1 and Figure 5. The data and evaluations
from the scalability tests indicate that the ease of
mask generation and model fine-tuning, further cat-
alyzed by performance improvements from more
users, enable the scalable generation of interven-
tions and their associated harms, thus GreaseVision
satisfies Requirement 2.

5 Conclusion

To enable end-user autonomy over interface de-
sign, and the generation and proliferation of a dis-
tribution of harms and interventions to analyze and
reflect upon, we contribute the novel interface mod-
ification framework GreaseVision. End-users can
reflect and annotate with their digital browsing ex-
periences, and collaboratively craft interface inter-
ventions with our HITL and visual overlay mech-
anisms. With respect to Requirements 1 and 2,
we find that our GreaseVision framework allows
for scalable yet personalized end-user development
of interventions against element, image and text-
based digital harms. We hope GreaseVision will
enable researchers and end-users to study harms
and interventions, and other interface modification
use cases.

14

References
Samira Abnar, Mostafa Dehghani, Behnam Neyshabur,

and Hanie Sedghi. 2022. Exploring the limits of large
scale pre-training. In International Conference on
Learning Representations.

Yuvraj Agarwal and Malcolm Hall. 2013. ProtectMyPri-
vacy: Detecting and mitigating privacy leaks on iOS
devices using crowdsourcing. In Proceeding of the
11th Annual International Conference on Mobile
Systems, Applications, and Services - MobiSys ’13,
page 97, Taipei, Taiwan. ACM Press.

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7319–7328,
Online. Association for Computational Linguistics.

Ionut Andone, Konrad Błaszkiewicz, Mark Eibes,
Boris Trendafilov, Christian Montag, and Alexander
Markowetz. 2016. Menthal: A framework for mobile
data collection and analysis. In Proceedings of the
2016 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing: Adjunct, UbiComp
’16, page 624–629, New York, NY, USA. Association
for Computing Machinery.

Michael Backes, Sebastian Gerling, Christian Ham-
mer, Matteo Maffei, and Philipp von Styp-Rekowsky.
2014. AppGuard – Fine-Grained Policy Enforce-
ment for Untrusted Android Applications. In Joaquin
Garcia-Alfaro, Georgios Lioudakis, Nora Cuppens-
Boulahia, Simon Foley, and William M. Fitzgerald,
editors, Data Privacy Management and Autonomous
Spontaneous Security, volume 8247 of Lecture Notes
in Computer Science, pages 213–231. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Inc Bodyguard. 2019. Bodyguard.

Hyunsung Cho, DaEun Choi, Donghwi Kim, Wan Ju
Kang, Eun Kyoung Choe, and Sung-Ju Lee. 2021.
Reflect, not regret: Understanding regretful smart-
phone use with app feature-level analysis. Proc.
ACM Hum.-Comput. Interact., 5(CSCW2).

Siddhartha Datta. 2021. Learn2weight: Weights trans-
fer defense against similar-domain adversarial at-
tacks.

Siddhartha Datta, Konrad Kollnig, and Nigel Shad-
bolt. 2021. Mind-proofing your phone: Navigating
the digital minefield with greaseterminator. CoRR,
abs/2112.10699.

Siddhartha Datta and Nigel Shadbolt. 2022. Low-
loss subspace compression for clean gains against
multi-agent backdoor attacks. arXiv preprint
arXiv:2203.03692.

Benjamin Davis and Hao Chen. 2013. RetroSkeleton:
Retrofitting android apps. In Proceeding of the 11th
Annual International Conference on Mobile Systems,
Applications, and Services - MobiSys ’13, page 181,
Taipei, Taiwan. ACM Press.

Benjamin Davis, Ben S, Armen Khodaverdian, and Hao
Chen. 2012. I-arm-droid: A rewriting framework for
in-app reference monitors for android applications.
In In Proceedings of the Mobile Security Technolo-
gies 2012, MOST ’12., pages 1–9, New York, NY,
United States. IEEE.

William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. 2010. TaintDroid: An Information-
flow Tracking System for Realtime Privacy Mon-
itoring on Smartphones. In Proceedings of the
9th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’10, pages 393–407,
Berkeley, CA, United States. USENIX Association.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks.

flxapps. 2021. Detoxdroid.

Jay Freeman. 2020. Cydia substrate.

App Studio Friendly. 2022. Friendly social browser.

Tomer Galanti, András György, and Marcus Hutter.
2022. On the role of neural collapse in transfer learn-
ing. In International Conference on Learning Repre-
sentations.

Kovacs Geza. 2019. HabitLab: In-The-Wild Behavior
Change Experiments at Scale. Stanford Department
of Computer Science.

Vegard IT GmbH. 2021. Gray-switch.

Google. 2007. Tesseract.

Google. 2010a. Chrome web store.

Google. 2010b. recaptcha faq.

Google. 2021. Android accessibility suite.

Colin M. Gray, Yubo Kou, Bryan Battles, Joseph Hog-
gatt, and Austin L. Toombs. 2018. The dark (pat-
terns) side of ux design. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, CHI ’18, page 1–14, New York, NY, USA.
Association for Computing Machinery.

Benjamin Grosser. 2012. Facebook demetricator.

Benjamin Grosser. 2018. Twitter demetricator.

Benjamin Grosser. 2019. Instagram demetricator.

Studios Happening. 2021. Swipe for facebook.

hidelikes. 2022. Hide likes.

15

Niklas Higi. 2020. apk-mitm.

Alexis Hiniker, Sungsoo (Ray) Hong, Tadayoshi Kohno,
and Julie A. Kientz. 2016. Mytime: Designing and
evaluating an intervention for smartphone non-use.
In Proceedings of the 2016 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’16, page
4746–4757, New York, NY, USA. Association for
Computing Machinery.

Government HM. 2019. Online Harms White Paper.
Government Report on Transparency Reporting.

Mahsa Honary, Beth Bell, Sarah Clinch, Julio Vega, Leo
Kroll, Aaron Sefi, and Roisin McNaney. 2020. Shap-
ing the design of smartphone-based interventions for
self-harm. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, CHI
’20, page 1–14, New York, NY, USA. Association for
Computing Machinery.

HuggingFace. 2022. roberta-base.

Andrey Ignatov. 2021. Ai-benchmark.

Jinseong Jeon, Kristopher K. Micinski, Jeffrey A.
Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Fos-
ter, and Todd Millstein. 2012. Dr. Android and Mr.
Hide: Fine-grained permissions in android applica-
tions. In Proceedings of the Second ACM Workshop
on Security and Privacy in Smartphones and Mobile
Devices - SPSM ’12, page 3, Raleigh, North Carolina,
USA. ACM Press.

Bonnie E. John and Hilary Packer. 1995. Learning
and using the cognitive walkthrough method: A case
study approach. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,
CHI ’95, page 429–436, USA. ACM Press/Addison-
Wesley Publishing Co.

Minsam Ko, Subin Yang, Joonwon Lee, Christian Heiz-
mann, Jinyoung Jeong, Uichin Lee, Daehee Shin,
Koji Yatani, Junehwa Song, and Kyong-Mee Chung.
2015. Nugu: A group-based intervention app for
improving self-regulation of limiting smartphone use.
In Proceedings of the 18th ACM Conference on Com-
puter Supported Cooperative Work & Social Com-
puting, CSCW ’15, page 1235–1245, New York, NY,
USA. Association for Computing Machinery.

Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition.

Konrad Kollnig, Siddhartha Datta, and Max Van Kleek.
2021. I want my app that way: Reclaiming
sovereignty over personal devices. In Proceedings
of the 2021 CHI Conference on Human Factors in
Computing Systems Late-Breaking Works, Yokohama,
Japan. ACM Press.

AV Tech Labs. 2019. Auto logout.

Heyoung Lee, Heejune Ahn, Samwook Choi, and Wan-
bok Choi. 2014. The sams: Smartphone addiction
management system and verification. J. Med. Syst.,
38(1):1–10.

Lawence Lessig. Code 2.0, 1 edition. Basic Books.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Markus Löchtefeld, Matthias Böhmer, and Lyubomir
Ganev. 2013. Appdetox: Helping users with mobile
app addiction. In Proceedings of the 12th Interna-
tional Conference on Mobile and Ubiquitous Multi-
media, MUM ’13, New York, NY, USA. Association
for Computing Machinery.

LuckyPatcher. 2020. Lucky patcher.

Yajing Luo, Peng Liang, Chong Wang, Mojtaba Shahin,
and Jing Zhan. 2021. Characteristics and challenges
of low-code development: The practitioners’ perspec-
tive. Proceedings of the 15th ACM / IEEE Interna-
tional Symposium on Empirical Software Engineer-
ing and Measurement (ESEM).

Ulrik Lyngs, Kai Lukoff, Petr Slovak, William Sey-
mour, Helena Webb, Marina Jirotka, Jun Zhao, Max
Van Kleek, and Nigel Shadbolt. 2020a. ’I Just Want
to Hack Myself to Not Get Distracted’: Evaluating
Design Interventions for Self-Control on Facebook,
page 1–15. Association for Computing Machinery,
New York, NY, USA.

Ulrik Lyngs, Kai Lukoff, Petr Slovak, William Sey-
mour, Helena Webb, Marina Jirotka, Jun Zhao, Max
Van Kleek, and Nigel Shadbolt. 2020b. ’I Just Want
to Hack Myself to Not Get Distracted’: Evaluating
Design Interventions for Self-Control on Facebook.
In Proceedings of the 2020 CHI Conference on Hu-
man Factors in Computing Systems, pages 1–15, Hon-
olulu HI USA. ACM.

MaaarZ. 2019. Instaprefs.

Joris Meerts and Dorothy Graham. 2010. The history
of software testing.

Meta. 2022. Content restrictions based on local law.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 512–523. Curran Associates,
Inc.

Fabian Okeke, Michael Sobolev, Nicola Dell, and Deb-
orah Estrin. 2018. Good vibrations: Can a digital
nudge reduce digital overload? In Proceedings of the
20th International Conference on Human-Computer
Interaction with Mobile Devices and Services, Mo-
bileHCI ’18, New York, NY, USA. Association for
Computing Machinery.

16

R. Parasuraman, T.B. Sheridan, and C.D. Wickens. 2000.
A model for types and levels of human interaction
with automation. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans,
30(3):286–297.

Jessica Pater and Elizabeth Mynatt. 2017. Defining dig-
ital self-harm. In Proceedings of the 2017 ACM Con-
ference on Computer Supported Cooperative Work
and Social Computing, CSCW ’17, page 1501–1513,
New York, NY, USA. Association for Computing
Machinery.

Jessica A. Pater, Brooke Farrington, Alycia Brown, Lau-
ren E. Reining, Tammy Toscos, and Elizabeth D. My-
natt. 2019. Exploring indicators of digital self-harm
with eating disorder patients: A case study. Proc.
ACM Hum.-Comput. Interact., 3(CSCW).

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and
Oriol Vinyals. 2020. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. In
International Conference on Learning Representa-
tions.

Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and
Eric Bodden. 2014. DroidForce: Enforcing Com-
plex, Data-centric, System-wide Policies in Android.
In 2014 Ninth International Conference on Availabil-
ity, Reliability and Security, pages 40–49, Fribourg,
Switzerland. IEEE.

Byron Reeves, Nilam Ram, Thomas N. Robinson,
James J. Cummings, C. Lee Giles, Jennifer Pan, Ag-
nese Chiatti, Mj Cho, Katie Roehrick, Xiao Yang,
Anupriya Gagneja, Miriam Brinberg, Daniel Muise,
Yingdan Lu, Mufan Luo, Andrew Fitzgerald, and
Leo Yeykelis. 2021. Screenomics: A framework
to capture and analyze personal life experiences
and the ways that technology shapes them. Hu-
man–Computer Interaction, 36(2):150–201. PMID:
33867652.

Byron Reeves, Thomas Robinson, and Nilam Ram.
2020. Time for the human screenome project. Na-
ture, 577(7790):314–317. Funding Information: The
US National Institutes of Health (NIH) is Publisher
Copyright: © 2020, Nature.

John Rieman, Marita Franzke, and David Redmiles.
1995. Usability evaluation with the cognitive walk-
through. In Conference Companion on Human Fac-
tors in Computing Systems, CHI ’95, page 387–388,
New York, NY, USA. Association for Computing
Machinery.

rovo89. 2020. Xposed framework.

Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. 2020. Adaptive subspaces for
few-shot learning. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4135–4144.

Unhook. 2022. Unhook - remove youtube recom-
mended videos.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1667–1682, Online. Association for Computa-
tional Linguistics.

VrtualApp. 2016. Virtual xposed.

Eric Wallace, Pedro Rodriguez, Shi Feng, Ikuya Ya-
mada, and Jordan Boyd-Graber. 2019. Trick me if
you can: Human-in-the-loop generation of adversar-
ial examples for question answering. Transactions of
the Association for Computational Linguistics, 7:387–
401.

Yilin Wang, Jiliang Tang, Jundong Li, Baoxin Li, Yali
Wan, Clayton Mellina, Neil O’Hare, and Yi Chang.
2017. Understanding and discovering deliberate self-
harm content in social media. In Proceedings of the
26th International Conference on World Wide Web,
WWW ’17, page 93–102, Republic and Canton of
Geneva, CHE. International World Wide Web Con-
ferences Steering Committee.

Jordan West. 2012. News feed eradicator for facebook.

Foundation Wikimedia. Wikimedia downloads.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang,
Tianlong Ma, and Liang He. 2021. A survey of
human-in-the-loop for machine learning.

Rubin Xu, Hassen Saïdi, and Ross Anderson. 2012.
Aurasium: Practical policy enforcement for android
applications. In 21st USENIX Security Symposium
(USENIX Security 12), pages 539–552, Bellevue, WA.
USENIX Association.

Shanshan Zhang, Lihong He, Eduard Dragut, and Slobo-
dan Vucetic. 2019. How to invest my time: Lessons
from human-in-the-loop entity extraction. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’19, page 2305–2313, New York, NY, USA.
Association for Computing Machinery.

Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang,
Shuchang Zhou, Weiran He, and Jiajun Liang. 2017.
East: An efficient and accurate scene text detector.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

17

6 Appendix

6.1 GreaseTerminator
In response to the continued widespread presence
of interface-based harms in digital systems, Datta
et al. (Datta et al., 2021) developed GreaseTermina-
tor, a visual overlay modification method. This ap-
proach enables researchers to develop, deploy and
study interventions against interface-based harms
in apps. This is based on the observation that
it used to be difficult in the past for researchers
to study the efficacy of different intervention de-
signs against harms within mobile apps (most pre-
vious approaches focused on desktop browsers).
GreaseTerminator provides a set of ‘hooks’ that
serve as templates for researchers to develop inter-
ventions, which are then deployed and tested with
study participants. GreaseTerminator interventions
usually come in the form of machine learning mod-
els that build on the provided hooks, automatically
detect harms within the smartphone user interface
at run-time, and choose appropriate interventions
(e.g. a visual overlay to hide harmful content, or
content warnings). The GreaseTerminator archi-
tecture is shown in Figure 6(a) in contrast to the
GreaseVision architecture.
Technical improvements w.r.t. GreaseTerminator
The improvements of GreaseVision with respect to
GreaseTerminator are two-fold: (i) improvements
to the framework enabling end-user development
and harms mitigation (discussed in detail in Sec-
tions 4.2, 4.3, 5 and 6), and (ii) improvements to
the technical architecture (which we discuss in this
section). Our distinctive and non-trivial technical
improvements to the GreaseTerminator architec-
ture fall under namely latency, device support, and
interface-agnosticity. GreaseTerminator requires
the end-user device to be the host device, and over-
lays graphics on top. A downside of this is the
non-uniformity of network latency between users
(e.g. depending on the internet speed in their loca-
tion) resulting in a potential mismatch in rendered
overlays and underlying interface. With Grease-
Vision, we send a post-processed/re-rendered im-
age once to the end-user device’s browser (stream
buffering) and do not need to send any screen im-
age from the host user device to a server, thus there
is no risk of overlay-underlay mismatch and we
even reduce network latency by half. Images are re-
layed through an HTTPS connection, with a down-
load/upload speed ∼ 250Mbps, and each image
sent by the server amounting to ∼ 1Mb). The theo-

retical latency per one-way transmission should be
1×1024×8bits
250×106bits/s = 0.033ms. With each user at most re-
quiring server usage of one NVIDIA GeForce RTX
2080, with reference to existing online benchmarks
(Ignatov, 2021) the latency for 1 image (CNN) and
text (LSTM) model would be 5.1ms and 4.8ms
respectively. While the total theoretical latency
for GreaseTerminator is (2 × 0.033 + 5), that of
GreaseVision is (0.033 + 5) = 5.03ms. Another
downside of GreaseTerminator is that it requires
client-side software for each target platform. There
would be pre-requisite OS requirements for the
end-user device, where only versions of GreaseTer-
minator developed for each OS can be offered sup-
port (currently only for Android). GreaseVision
streams screen images directly to a login-verified
browser, allowing users to access desktop/mobile
on any browser-supported device. Despite varia-
tions in the streaming architecture between Grea-
seVision and GreaseTerminator, the interface mod-
ification framework (hooks and overlays) are re-
tained, hence interventions (even those developed
by end-users) from GreaseVision are compatible in
GreaseTerminator. In addition to improvements
to the streaming architecture to fulfil interface-
agnosticity, adapting the visual overlay modifica-
tion framework into a collaborative HITL imple-
mentation further improves the ease-of-use for all
stakeholders in the ecosystem. End-users do not
need to root their devices, find intervention tools
or even self-develop their own customized tools.
We eliminate the need for researchers to craft in-
terventions (as users self-develop autonomously)
or develop their own custom experience sampling
tools (as end-users/researchers can analyze digi-
tal experiences from stored screenomes). We also
eliminate the need for intervention developers to
learn a new technical framework or learn how to
fine-tune models. Running emulators on docker
containers and virtual machines on a (single) host
server is feasible, and thus allows for the browser
stream to be accessible cross-device without re-
striction, e.g. access iOS emulator on Android
device, or macOS virtual machine on Windows de-
vice. Certain limitations are imposed on the current
implementation, such as a lack of access to the de-
vice camera, audio, and haptics; however, these
are not permanent issues, and engineered imple-
mentations exist where a virtual/emulated device
can route and access the host device’s input/output
sources (VrtualApp, 2016).

18

Figure 6: Architecture of GreaseTerminator (left) and GreaseVision (right).

Interface Rendering Interventions
Development

Server

Client

User Device & Screen

Screen
Underlay

Screen
Overlay

input
frames

+ Selected Visual Interventions

output
frames

Text
Hook

Mask
Hook

Model
Hook

(a) The high-level architecture of GreaseTerminator. De-
tails are explained in Section 2.3 and 4.2.

Interface Rendering Interventions Development

Server

Client
Web Application

User Database

User Virtual Machines & Containers

Fr
am

e t
Fr
am

e t+
1

Fr
am

e t+
2

…

Fr
am

e t
Fr
am

e t+
1

Fr
am

e t+
2

…

Raw Screen ImagesUpdated Screen Images
access

render

input
commands

overlay

generate
access

Screenome Visualization

populate
screenome

annotate Masks, Models
à (Personal) Interventions

activate interventions

Network Interventions

(b) The high-level architecture of GreaseVision, both as a sum-
mary of our technical infrastructure as well as one of the collabo-
rative HITL interventions development approach.

Hooks The text hook enables modifying the text
that is displayed on the user’s device. It is imple-
mented through character-level optical character
recognition (OCR) that takes the screen image as
an input and returns a set of characters and their
corresponding coordinates. The EAST text detec-
tion (Zhou et al., 2017) model detects text in im-
ages and returns a set of regions with text, then
uses Tesseract (Google, 2007) to extract charac-
ters within each region containing text. The mask
hook matches the screen image against a target tem-
plate of multiple images. It is implemented with
multi-scale multi-template matching by resizing an
image multiple times and sampling different subim-
ages to compare against each instance of mask in
a masks directory (where each mask is a cropped
screenshot of an interface element). We retain the
default majority-pixel inpainting method for mask
hooks (inpainting with the most common colour
value in a screen image or target masked region).
As many mobile interfaces are standardized or uni-
form from a design perspective compared to images
from the natural world, this may work in many in-
stances. The mask hook could be connected to
rendering functions such as highlighting the inter-
face element with warning labels, or image inpaint-
ing (fill in the removed element pixels with newly
generated pixels from the background), or adding
content/information (from other apps) into the in-
painted region. Developers can also tweak how the
mask hook is applied, for example using the multi-
scale multi-template matching algorithm with con-
tourized images (shapes, colour-independent) or
coloured images depending on whether the mask
contains (dynamic) sub-elements, or using few-
shot deep learning models if similar interface ele-
ments are non-uniform. A model hook loads any
machine learning model to take any input and gen-

erate any output. This allows for model embedding
(i.e. model weights and architectures) to inform
further overlay rendering. We can connect models
trained on specific tasks (e.g. person pose detection,
emotion/sentiment analysis) to return output given
the screen image (e.g. bounding box coordinates
to filter), and this output can then be passed to a
pre-defined rendering function (e.g. draw filtering
box).

6.2 Related Works (extended)

6.2.1 Motivation: Pervasiveness and
Individuality of Digital Harms

It is well-known that digital harms are widespread
in our day-to-day technologies. Despite this, the
academic literature around these harms is still de-
veloping, and it remains difficult to state exactly
what the harms are that need to be addressed. Fa-
mously, Gray et al. (Gray et al., 2018) put forward
a 5-class taxonomy to classify dark patterns within
apps: interface interference (elements that manipu-
late the user interface to induce certain actions over
other actions), nagging (elements that interrupt the
user’s current task with out-of-focus tasks) forced
action (elements that introduce sub-tasks forcefully
before permitting a user to complete their desired
task), obstruction (elements that introduce subtasks
with the intention of dissuading a user from per-
forming an operation in the desired mode), and
sneaking (elements that conceal or delay informa-
tion relevant to the user in performing a task).

A challenge with such framework and tax-
onomies is to capture and understand the mate-
rial impacts of harms on individuals. Harms tend
to be highly individual and vary in terms of how
they manifest within users of digital systems. The
harms landscape is also quickly changing with
ever-changing digital systems. Defining the spec-

19

trum of harms is still an open problem, the range
varying from heavily-biased content (e.g. disin-
formation, hate speech), self-harm (e.g. eating
disorders, self-cutting, suicide), cyber crime (e.g.
cyber-bullying, harassment, promotion of and re-
cruitment for extreme causes (e.g. terrorist organi-
zations), to demographic-specific exploitation (e.g.
child-inappropriate content, social engineering at-
tacks) (HM, 2019; Pater and Mynatt, 2017; Wang
et al., 2017; Honary et al., 2020; Pater et al., 2019),
for which we recommend the aforementioned cited
literature. The last line of defense against many
digital harms is the user interface. This is why we
are interested in interface-emergent harms in this
paper, and how to support individuals in develop-
ing their own strategies to cope with and overcome
such harms.

6.2.2 Developments in Interface Modification
& Re-rendering

Digital harms have long been acknowledged as a
general problem, and a range of technical inter-
ventions against digital harms are developed. In-
terventions, also similarly called modifications or
patches, are changes to the software, which result
in a change in (perceived) functionality and end-
user usage. We review and categorize key technical
intervention methods for interface modification by
end-users, with cited examples specifically for dig-
ital harms mitigation. While there also exist non-
technical interventions, in particular legal reme-
dies, it is beyond this work to give a full account
of these different interventions against harms; a
useful framework for such an analysis is provided
by Lawrence Lessig (Lessig) who characterised the
different regulatory forces in the digital ecosystem.

Interface-code modifications (Kollnig et al.,
2021; Higi, 2020; Jeon et al., 2012; Rasthofer et al.,
2014; Davis and Chen, 2013; Backes et al., 2014;
Xu et al., 2012; LuckyPatcher, 2020; Davis et al.,
2012; Lyngs et al., 2020b; Freeman, 2020; rovo89,
2020; Agarwal and Hall, 2013; Enck et al., 2010;
MaaarZ, 2019; VrtualApp, 2016) make changes
to source code, either installation code (to modify
software before installation), or run-time code (to
modify software during usage). On desktop, this
is done through browser extensions and has given
rise to a large ecosystem of such extensions. Some
of the most well-known interventions are ad block-
ers, and tools that improve productivity online (e.g.
by removing the Facebook newsfeed (Lyngs et al.,
2020b)). On mobile, a prominent example is App-

Guard (Backes et al., 2014), a research project by
Backes et al. that allowed users to improve the pri-
vacy properties of apps on their phone by making
small, targeted modification to apps’ source code.
Another popular mobile solution in the commu-
nity is the app Lucky Patcher (LuckyPatcher, 2020)
that allows to get paid apps for free, by removing
the code relating to payment functionality directly
from the app code.

Some of these methods may require the highest
level of privilege escalation to make modifications
to the operating system and other programs/apps
as a root user. On iOS, Cydia Substrate (Freeman,
2020) is the foundation for jailbreaking and fur-
ther device modification. A similar system, called
Xposed Framework (rovo89, 2020), exists for An-
droid. To alleviate the risks and challenges af-
flicted with privilege escalation, VirtualXposed (Vr-
tualApp, 2016) create a virtual environment on the
user’s Android device with simulated privilege es-
calation. Users can install apps into this virtual
environment and apply tools of other modification
approaches that may require root access. Protect-
MyPrivacy (Agarwal and Hall, 2013) for iOS and
TaintDroid (Enck et al., 2010) for Android both
extend the functionality of the smartphone oper-
ating system with new functionality for the anal-
ysis of apps’ privacy features. On desktops, code
modifications tend not to be centred around a com-
mon framework, but are more commonplace in
general due to the traditionally more permissive se-
curity model compared to mobile. Antivirus tools,
copyright protections of games and the modding of
UI components are all often implemented through
interface-code modifications.

Interface-external modifications (Geza, 2019;
Bodyguard, 2019; Lee et al., 2014; Ko et al., 2015;
Andone et al., 2016; Hiniker et al., 2016; Löchte-
feld et al., 2013; Labs, 2019; Okeke et al., 2018) are
the arguably most common way to change default
interface behaviour. An end-user would install a
program so as to affect other programs/apps. No
change to the operating system or the targeted pro-
grams/apps is made, so an uninstall of the program
providing the modification would revert the device
to the original state. This approach is widely used
to track duration of device usage, send notifications
to the user during usage (e.g. timers, warnings),
block certain actions on the user device, and other
aspects. The HabitLab (Geza, 2019) is a prominent
example developed by Kovacs et al. at Stanford.

20

This modification framework is open-source and
maintained by a community of developers, and pro-
vides interventions for both desktop and mobile.

Visual overlay modifications render graphics
on an overlay layer over any active interface in-
stance, including browsers, apps/programs, videos,
or any other interface in the operating system. The
modifications are visual, and do not change the
functionality of the target interface. It may ren-
der sub-interfaces, labels, or other graphics on top
of the foreground app. Prominent examples are
DetoxDroid (flxapps, 2021), Gray-Switch (GmbH,
2021), Google Accessibility Suite (Google, 2021),
and GreaseTerminator (Datta et al., 2021).

We would like to establish early on that we pur-
sue a visual overlay modifications approach. Inter-
ventions should be rendered in the form of over-
lay graphics based on detected elements, rather
than implementing program code changes natively,
hence focused on changing the interface rather
than the functionality of the software. Interven-
tions should be generalizable; they are not solely
website- or app-oriented, but interface-oriented. In-
terventions do not target specific apps, but general
interface elements and patterns that could appear
across different interface environments. To sup-
port the systemic requirements in Section 2.4, we
require an interface modification approach that is
(i) interface-agnostic and (ii) easy-to-use. To this
extent, we build upon the work of GreaseTermina-
tor (Datta et al., 2021), a framework optimized for
these two requirements.

In response to the continued widespread pres-
ence of interface-based harms in digital sys-
tems, Datta et al. (Datta et al., 2021) developed
GreaseTerminator, a visual overlay modification
method. This approach enables researchers to
develop, deploy and study interventions against
interface-based harms in apps. This is based on the
observation that it used to be difficult in the past
for researchers to study the efficacy of different
intervention designs against harms within mobile
apps (most previous approaches focused on desk-
top browsers). GreaseTerminator provides a set of
‘hooks’ that serve as templates for researchers to
develop interventions, which are then deployed and
tested with study participants. GreaseTerminator
interventions usually come in the form of machine
learning models that build on the provided hooks,
automatically detect harms within the smartphone
user interface at run-time, and choose appropriate

interventions (e.g. a visual overlay to hide harmful
content, or content warnings). A visualisation of
the GreaseTerminator approach is shown in Fig-
ure 6(a).

6.2.3 Opportunities for Low-code
Development in Interface Modification

Low-code development platforms have been de-
fined, according to practitioners, to be (i) low-
code (negligible programming skill required to
reach endgoal, potentially drag-and-drop), (ii) vi-
sual programming (a visual approach to develop-
ment, mostly reliant on a GUI, and "what-you-
see-is-what-you-get"), and (iii) automated (unat-
tended operations exist to minimize human involve-
ment) (Luo et al., 2021). Low-code development
platforms exist for varying stages of software cre-
ation, from frontend (e.g. App maker, Bubble.io,
Webflow), to workflow (Airtable, Amazon Honey-
code, Google Tables, UiPath, Zapier), to backend
(e.g. Firevase, WordPress, flutterflow); none ex-
ist for software modification of existing applica-
tions across interfaces. According to a review of
StackOverflow and Reddit posts analysed by Luo
et al. (Luo et al., 2021), low-code development
platforms are cited by practitioners to be tools that
enable faster development, lower the barrier to us-
age by non-technical people, improves IT gover-
nance compared to traditional programming, and
even suits team development; one of the main limi-
tations cited is that the complexity of the software
created is constrained by the options offered by the
platform.

User studies have shown that users can self-
identify malevolent harms and habits upon self-
reflection and develop desires to intervene against
them (Cho et al., 2021; Lyngs et al., 2020a). Not
only do end-users have a desire or interest in self-
reflection, but there is indication that end-users
have a willingness to act. Statistics for content
violation reporting from Meta show that in the Jan-
Jun 2021 period, ∼ 42,200 and ∼ 5,300 in-app
content violations were reported on Facebook and
Instagram respectively (Meta, 2022) (in this report,
the numbers are specific to violations in local law,
so the actual number with respect to community
standard violatons would be much higher; the num-
bers also include reporting by governments/courts
and non-government entities in addition to mem-
bers of the public). Despite a willingness to act,
there are limited digital visualization or reflection
tools that enable flexible intervention development

21

by end-users. There are visualization or reflec-
tion tools on browser and mobile that allow for
reflection (e.g. device use time (Andone et al.,
2016)), and there are separate and disconnected
tools for intervention (Section 2.2), but there are
limited offerings of flexible intervention develop-
ment by end-users, where end-users can observe
and analyze their problems while generating cor-
responding fixes, which thus prematurely ends the
loop for action upon regret/reflection. There is a
disconnect between the harms analysis ecosystem
and interventions ecosystem. A barrier to binding
these two ecosystems is the existence of low-code
development platforms for end-users. While such
tooling may exist for specific use cases on spe-
cific interfaces (e.g. web/app/game development)
for mostly creationary purposes, there are limited
options available for modification purposes of exist-
ing software, the closest alternative being extension
ecosystems (Kollnig et al., 2021; Google, 2010a).
Low-code development platforms are in essence
"developer-less", removing developers from the
software modification pipeline by reducing the bar-
rier to modification through the use of GUI-based
features and negligible coding, such that end-users
can self-develop without expert knowledge.

Human-in-the-Loop (HITL) learning is the
procedure of integrating human knowledge and ex-
perience in the augmentation of machine learning
models. It is commonly used to generate new data
from humans or annotate existing data by humans.
Wallace et al. (Wallace et al., 2019) constructed
a HITL system of an interactive interface where a
human talks with a machine to generate more Q&A
language and train/fine-tune Q&A models. Zhang
et al. (Zhang et al., 2019) proposed a HITL system
for humans to provide data for entity extraction,
including requiring humans to formulate regular
expressions and highlight text documents, and an-
notate and label data. For an extended literature
review, we refer the reader to Wu et al. (Wu et al.,
2021). Beyond lab settings, HITL has proven it-
self in wide deployment, where a wide distribution
of users have indicated a willingness and ability
to perform tasks on a HITL annotation tool, re-
CAPTCHA, to access utility and services. In 2010,
Google reported over 100 million reCAPTCHA in-
stances are displayed every day (Google, 2010b)
to annotate different types of data, such as deci-
phering text for OCR of books or street signs, or
labelling objects in images such as traffic lights or

vehicles.
While HITL formulates the structure for human-

AI collaborative model development, model fine-
tuning and few-shot learning formulate the algo-
rithmic methods of adapting models to changing
inputs, environments, and contexts. Both adap-
tation approaches require the model to update its
parameters with respect to the new input distribu-
tion. For model fine-tuning, the developer re-trains
a pre-trained model on a new dataset. This is in
contrast to training a model from a random ini-
tialization. Model fine-tuning techniques for pre-
trained foundation models, that already contain
many of the pre-requisite subnetworks required
for feature reuse and warm-started training on a
smaller target dataset, have indicated robustness
on downstream tasks (Galanti et al., 2022; Abnar
et al., 2022; Neyshabur et al., 2020). If there is an
extremely large number of input distributions and
few samples per distribution (small datasets), few-
shot learning is an approach where the developer
has separately trained a meta-model that learns how
to change model parameters with respect to only a
few samples. Few-shot learning has demonstrated
successful test-time adaptation in updating model
parameters with respect to limited test-time sam-
ples in both image and text domains (Raghu et al.,
2020; Koch et al., 2015; Finn et al., 2017; Datta,
2021). Some overlapping techniques even exist
between few-shot learning and fine-tuning, such as
constructing subspaces and optimizing with respect
to intrinsic dimensions (Aghajanyan et al., 2021;
Datta and Shadbolt, 2022; Simon et al., 2020).

The raw data for harms and required interface
changes reside in the history of interactions be-
tween the user and the interface. In the Screenome
project (Reeves et al., 2020, 2021), the investigators
proposed the study and analysis of the moment-by-
moment changes on a person’s screen, by captur-
ing screenshots automatically and unobtrusively
every t = 5 seconds while a device is on. This
record of a user’s digital experiences represented
as a sequence of screens that they view and interact
with over time is denoted as a user’s screenome.
Though not mobilized widely amongst users for
their self-reflection or personalized analysis, in-
tegrating screenomes into an interface modifica-
tion framework can play the dual roles of visual-
izing raw (harms) data to users while manifesting
as parseable input for visual overlay modification
frameworks.

22

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 23 - 29
July 14, 2022 ©2022 Association for Computational Linguistics

Posthoc Verification and the Fallibility of the Ground Truth

Yifan Ding, Nicholas Botzer, Tim Weninger
Department of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN, USA

{yding4,nbotzer,tweninge}@nd.edu

Abstract

Classifiers commonly make use of pre-
annotated datasets, wherein a model is evalu-
ated by pre-defined metrics on a held-out test
set typically made of human-annotated labels.
Metrics used in these evaluations are tied to
the availability of well-defined ground truth la-
bels, and these metrics typically do not allow
for inexact matches. These noisy ground truth
labels and strict evaluation metrics may com-
promise the validity and realism of evaluation
results. In the present work, we conduct a
systematic label verification experiment on the
entity linking (EL) task. Specifically, we ask
annotators to verify the correctness of annota-
tions after the fact (i.e., posthoc). Compared to
pre-annotation evaluation, state-of-the-art EL
models performed extremely well according to
the posthoc evaluation methodology. Surpris-
ingly, we find predictions from EL models had
a similar or higher verification rate than the
ground truth. We conclude with a discussion
on these findings and recommendations for fu-
ture evaluations. The source code, raw results,
and evaluation scripts are publicly available
via the MIT license at https://github.
com/yifding/e2e_EL_evaluate

The general machine learning pipeline starts with
a dataset (a collection of documents, images, med-
ical records, etc.). When labels are not inherent
to the data, they must be annotated – usually by
humans. A label error occurs when an annotator
provides a label that is “incorrect.” But this raises
an interesting question: who gets to decide that
some annotation is incorrect?

One solution is to ask k annotators and combine
their labels somehow (e.g., majority vote, probabil-
ity distribution). Subjectivity comes into play here.
Given identical instructions and identical items,
some annotators may focus on different attributes
of the item or have a different interpretation of the
labeling criteria. Understanding and modelling la-
bel uncertainty remains a compelling challenge in

Ground Truth Annotation
Prediction

Figure 1: Example Entity Linking task where the pre-
annotated ground truth mention and link is different
from the predicted label. Standard evaluation regimes
count this as a completely incorrect prediction despite
being a reasonable label.

evaluating machine learning systems (Sommerauer,
Fokkens, and Vossen, 2020; Resnick et al., 2021).

Tasks that require free-form, soft, or multi-class
annotations present another dimension to this chal-
lenge. For example, natural language processing
tasks like named entity recognition (NER) and en-
tity linking (EL) rely heavily on datasets comprised
of free-form human annotations. These tasks are
typically evaluated against a held out portion of
the already-annotated dataset. A problem arises
when NER and EL tasks produce labels that are
not easily verified as “close enough” to the correct
groundtruth (Ribeiro et al., 2020). Instead, like
the example in Fig. 1, most NER and EL evalu-
ation metrics require exact matches against free-
form annotations (Sevgili et al., 2020; Goel et al.,
2021). This strict evaluation methodology may
unreasonably count labels that are “close enough”
as incorrect and is known to dramatically change
performance metrics (Gashteovski et al., 2020).

Producing a verifiable answer is not the same as
producing the correct answer. This distinction is
critical. Asking a machine learning system to inde-
pendently provide the same label as an annotator
is a wildly different task than asking an annotator
to verify the output of a predictor (posthoc ver-
ification). Unfortunately the prevailing test and
evaluation regime requires predictors to exactly
match noisy, free-form, and subjective human an-
notations. This paradigm represents a mismatch

23

Table 1: Statistics of the entity linking datasets and annotations.

Datasets Docs Annotations Tasks Verified Annotations
GT E2E REL GT E2E REL GT E2E REL

A
ID

A AIDA-train 946 18541* 18301 21204 2801 2802 2913 18511 18274 21172
AIDA-A 216 4791 4758 5443 713 715 725 4787 4754 5439
AIDA-B 231 4485 4375 5086 636 646 654 4480 4370 5079

W
N

E
D

ACE2004 57* 257 1355 1675 114 318 334 256 1352 1672
AQUAINT 50 727 810 925 175 170 179 727 810 925
CLUEWEB 320 11154 12273 23114 3526 3678 4944 11139 12247 23056
MSNBC 20 656 629 756 164 163 171 656 629 756
WIKIPEDIA 345* 6793* 8141 11184 1348 1578 1638 6786 8136 11177

* indicate results different from related work because they remove out-of-dictionary annotations.

that, if left unaddressed, threatens to undermine
future progress in machine learning.

Main Contributions. We show that the distinc-
tion between pre-annotated and posthoc-annotated
labels is substantial and the distinction presents
consequences for how we determine the state-of-
the-art in machine learning systems.

We conducted systematic experiments using
posthoc analysis on a large case study of eight pop-
ular entity linking datasets with two state-of-the-art
entity linking models, and report some surprising
findings: First, state-of-the-art EL models gener-
ally predicted labels with higher verification rate
than the ground truth labels. Second, there was
substantial disagreement among annotators as to
what constitutes a label that is “good enough” to be
verified. Third, a large proportion (between 10%-
70% depending on the dataset) of verified entities
were missing from the ground truth dataset.

The Setting: Entity Linking

The goal of EL is to identify words or phrases that
represent real-world entities and match each iden-
tified phrase to a listing in some knowledge base.
Like most classification systems, EL models are
typically trained and tested on large pre-annotated
benchmark datasets. Table 1 describes eight such
benchmark datasets that are widely used through-
out the EL and broader NLP communities.

EL Models. In order to better understand the
effect of pre-annotated benchmarks on machine
learning systems, it is necessary to test a handful
of state-of-the-art EL systems. Specifically, we
chose: (1) The end-to-end (E2E) entity linking
model, which generates and selects span candi-
dates with associated entity labels. The E2E model
is a word-level model that utilizes word and en-
tity embeddings to compute span-level contextual

Figure 2: Web system used to collect posthoc annota-
tions from workers.

scores. Word and entity embeddings are trained
on Wikipedia, and the final model is trained and
validated using AIDA-train and AIDA-A respec-
tively (Kolitsas, Ganea, and Hofmann, 2018). (2)
The Radboud Entity Linker (REL), which com-
bines the Flair (Akbik, Blythe, and Vollgraf, 2018)
NER system with the mulrel-nel (Le and Titov,
2018) entity disambiguation system to create a
holistic EL pipeline (van Hulst et al., 2020). In
addition, our methodology permits the evaluation
of the GT as if it were a competing model. The
relative performance of E2E and REL can then
compared with the GT to better understand the per-
formance of the posthoc annotations.

Data collection. We have previously argued that
these evaluation metrics may not faithfully simulate
in vivo performance because (1) the ground truth
annotations are noisy and subjective, and (2) exact
matching is too strict. We test this argument by
collecting posthoc verifications of the three models,
including the pre-annotated GT, over the datasets.

We created a simple verification system, illus-
trated in Fig. 2, and used Amazon Mechanical Turk
to solicit workers. For each document and model,
we asked a single worker to verify all present entity
annotations (i.e., an entity mention and its linked
entity). Annotators can then choose to (1) Verify

24

0
0.2
0.4
0.6
0.8
1

P
re

ci
si

on

Pre-Annotation E2E REL Posthoc Verification E2E REL GT

AIDA-tra
in
AIDA-A

AIDA-B
ACE2004

AQUAINT

CLUEWEB
MSNBC

WIKIPEDIA
0

0.2
0.4
0.6
0.8
1

R
ec

al
l

AIDA-tra
in
AIDA-A

AIDA-B
ACE2004

AQUAINT

CLUEWEB
MSNBC

WIKIPEDIA

Figure 3: Precision and recall results from pre-annotation evaluation (Left) compared with the posthoc verification
evaluation (Right). Error bars represent 95% confidence intervals on bootstrapped samples of the data. Posthoc
verification returns substantially higher scores than the pre-annotation evaluation.

the annotation (2) Modify the annotation, or (3)
Remove the annotation.

• Verify: The annotator determines that the cur-
rent annotation (both mention and Wikipedia
link) is appropriate.

• Modify: The annotator determines that the
Wikipedia link is incorrect. In this case, they
are asked to search and select a more appro-
priate Wikipedia link, use it to replace the
existing link, and then accept the new annota-
tion.

• Remove: The annotator determines that the
current mention (highlighted text) is not a link-
able entity. In this case, they remove the link
from the mention.

We made a deliberate decision to not permit new
annotation of missing entity mentions. That is,
if the model did not label an entity, then there is
no opportunity for the worker to add a new label.
This design decision kept the worker focused on the
verification task, but possibly limits the coverage of
the verified dataset. We provide further comments
on this decision in the Results section.

Each annotator is assigned to 20 tasks including
one control task with three control annotations. We
only accept and collect annotations from workers
that passed the control task.

We paid each worker 3 USD for each HIT. We
estimate a average hourly rate of about 9 USD;
and paid a total of 6,520 USD. From these, we
received 167,432 annotations. The breakdown of
tasks, annotations shown to workers, and verified
annotations are listed in Table 1 for each dataset
and model.

Prior to launch, this experiment was re-
viewed and approved by an impaneled ethics re-

view board at the University of Notre Dame.
The source code, raw results, and evaluation
scripts are publicly available via the MIT li-
cense at https://github.com/yifding/
e2e_EL_evaluate

Posthoc Verification Methodology

The Pre-Annotation Evaluation Regime. First,
we re-tested the E2E and REL models and eval-
uated their micro precision and recall under the
typical pre-annotation evaluation regime. These re-
sults are illustrated in Fig 3 and are nearly identical
to those reported by related works (Kolitsas, Ganea,
and Hofmann, 2018; van Hulst et al., 2020).

Posthoc Verification Evaluation

Our next task is to define appropriate evaluation
metrics that can be used to compare the results
of the posthoc verification experiment with results
from the pre-annotation evaluation regime.

Verification Rate. For each combination of dataset
and model providing annotations, we compute the
verification rate as the percentage of annotations
that were verified. Formally, let d ∈ datasets;
m ∈ models; and Vm,d be the set of verified annota-
tions in a pairing of d and m Likewise, let Nd,m be
the pre-annotations of model m on dataset d. We
therefore define the verification rate of a dataset-
model pair as rm,d = |Vm,d|/|Nd,m|. Higher veri-
fication rates indicate that the dataset contains an-
notations and/or the model is more capable of pro-
viding labels that pass human inspection.

Verification Union. It is important to note that
each model and document was evaluated by only
a single worker. However, we were careful to as-
sign each worker annotations randomly drawn from
model/document combinations. This randomiza-

25

tion largely eliminates biases in favor or against any
model or dataset. Furthermore, this methodology
provides for repetitions when annotations match
exactly across models – which is what models are
optimized for in the first place! In this scenario
the union of all non-exact, non-overlapping annota-
tions provides a superset of annotations similar to
how pooling is used in information retrieval evalua-
tion to create a robust result set (Zobel, 1998). For-
mally, we define the verification union of a dataset
d as Vd =

⋃
m Vm,d.

Posthoc Precision and Recall. The precision met-
ric is defined as the ratio of true predictions to all
predictions. If we recast the concept of true predic-
tions to be the set of verified annotations Vm,d, then
it is natural to further consider Nd,m to be the set
of all predictions for some dataset and model pair,
especially considering our data collection method-
ology restricts Vm,d ⊆ Nd,m. Thus the posthoc
precision of a model-data pairing is simply the ver-
ification rate rm,d.

The recall metric is defined as the ratio of true
predictions to all true labels. If we keep the recast-
ing of true positives as verified annotations Vm,d,
then all that remains a definition of true labels. Like
in most evaluation regimes the set of all true labels
is estimated by the available labels in the dataset.
Here, we do the same and estimate the set of true la-
bels as the union of a dataset’s verified annotations
Vd. Thus posthoc recall of a model-data pairing is
|Vm,d|/|Vd|.

Posthoc Verification Results

Using the evaluation tools introduced in the previ-
ous section, we begin to answer interesting research
questions. First, do the differences between evalu-
ation regimes, i.e., pre-annotation versus posthoc
verification, have any affect on our perception of
model performance.

To shed some light on this question, we com-
pared the precision and recall metrics calculated
using the pre-annotation evaluation regime against
the precision and recall metrics calculated using
the posthoc verification regime. The left quadplot
in Fig. 3 compares model performance under the
different evaluation regimes. Error bars represent
the empirical 95% confidence internals drawn from
1000 bootstrap samples of the data. We make two
major conclusions from this comparison:

Pre-annotation performance is lower than
Posthoc verification. The differences between the

Detailed Result Analysis

E2E REL GT Verify Edit Remove

AIDA-tra
in
AIDA-A

AIDA-B
ACE2004

AQUAINT

CLUEWEB
MSNBC

WIKIPEDIA
0.8

0.85

0.9

0.95

1

Figure 4: Detailed error analysis of verification rates in
Fig. 3(top right). The E2E model consistently outper-
forms the ground truth (GT).

scores of the pre-annotation compared to posthoc
verification are striking. Posthoc annotation shows
very good precision scores across all datasets. Al-
though the models may not exactly predict the pre-
annotated label, high posthoc precision indicates
that their results appear to be “close-enough” to
obtain human verification.
Conclusion: the widely-used exact matching eval-
uation regime is too strict. Despite its intention, the
pre-annotation evaluation regime does not appear
to faithfully simulate a human use case.

Machine Learning models outperform the
Ground Truth. The posthoc verification method-
ology permits the GT annotations to be treated
like any other model, and are therefore included in
Fig. 3 (right plot). These results were unexpected
and surprising. We found that labels produced by
the EL models oftentimes had a higher verification
rate than the pre-annotated ground truth. The recall
metric also showed that the EL models were also
able to identify more verified labels than GT.
Conclusion: Higher precision performance of the
EL models indicates that human annotators make
more unverifiable annotations than the EL models.
Higher recall performance of the EL models also
indicates that the EL models find a greater cover-
age of possible entities. The recall results are less
surprising because human annotators may be unmo-
tivated or inattentive during free-form annotation –
qualities that tend to not affect EL models.

Error Analysis of the Ground Truth

For each linked entity, the posthoc verification
methodology permitted one of three outcomes:
verification, modification, or removal. The plot
in Fig. 4 shows the percentage of each outcome
for each model and dataset pair; it is essentially

26

a zoomed-in, more-detailed illustration of the
Posthoc Verification Precision result panel from
Fig. 3, but with colors representing outcomes and
patterns representing models. Edits indicate that
the named entity recognition (i.e., mention detec-
tion) portion of the EL model was able to identify
an entity, but the entity was not linked to a verifiable
entity. The available dataset has an enumeration
of corrected linkages, but we do not consider them
further in the present work. Removal indicates an
error with the mention detection. From these re-
sults we find that, when a entity mention is detected
it is usually a good detection; the majority of the
error comes from the linking subtask.

A similar error analysis of missing entities is not
permitted from the data collection methodology be-
cause we only ask workers to verify pre-annotated
or predicted entities, not add missing entities. Be-
cause all detected mentions are provided with some
entity link, we can safely assume that missing enti-
ties is mostly (perhaps wholly) due to errors in the
mention detection portion of EL models.

Discussion

The primary goal of the present work is to com-
pare pre-annotation labels contributed by human
workers against verified annotations of the same
data. Using entity linking as an example task, we
ultimately found that these two methodologies re-
turned vastly different performance results. From
this observation we can draw several important
conclusions. First, EL models have a much higher
precision than related work reports. This difference
is because the standard evaluation methodology
used in EL, and throughout ML generally, do not
account for soft matches or the semantics of what
constitutes a label that is “close enough”. Our sec-
ond conclusion is that EL models, and perhaps ML
models generally, sometimes perform better than
ground truth annotators – at least, that is, according
to other ground truth annotators.

Acknowledgments
This research is sponsored in part by the Defense
Advanced Research Projects Agency (DAPRA)
under contract numbers HR00111990114 and
HR001121C0168. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
DARPA or the U.S. Government. The U.S. Gov-

ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein.

References
Aharoni, R.; and Goldberg, Y. 2018. Split and

Rephrase: Better Evaluation and Stronger Baselines.
In ACL, 719–724.

Akbik, A.; Blythe, D.; and Vollgraf, R. 2018. Con-
textual string embeddings for sequence labeling. In
COLING, 1638–1649.

Belinkov, Y.; and Bisk, Y. 2018. Synthetic and Natural
Noise Both Break Neural Machine Translation. In
ICLR.

Botzer, N.; Ding, Y.; and Weninger, T. 2021. Red-
dit entity linking dataset. Information Processing &
Management, 58(3): 102479.

Bowman, S. R.; Angeli, G.; Potts, C.; and Man-
ning, C. D. 2015. A large annotated corpus for
learning natural language inference. arXiv preprint
arXiv:1508.05326.

Bowman, S. R.; and Dahl, G. E. 2021. What Will it
Take to Fix Benchmarking in Natural Language Un-
derstanding? arXiv preprint arXiv:2104.02145.

Chzhen, E.; Denis, C.; Hebiri, M.; and Lorieul, T.
2021. Set-valued classification–overview via a uni-
fied framework. arXiv preprint arXiv:2102.12318.

Denis, C.; and Hebiri, M. 2017. Confidence sets with
expected sizes for multiclass classification. JMLR,
18(1): 3571–3598.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova,
K. 2019. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding.
In NAACL HLT, 4171–4186.

Ganea, O.-E.; and Hofmann, T. 2017. Deep Joint En-
tity Disambiguation with Local Neural Attention. In
EMNLP, 2619–2629.

Gashteovski, K.; Gemulla, R.; Kotnis, B.; Hertling,
S.; and Meilicke, C. 2020. On Aligning OpenIE
Extractions with Knowledge Bases: A Case Study.
In Proceedings of the First Workshop on Evaluation
and Comparison of NLP Systems, 143–154.

Geva, M.; Goldberg, Y.; and Berant, J. 2019. Are We
Modeling the Task or the Annotator? An Investiga-
tion of Annotator Bias in Natural Language Under-
standing Datasets. In EMNLP, 1161–1166.

Glockner, M.; Shwartz, V.; and Goldberg, Y. 2018.
Breaking NLI Systems with Sentences that Require
Simple Lexical Inferences. In ACL, 650–655.

Goel, K.; Rajani, N.; Vig, J.; Tan, S.; Wu, J.; Zheng,
S.; Xiong, C.; Bansal, M.; and Ré, C. 2021. Robust-
ness Gym: Unifying the NLP Evaluation Landscape.
arXiv preprint arXiv:2101.04840.

27

Graham, Y.; Baldwin, T.; Moffat, A.; and Zobel, J.
2013. Continuous measurement scales in human
evaluation of machine translation. In Proceedings
of the 7th Linguistic Annotation Workshop and
Interoperability with Discourse, 33–41.

Graham, Y.; Baldwin, T.; Moffat, A.; and Zobel, J.
2014. Is machine translation getting better over
time? In EACL, 443–451.

Guo, Z.; and Barbosa, D. 2014. Robust entity linking
via random walks. In CIKM, 499–508.

Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz,
R.; Bowman, S. R.; and Smith, N. A. 2018. An-
notation artifacts in natural language inference data.
arXiv preprint arXiv:1803.02324.

Hoffart, J.; Yosef, M. A.; Bordino, I.; Fürstenau, H.;
Pinkal, M.; Spaniol, M.; Taneva, B.; Thater, S.; and
Weikum, G. 2011. Robust disambiguation of named
entities in text. In EMNLP, 782–792.

Hynes, N.; Sculley, D.; and Terry, M. 2017. The data
linter: Lightweight, automated sanity checking for
ml data sets. In NIPS MLSys Workshop.

Kiela, D.; Bartolo, M.; Nie, Y.; Kaushik, D.; Geiger,
A.; Wu, Z.; Vidgen, B.; Prasad, G.; Singh, A.; Ring-
shia, P.; et al. 2021. Dynabench: Rethinking Bench-
marking in NLP. arXiv preprint arXiv:2104.14337.

Kolitsas, N.; Ganea, O.-E.; and Hofmann, T. 2018.
End-to-end neural entity linking. CoNLL.

Le, P.; and Titov, I. 2018. Improving Entity Linking by
Modeling Latent Relations between Mentions. In
ACL, 1595–1604.

Levy, O.; Goldberg, Y.; and Dagan, I. 2015. Improving
distributional similarity with lessons learned from
word embeddings. Transactions of the Association
for Computational Linguistics, 3: 211–225.

Lin, C.-Y. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, 74–81.

Lundberg, S. M.; and Lee, S.-I. 2017. A Unified Ap-
proach to Interpreting Model Predictions. NeurIPS,
30: 4765–4774.

Maas, A.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng,
A. Y.; and Potts, C. 2011. Learning word vectors for
sentiment analysis. In ACL, 142–150.

Northcutt, C. G.; Athalye, A.; and Mueller, J.
2021. Pervasive label errors in test sets destabi-
lize machine learning benchmarks. arXiv preprint
arXiv:2103.14749.

Oortwijn, Y.; Ossenkoppele, T.; and Betti, A. 2021. In-
terrater disagreement resolution: A systematic pro-
cedure to reach consensus in annotation tasks. In
Proceedings of the Workshop on Human Evaluation
of NLP Systems (HumEval), 131–141.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J.
2002. Bleu: a method for automatic evaluation of
machine translation. In ACL, 311–318.

Park, C. W.; Jun, S. Y.; and MacInnis, D. J. 2000.
Choosing what I want versus rejecting what I do not
want: An application of decision framing to prod-
uct option choice decisions. Journal of Marketing
Research, 37(2): 187–202.

Paun, S.; Carpenter, B.; Chamberlain, J.; Hovy, D.;
Kruschwitz, U.; and Poesio, M. 2018. Comparing
bayesian models of annotation. TACL, 6: 571–585.

Poliak, A.; Naradowsky, J.; Haldar, A.; Rudinger, R.;
and Van Durme, B. 2018. Hypothesis Only Base-
lines in Natural Language Inference. NAACL HLT,
180.

Prabhakaran, V.; Hutchinson, B.; and Mitchell, M.
2019. Perturbation Sensitivity Analysis to Detect
Unintended Model Biases. In EMNLP, 5744–5749.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
and Sutskever, I. 2019. Language models are unsu-
pervised multitask learners. OpenAI Blog, 1(8): 9.

Rajpurkar, P.; Jia, R.; and Liang, P. 2018. Know
What You Don’t Know: Unanswerable Questions
for SQuAD. In ACL, 784–789.

Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang,
P. 2016. Squad: 100,000+ questions for ma-
chine comprehension of text. arXiv preprint
arXiv:1606.05250.

Resnick, P.; Kong, Y.; Schoenebeck, G.; and Weninger,
T. 2021. Survey Equivalence: A Procedure for Mea-
suring Classifier Accuracy Against Human Labels.
arXiv preprint arXiv:2106.01254.

Ribeiro, M. T.; Guestrin, C.; and Singh, S. 2019. Are
red roses red? evaluating consistency of question-
answering models. In ACL, 6174–6184.

Ribeiro, M. T.; Wu, T.; Guestrin, C.; and Singh, S.
2020. Beyond Accuracy: Behavioral Testing of
NLP Models with CheckList. In ACL, 4902–4912.

Richardson, M.; Burges, C. J.; and Renshaw, E. 2013.
Mctest: A challenge dataset for the open-domain ma-
chine comprehension of text. In EMNLP, 193–203.

Rolnick, D.; Veit, A.; Belongie, S.; and Shavit, N. 2017.
Deep learning is robust to massive label noise. arXiv
preprint arXiv:1705.10694.

Rosales-Méndez, H.; Hogan, A.; and Poblete, B.
2019a. Fine-grained evaluation for entity linking. In
EMNLP-IJCNLP, 718–727.

Rosales-Méndez, H.; Hogan, A.; and Poblete, B.
2019b. NIFify: Towards Better Quality Entity Link-
ing Datasets. In WWW 2019, 815–818.

28

Sambasivan, N.; Kapania, S.; Highfill, H.; Akrong, D.;
Paritosh, P.; and Aroyo, L. M. 2021. “Everyone
wants to do the model work, not the data work”:
Data Cascades in High-Stakes AI. In CHI, 1–15.

Schwartz, R.; Sap, M.; Konstas, I.; Zilles, L.;
Choi, Y.; and Smith, N. A. 2017. Story cloze
task: Uw nlp system. In Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics, 52–55.

Sevgili, O.; Shelmanov, A.; Arkhipov, M.; Panchenko,
A.; and Biemann, C. 2020. Neural entity linking:
A survey of models based on deep learning. arXiv
preprint arXiv:2006.00575.

Sommerauer, P.; Fokkens, A.; and Vossen, P. 2020.
Would you describe a leopard as yellow? Evaluat-
ing crowd-annotations with justified and informative
disagreement. In COLING, 4798–4809.

Song, H.; Kim, M.; Park, D.; Shin, Y.; and Lee,
J.-G. 2020. Learning from noisy labels with
deep neural networks: A survey. arXiv preprint
arXiv:2007.08199.

Trischler, A.; Wang, T.; Yuan, X.; Harris, J.; Sordoni,
A.; Bachman, P.; and Suleman, K. 2016. Newsqa:
A machine comprehension dataset. arXiv preprint
arXiv:1611.09830.

Tsuchiya, M. 2018. Performance Impact Caused by
Hidden Bias of Training Data for Recognizing Tex-
tual Entailment. In LREC.

van Hulst, J. M.; Hasibi, F.; Dercksen, K.; Balog, K.;
and de Vries, A. P. 2020. REL: An entity linker
standing on the shoulders of giants. In SIGIR, 2197–
2200.

Zobel, J. 1998. How reliable are the results of large-
scale information retrieval experiments? In SIGIR,
307–314.

29

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 30 - 40
July 14, 2022 ©2022 Association for Computational Linguistics

Overconfidence in the Face of Ambiguity with Adversarial Data

Margaret Li∗ and Julian Michael∗

Paul G. Allen School of Computer Science & Engineering, University of Washington
{julianjm,margsli}@cs.washington.edu

Abstract

Adversarial data collection has shown promise
as a method for building models which are
more robust to the spurious correlations that
generally appear in naturalistic data. How-
ever, adversarially-collected data may itself
be subject to biases, particularly with regard
to ambiguous or arguable labeling judgments.
Searching for examples where an annotator dis-
agrees with a model might over-sample am-
biguous inputs, and filtering the results for high
inter-annotator agreement may under-sample
them. In either case, training a model on such
data may produce predictable and unwanted
biases. In this work, we investigate whether
models trained on adversarially-collected data
are miscalibrated with respect to the ambigu-
ity of their inputs. Using Natural Language
Inference models as a testbed, we find no clear
difference in accuracy between naturalistically
and adversarially trained models, but our model
trained only on adversarially-sourced data is
considerably more overconfident of its predic-
tions and demonstrates worse calibration, es-
pecially on ambiguous inputs. This effect is
mitigated, however, when naturalistic and ad-
versarial training data are combined.

1 Introduction

End-to-end neural network models have had
widespread success on standard benchmarks in
NLP (Wang et al., 2018, 2019; Lee et al., 2017;
Dozat and Manning, 2017). However, models
trained with maximum-likelihood objectives un-
der the standard Empirical Risk Minimization
paradigm are liable to succeed in these settings by
fitting to features or correlations in the data which
are ultimately not representative of the underly-
ing task and fail to generalize out of distribution,
e.g., under domain shift or adversarial perturbation
(Gururangan et al., 2018; Ilyas et al., 2019). One
promising method to overcome this difficulty is to

∗Equal contribution.

move past the ERM paradigm and learn or evaluate
causal features which are invariant across domains
or distributions of data. While methods to do this
often require the use of explicitly specified domains
of data (Peters et al., 2016; Arjovsky et al., 2020),
a more lightweight approach is adversarial evalu-
ation and training (Nie et al., 2020a; Kiela et al.,
2021), in which annotators deliberately search for
examples on which a model fails. Adversarial data
annotation has been applied for a variety of tasks,
including question answering (Bartolo et al., 2020),
natural language inference (Nie et al., 2020a), hate
speech detection (Vidgen et al., 2021), and senti-
ment analysis (Potts et al., 2021). Adversarial data
can help reduce spurious correlations in existing
data (Bartolo et al., 2020), expose a model’s short-
comings in evaluation, and aid in training more
robust models (Wallace et al., 2022).

However, the process of developing adversarial
data is imperfect, and adversarial data may itself
not resemble naturalistic distributions. For exam-
ple, Phang et al. (2021) find that the AFLITE adver-
sarial filtering algorithm (Sakaguchi et al., 2020;
Bras et al., 2020), designed to find challenging
examples in existing datasets, disproportionately
favors contentious examples with annotator dis-
agreement. This is suggestive that adversarially col-
lected datasets, where humans actively try to fool a
model, may be subject to these same biases Indeed,
Phang et al. also show that adversarially-collected
datasets may disproportionately penalize models
that are similar to the one used during data col-
lection. The qualitative properties of adversarially-
collected data also vary depending on the adversary
used during data collection, as shown by Williams
et al. (2022) for the Adversarial NLI dataset (Nie
et al., 2020a). For these reasons, it is not clear what
a model’s performance under adversarial evalua-
tion implies about its performance characteristics
on naturalistic distributions, nor is it clear how
training on adversarial data aids a model’s perfor-

30

mance in natural settings.
In this work, we focus on the interplay of adver-

sarial learning and evaluation with ambiguity, or
annotator disagreement. Just as adversarial filtering
may over-sample ambiguous inputs (Phang et al.,
2021), adversarial annotators may produce strange,
ambiguous, or disputable inputs as they employ
tricks to fool a model in the adversarial setting. To
preempt this issue and ensure data quality, adversar-
ial data collection methods filter out examples with
low human agreement (Nie et al., 2020a), but it’s
possible that this approach could over-correct for
the issue and under-sample such inputs in compari-
son to naturalistic data. For this reason, it is plausi-
ble that models trained on adversarially-collected
data may be miscalibrated against the ambiguity of
their inputs, forming a predictable blind spot.

We investigate this issue by training models on
naturalistically and adversarially collected datasets,
then comparing their performance with respect to
gold annotator distributions. As a testbed, we use
Natural Language Inference, an NLP benchmark
task with already-available adversarial data (Nie
et al., 2020a) and full annotator distributions (Nie
et al., 2020b). We find no clear difference in ac-
curacy between naturalistically and adversarially
trained models, but our model trained only on
adversarially-sourced data is considerably more
overconfident of its predictions and demonstrates
worse calibration, especially on ambiguous inputs.
On the other hand, including both naturalistic data
in training as well — as is standard practice (Nie
et al., 2020a) — mitigates these issues. While our
results do not raise alarms about standard practices
with adversarial data, they suggest that we should
keep in mind the importance of including naturalis-
tic data in training regimes moving forward.1

2 Background: Robustness and
Adversarial Data

Suppose we are interested in learning a conditional
probability distribution p(y | x). The classical
machine learning approach of Empirical Risk Min-
imization does so with the use of input data drawn
from a distribution D:

argmin
θ

Ex∼D,y∼p(·|x) − log p(y|x, θ), (1)

where θ are the model parameters. However, this
method can do a poor job of approximating p(y | x)

1Code to reproduce our experiments is available at https:
//github.com/julianmichael/aeae.

when x is drawn from very different distributions
than D. One approach which has been used to
address this is robust optimization, which mini-
mizes the worst-case loss subject to some con-
straints (Madry et al., 2018; Ghaoui and Lebret,
1997; Wald, 1945). We can view robust optimiza-
tion as solving a minimax problem:

argmin
θ

max
D∈D

Ex∼D,y∼p(·|x) − log p(y|x, θ), (2)

where D is a space of possible input distributions,
and D is adversarially chosen among them. This
formulation invites the question: what if D includes
all possible distributions? Then we are free to find
any x which the model gets wrong, and optimizing
the loss effectively should produce a model which
is robust to a wide range of distributions and hard
to exploit.

This suggests a practical approach to improving
robustness which involves actively searching for
examples on which a model fails, and using those
examples to train new, more robust models. This
general approach has been applied in a variety of
settings in NLP, such as the Build-It Break-It shared
task (Ettinger et al., 2017), adversarial filtering
of large datasets (Zellers et al., 2018; Sakaguchi
et al., 2020), and adversarial benchmarking and
leaderboards (Nie et al., 2020a; Kiela et al., 2021).

One complication that arises when sourcing ad-
versarial data is with ambiguous or arguable exam-
ples. Suppose θ̂ perfectly models p(y | x). Plug-
ging this into Formula 2 yields maxD∈D H(Y | x),
where D is concentrated on the inputs x which
maximize the entropy of Y .

In this context, high entropy in the conditional
distribution of Y corresponds to high annotator dis-
agreement.2 When a human searches for an adver-
sarial example, they are looking for a disagreement
between themselves and the model. In this setting,
there may be competition for inclusion in these
adversarial tasks between ambiguous examples on

2In this work, we assume all annotators implement the
same probabilistic labeling function (which we are calling
‘gold’) and disagreement between annotators arises as an in-
herent feature of the task we are trying to model. We also
assume that approximating annotator behavior on arguable
or ambiguous examples is a desirable goal. These are sim-
plifications: in some settings, e.g., the prescriptive paradigm
of Röttger et al. (2022), we may wish to minimize annotator
disagreement to learn a deterministic labeling function. In
such settings, model behavior on arguable inputs may be unin-
teresting from the evaluation perspective, though searching for
such examples could be useful for refining the task definition
or annotation guidelines. We leave such issues out of scope
for this work.

31

which the model is close to the gold (annotator)
distribution and less ambiguous examples where
the model is further from gold. Thus an adversarial
data generation process may be biased towards in-
put examples which are ambiguous but unhelpful
for training.

Formally, a simple way to think about counter-
acting this may be to explicitly subtract the gold
entropy from the loss being minimized:

argmin
θ

max
D∈D

Ex∼D,y∼p(·|x)

− log p(y | x, θ) + log p(y | x).
(3)

Here, the objective focuses the distribution D
on examples which maximize the model’s KL-
Divergence from p(y | x), no longer favoring am-
biguous examples. Practical approaches to scal-
ing adversarial data collection have applied a sim-
ilar idea: in Adversarial NLI (Nie et al., 2020a)
and Dynabench (Kiela et al., 2021), annotators are
asked to find examples where they disagree with
the model, and then these examples are only kept if
multiple validators agree on the correct label. How-
ever, it is not clear how well-calibrated this process
is: it might, for example, systematically omit gen-
uinely ambiguous examples which the model gets
wrong with high confidence. Whether training on
data produced by this process results in pathologi-
cal model behavior is what we test in this work.

3 Experimental Setup

Task Setting We use Natural Language Inference
(Dagan et al., 2005; Bowman et al., 2015) as our
underlying task, as there exist adversarial annota-
tions for this task (Nie et al., 2020a; Kiela et al.,
2021) and annotator disagreement has been well
studied (Pavlick and Kwiatkowski, 2019; Nie et al.,
2020b; Zhang and de Marneffe, 2021).

Model Variants We train models under three
conditions:

• CLASSICAL: These models are trained on
data elicited from annotators in a model-
agnostic way, i.e., naturalistically.3 For this
we use the SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets.

3Unfortunately, since the NLI task is somewhat artificial,
there is no “natural” distribution of input texts. This is one of
the issues that leads to annotation artifacts in the first place
(Gururangan et al., 2018) since some of the input text must be
annotator-generated. Regardless, spurious correlations exist
in any naturalistic distribution so we will use these training
sets as proxies for something naturalistic.

Dataset Train Dev

SNLI 550,152 10,000
MultiNLI 392,702 10,000
ANLI (all rounds) 162,865 3,200

Chaos-SNLI 1,514
Chaos-MultiNLI 1,599

Table 1: Number of examples in training and develop-
ment sets we use. For training data (top), development
sets are used for model selection, while our evaluations
(bottom) are on the ChaosNLI-annotated subsets of the
SNLI and MultiNLI development sets.

• ADVERSARIAL: These models are trained
on data elicited from annotators under the re-
quirement that they must fool the model. For
this we will use the adversarial annotations of
Nie et al. (2020a).4

• ALL: These models are trained on the con-
catenation of all of the above data.

Evaluation Data We test the performance of our
models in the setting where we have comprehensive
distributions of annotator behavior. For this, we
will use the ChaosNLI evaluation sets (Nie et al.,
2020b) which have 100 independent annotations
for each example (where the task is 3-way multi-
class classification). ChaosNLI includes evaluation
sets for SNLI (Bowman et al., 2015), MultiNLI
(Williams et al., 2018), and αNLI (Bhagavatula
et al., 2020, Abductive NLI). Of these, we use the
SNLI and MultiNLI sets, since αNLI has a differ-
ent task format than other NLI datasets. Dataset
statistics are shown in Table 1.

Metrics Using densely-annotated evaluation
data, we compute several evaluation metrics. Each
metric is stratified across non-overlapping ranges of
annotator agreement in order to analyze the depen-
dence of model performance (or model differences)
on the ambiguity of its input examples. Let p(y)
be the empirical distribution of annotator labels for
an input example, and ŷ be the model’s prediction.
Then, our metrics are:

• Accuracy in Expectation: The expectation
of the accuracy of the model against a ran-
domly sampled annotator in ChaosNLI (i.e.,

4In order for this to properly count as adversarial data for
our model, we use the same model family as Nie et al. (2020a),
which is BERT-large (Devlin et al., 2019) fine-tuned on SNLI
and MultiNLI.

32

p(ŷ)). We stratify this by the human accuracy
in expectation, the accuracy of a randomly-
sampled human against the plurality vote of
all annotators (maxy(p(y))). We use discrete
bins to allow for precise comparison of model
performance within and between different
regimes of ambiguity.

• Accuracy against Plurality: The accuracy of
the model against the plurality vote of the 100
annotators (ŷ = max(p(y))). We also stratify
this by human accuracy in expectation.

• Model perplexity: The exponentiated en-
tropy of the model’s predicted distribution;
higher corresponds to more uncertainty. (This
is independent of the gold labels.) We stratify
this by the perplexity of the human annotator
distribution.

• KL-Divergence: The KL-Divergence of the
model’s predicted label distribution against
the empirical distribution of annotated labels.
This gives a measure of how well-calibrated
the model is with respect to the true annotator
distribution. We stratify this measure by the
entropy of the human annotator distribution.

Accuracy in expectation emulates the typical ac-
curacy computation in an IID empirical risk mini-
mization setting, while accuracy against plurality
allows us to measure accuracy scores above human
performance (assuming the plurality among 100
annotators can be treated as the ground truth).5 We
also include the annotator distribution as a human
reference point (for KL-Divergence, this is 0 by
construction).

Implementation Details
In all of our experiments, we begin with RoBERTa-
Large (Liu et al., 2019), a masked language model
pretrained on a large text corpus comprised of in-
ternet and book corpora. We then attach a classi-
fier head and fine-tune each model according to
the dataset combinations listed in Section 3. The
model was implemented using the AllenNLP li-
brary and trained using the AdamW optimizer to
maximize accuracy on the combined development
sets of the model variant’s respective corpora.

5The accuracy metrics provided for NLI datasets in prac-
tice are somewhere between the two, as the development and
test sets of SNLI and MultiNLI were labeled by 5 annotators
each and the majority label was chosen for the purposes of
evaluation (Bowman et al., 2015; Williams et al., 2018).

4 Results

All results in this section are reported on the SNLI
and MultiNLI development set portions of the
ChaosNLI data. In all graphs, we provide smoothed
kernel density estimates of the distributions over
X and Y values in the margins where appropriate.
Shaded areas around the lines represent 95% confi-
dence intervals.

Accuracy in Expectation Model accuracy
against randomly sampled annotators is shown in
Figure 1. All models exhibit the same overall trend,
approaching or reaching human performance on
the most ambiguous and least ambiguous examples,
with a dip in the middle of the range. Even if adver-
sarial data collection does under-sample ambigu-
ous inputs, we find no noticeable (or significant)
effect on model performance in the low-agreement
regime. A potential reason for this is that the base-
line performance is already so low in these cases
— very close to chance level — that there is little
room for decreasing performance further.

Accuracy against Plurality Model accuracy
against the plurality vote among annotators is
shown in Figure 2. Once again, all models exhibit
the same overall trend. While performance seems
to level off or even increase for some models on
extremely high-ambiguity examples (<50% human
accuracy in expectation), there are too few such
examples for us to draw any reliable conclusions
in this regime.

Perplexity To understand the confidence levels
of our models, we measure the perplexity of their
output distributions and compare it to the perplex-
ity of the human annotator distributions, shown
in Figure 3. Here, there is a clear difference be-
tween ADVERSARIAL and the other models: it
has extremely low perplexity on many more ex-
amples, and high perplexity on very few. Further-
more, while model perplexity is positively corre-
lated with annotator perplexity for all models, the
ADVERSARIAL model is less sensitive to it, with
its perplexity growing less with respect to annota-
tor perplexity. This suggests the adversarial data
collection process may, on aggregate, favor exam-
ples with less ambiguity, skewing the behavior of
the model. The ALL model, which was exposed to
naturalistic data as well, does not display the same
effect.

33

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 1: Model accuracy stratified by human accuracy, relative to a randomly sampled human judgment. Chance
accuracy is approximately 1

3 , and the human baseline (which uses the plurality vote as the prediction) is an upper
bound.

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 2: Model accuracy stratified by human accuracy, relative to the human plurality vote. The early dip in the
human baseline below 50% is from a few cases with tied plurality votes (where we break ties randomly).

34

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 3: Model perplexity relative to annotator perplexity.

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 4: KL-Divergence of model outputs from the annotator distribution, graphed relative to annotator entropy.
Both axes are measured in nats.

35

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 5: Calibration curves for accuracy against a randomly sampled human. As the confidence score, we use the
probability assigned by the model to its prediction.

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 6: Calibration curves for accuracy against the plurality vote among humans. As the confidence score, we use
the probability assigned by the model to its prediction.

36

KL-Divergence To get a sense of how well the
model fits the annotator distributions, we show the
KL-Divergence of the models’ predictions against
the annotator distributions in Figure 4. What we
find is that ADVERSARIAL diverges greatly from
the gold distributions in comparison to CLASSI-
CAL and ALL: it has much higher KL-Divergence
in aggregate, many more examples with high KL-
Divergence, and its KL-Divergence scores grow
more quickly as the entropy of the annotator dis-
tribution increases. The biases in adversarial data
collection, then, have led more to overconfidence
on ambiguous examples than wrong predictions on
unambiguous examples. These results provide sup-
porting evidence for the hypothesis that training
a model on adversarially-collected data may un-
derexpose it to ambiguous examples and that this
could have undesirable effects on its performance.
However, these effects seem to be mitigated with
the additional inclusion of naturalistic data (in the
ALL model).

Calibration Calibration curves are shown in Fig-
ure 5. We find that the ADVERSARIAL model is
highly confident more often than the other mod-
els, and at least in the very-high-confidence regime
(>80% confidence), it has significantly worse cal-
ibration on SNLI (for MultiNLI, the results are
borderline and only for the highest-confidence bin).

We also plot calibration curves relative to the
plurality vote among annotators (Figure 6), which
reflects the assumption that the model’s maximum
output probability reflects its epistemic uncertainty
over the max-probability label. Here, the results
are similar: the ADVERSARIAL model is worse cal-
ibrated in the very-high-confidence regime. Note,
however, that when optimizing to maximize the
likelihood of labels sampled from annotators, the
output probabilities of a perfect model will not
be well-calibrated against a plurality-based ground-
truth. Optimizing for a model calibrated in this way
is an alternative design choice which may require
different training methods.

5 Discussion

In our experiments using SNLI, MultiNLI, and
ANLI, we find that training only on adversarially-
collected data produces similar accuracies across
all regimes of ambiguity, but worse calibration at
high confidence, and more overconfidence on am-
biguous examples. This suggests that the adversar-
ial data collection process may bias the model by

favoring less ambiguous examples, but there are
other potential interpretations of our results.

In particular, the observed miscalibration of AD-
VERSARIAL may the result of a more general do-
main shift between SNLI/MultiNLI and ANLI.
This could explain why adding SNLI and MultiNLI
to training, as in the ALL model, eliminates the ef-
fect. However, one might also expect to see a clear
difference in accuracy as well if this were the is-
sue. It’s also worth noting that the SNLI and MNLI
training sets are larger than ANLI’s (see Table 1),
which could explain why the ALL model behaves
similarly to CLASSICAL. It remains an open ques-
tion how little naturalistic (or, in-domain) data may
be sufficient to mitigate the overconfidence issues
we observe.

Some notable trends hold for all models we test.
First, they all perform worse on ambiguous exam-
ples (Figure 1, Figure 2). This may be in part due to
the relative scarcity of such examples in the training
data or the relative difficulty of learning to model
them. Second, they all demonstrate overconfidence,
with model perplexity growing slower than human
perplexity (Figure 3) and relatively poor calibration
at high confidence levels (Figure 6). Even though
augmenting training with adversarially-collected
data has been shown to improve robustness in some
settings (Bartolo et al., 2021a; Vidgen et al., 2021),
our results do not yet show any benefits to calibra-
tion on ambiguous examples in existing data.

Finally, while we hypothesize that the overconfi-
dence issue with training on adversarial data arises
from filtering for annotator agreement, it is also
possible that for ANLI, the adversarial annotators
found examples that were less ambiguous in the
first place (as annotators might, for example, want
to focus on sure-fire model mistakes). Williams
et al. (2022) found that about 5% of examples in
ANLI “could reasonably be given multiple correct
labels,” suggesting a low level of ambiguity, but
this was by the judgment of a single expert and may
not correspond to the full variation in label assign-
ment seen with crowdsourced annotators (which
could potentially be investigated using the origi-
nal unfiltered ANLI data). Measuring, controlling,
managing, or representing ambiguity in adversarial
annotation should be an interesting direction for
future work, perhaps incorporating insights from
recent work about construal (Trott et al., 2020;
Pavlick and Kwiatkowski, 2019), explicit disam-
biguation (Min et al., 2020), model training dynam-

37

ics (Swayamdipta et al., 2020; Liu et al., 2022), and
other model-in-the-loop adversarial data collection
efforts (Bartolo et al., 2020, 2021b; Vidgen et al.,
2021; Potts et al., 2021).

6 Conclusion

We have shown that training only on adversarially-
collected data, at least in the case of the Adversarial
NLI (ANLI) dataset, can produce undesirable per-
formance characteristics in the resulting models. In
particular, when tested on SNLI and MultiNLI data,
these models produce output distributions that are
much further from annotator distributions and fail
to accurately convey annotator uncertainty, with
highly confident predictions even on highly am-
biguous examples. It is also possible that adver-
sarial training in this setting could produce lower
prediction accuracy in regimes of low human agree-
ment, but baseline accuracy is already so low for
our models and data, and there are so few examples
in the extremely-ambiguous regime, that such an
effect is hard to find.

In our results, if a large amount of naturalistic
data is also included in training (as in the ALL

model) — as is standard practice — the overcon-
fidence problem is mitigated. This is encouraging,
as any adversarially-collected data must start with
some naturalistic data to construct the initial adver-
sary. However, it remains an open question how
little naturalistic data is sufficient; a large enough
seed corpus may be beneficial for avoiding such
issues in a setting of dynamic adversarial data col-
lection (Wallace et al., 2022). Future work can in-
vestigate this question, as well as how using full an-
notator distributions at training time (Zhang et al.,
2021) or model calibration techniques may further
help models deal with ambiguous inputs.

Acknowledgments

We would like to thank Ludwig Schmidt for early
comments on this project, Ofir Press for providing
entertainment, and the anonymous reviewers for
their useful feedback.

References
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and

David Lopez-Paz. 2020. Invariant risk minimization.

Max Bartolo, Alastair Roberts, Johannes Welbl, Sebas-
tian Riedel, and Pontus Stenetorp. 2020. Beat the AI:

Investigating adversarial human annotation for read-
ing comprehension. Transactions of the Association
for Computational Linguistics, 8:662–678.

Max Bartolo, Tristan Thrush, Robin Jia, Sebastian
Riedel, Pontus Stenetorp, and Douwe Kiela. 2021a.
Improving question answering model robustness with
synthetic adversarial data generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8830–8848, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Max Bartolo, Tristan Thrush, Sebastian Riedel, Pontus
Stenetorp, Robin Jia, and Douwe Kiela. 2021b. Mod-
els in the loop: Aiding crowdworkers with generative
annotation assistants.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Wen-tau Yih, and Yejin
Choi. 2020. Abductive commonsense reasoning. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew Peters, Ashish
Sabharwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 1078–1088. PMLR.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Proceedings of the First international con-
ference on Machine Learning Challenges: evaluating
Predictive Uncertainty Visual Object Classification,
and Recognizing Textual Entailment, pages 177–190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

38

Allyson Ettinger, Sudha Rao, Hal Daumé III, and
Emily M. Bender. 2017. Towards linguistically gen-
eralizable NLP systems: A workshop and shared task.
In Proceedings of the First Workshop on Building Lin-
guistically Generalizable NLP Systems, pages 1–10,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Laurent El Ghaoui and Hervé Lebret. 1997. Robust
solutions to least-squares problems with uncertain
data. SIAM J. Matrix Anal. Appl., 18(4):1035–1064.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), volume 2, pages
107–112. Association for Computational Linguistics.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Lo-
gan Engstrom, Brandon Tran, and Aleksander Madry.
2019. Adversarial examples are not bugs, they are
features. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mo-
hit Bansal, Christopher Potts, and Adina Williams.
2021. Dynabench: Rethinking benchmarking in NLP.
CoRR, abs/2104.14337.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 188–197. Association for Computational
Linguistics.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022. Wanli: Worker and ai collaboration
for natural language inference dataset creation.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversarial
attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. AmbigQA: Answering am-
biguous open-domain questions. In Proceedings of

the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 5783–
5797, Online. Association for Computational Lin-
guistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020a. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020b. What
can we learn from collective human opinions on nat-
ural language inference data? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9131–9143,
Online. Association for Computational Linguistics.

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
disagreements in human textual inferences. Transac-
tions of the Association for Computational Linguis-
tics, 7:677–694.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen.
2016. Causal inference by using invariant prediction:
identification and confidence intervals. Journal of
the Royal Statistical Society: Series B (Statistical
Methodology), 78(5):947–1012.

Jason Phang, Angelica Chen, William Huang, and
Samuel R. Bowman. 2021. Adversarially constructed
evaluation sets are more challenging, but may not be
fair. CoRR, abs/2111.08181.

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and
Douwe Kiela. 2021. DynaSent: A dynamic bench-
mark for sentiment analysis. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2388–2404, Online. As-
sociation for Computational Linguistics.

Paul Röttger, Bertie Vidgen, Dirk Hovy, and Janet B.
Pierrehumbert. 2022. Two contrasting data annota-
tion paradigms for subjective nlp tasks. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Seattle,
WA. Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adversar-
ial winograd schema challenge at scale. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8732–8740.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),

39

pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Sean Trott, Tiago Timponi Torrent, Nancy Chang, and
Nathan Schneider. 2020. (Re)construing meaning in
NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5170–5184, Online. Association for Computational
Linguistics.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1667–1682, Online. Association for Computa-
tional Linguistics.

Abraham Wald. 1945. Statistical decision functions
which minimize the maximum risk. Annals of Math-
ematics, 45(2):265–280.

Eric Wallace, Adina Williams, Robin Jia, and Douwe
Kiela. 2022. Analyzing dynamic adversarial training
data in the limit. In Findings of the Association for
Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. SuperGLUE: A
multi-task benchmark and analysis platform for
natural language understanding. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 3261–
3275. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Adina Williams, Tristan Thrush, and Douwe Kiela.
2022. ANLIzing the adversarial natural language
inference dataset. In Proceedings of the Society for
Computation in Linguistics 2022, pages 23–54, on-
line. Association for Computational Linguistics.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. SWAG: A large-scale adversarial dataset

for grounded commonsense inference. In Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 93–104, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Shujian Zhang, Chengyue Gong, and Eunsol Choi. 2021.
Learning with different amounts of annotation: From
zero to many labels. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7620–7632, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Xinliang Frederick Zhang and Marie-Catherine
de Marneffe. 2021. Identifying inherent disagree-
ment in natural language inference. In Proceedings
of the 2021 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4908–4915, Online. Association for Computational
Linguistics.

40

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 41 - 52
July 14, 2022 ©2022 Association for Computational Linguistics

longhorns at DADC 2022: How many linguists does it take to fool a
Question Answering model? A systematic approach to adversarial attacks.

Venelin Kovatchev1�* Trina Chatterjee3* Venkata S Govindarajan2*
Jifan Chen3 Eunsol Choi3 Gabriella Chronis2 Anubrata Das1 Katrin Erk2

Matthew Lease1 Junyi Jessy Li2 Yating Wu4 Kyle Mahowald2*
* Contributors towards the official submission

1 School of Information, The University of Texas at Austin
2 Department of Linguistics, The University of Texas at Austin

3 Department of Computer Science, The University of Texas at Austin
4 Department of Electrical and Computer Engineering, The University of Texas at Austin

Abstract

Developing methods to adversarially challenge
NLP systems is a promising avenue for improv-
ing both model performance and interpretabil-
ity. Here, we describe the approach of the team
“longhorns” on Task 1 of the The First Work-
shop on Dynamic Adversarial Data Collection
(DADC), which asked teams to manually fool
a model on an Extractive Question Answering
task. Our team finished first, with a model er-
ror rate of 62%.1 We advocate for a systematic,
linguistically informed approach to formulat-
ing adversarial questions, and we describe the
results of our pilot experiments, as well as our
official submission.

1 Introduction

Rapid progress in NLP has resulted in systems ob-
taining apparently super-human performance on
popular benchmarks such as GLUE (Wang et al.,
2018), SQUaD (Rajpurkar et al., 2016), and SNLI
(Bowman et al., 2015). Dynabench (Kiela et al.,
2021) proposes an alternative approach to bench-
marking: a dynamic benchmark wherein a human
adversary creates examples that can “fool” a state-
of-the-art model but not a human language user.
The idea is that, by generating and compiling ex-
amples that fool a particular system, the commu-
nity can gain a better idea of that system’s actual
strengths and weaknesses, as well as ideas and data
for iteratively improving it.

There is no straightforward recipe, however, for
generating successful adversarial examples. To
contribute to that knowledge base, this paper de-
scribes the strategy used by team “longhorns” in
Task 1 of The First Workshop on Dynamic Ad-
versarial Data Collection (DADC), which was on

�Primary author and coordinator (venelin@utexas.edu)
1The results and the team ranking are pending validation

from the organizers of the task at the time of the submission.

Extractive Question Answering (answering a ques-
tion about a passage by pointing to a particular span
of text within that passage).2 We focus not only on
describing the details of our strategy, but also on
our process for approaching the task. At the time of
this paper submission, pending expert validation of
the results, our team ranked first in the competition,
obtaining 62% Model Error Rate (MER).

Our approach towards creating adversarial ex-
amples was designed to be systematic, analytical,
and draw on linguistically informed ideas. We first
compiled a list of linguistically inspired “attack
strategies” and used it to create adversarial exam-
ples in a systematic manner. We then analyzed
some existing biases of the model-in-the-loop and
its performance on a variety of different attacks.
We used this piloting phase to select the best per-
forming attacks for the official submission.

Based on the approaches that were most suc-
cessful both in our pilot studies and in our official
submission, we posit that the following broad areas
should be of particular interest for theoretically mo-
tivated adversarial attacks on contemporary NLP
systems, as evidenced by their strong performance
on our target task:

• Taking advantage of models’ strong priors.
The model was proficient at identifying the
correct kind of named entity being asked for
(e.g., a person for a "who" question, a place
for a "where" question), but was biased to give
answers which were salient (either topically or
because they appeared first (Ko et al., 2020))
or which had high lexical overlap with the
question. Thus, picking a distractor with the
same entity type as the target answer (e.g.,
another person mentioned in the text when

2https://dadcworkshop.github.io/
shared-task/

41

the question was a “who" question) was often
effective. This result is broadly consistent
with observations that modern NLP systems
can perform well in the general case but can be
biased towards frequency-based priors (e.g.,
Wei et al., 2021) that mean they are sometimes
“right for the wrong reasons” (McCoy et al.,
2019).

• Using language that is linguistically tax-
ing for humans (and machines) to process.
Psycholinguists who study human language
processing often study constructions that are
grammatical but difficult for humans to pro-
cess in real time, such as garden path sen-
tences (Frazier and Rayner, 1982; Ferreira and
Henderson, 1991) and complex coreference
resolution (Kaiser and Fedele, 2019; Durrett
and Klein, 2013). We found that the model
was indeed often fooled by questions that in-
cluded these types of constructions. While we
did not collect any human data, the sentences
that fooled the model are likely to be hard
for humans as measured by tests of real-time
processing difficulty (e.g., eye tracking, self-
paced reading), even though humans would be
able to successfully process these sentences
given enough time.

• Tapping into domain-general, non-
linguistic reasoning. We found that asking
questions which do not require mere linguistic
processing but require other kinds of rea-
soning (e.g., numerical reasoning, temporal
reasoning, common-sense reasoning, list
manipulation) were hard for the model. This
result is consistent with prior work showing
that language models struggle with these
kinds of reasoning tasks (Marcus, 2020;
Elazar et al., 2021; Talmor et al., 2020) and
may be more generally explained by evidence
from cognitive science that these kinds of
reasoning tap into cognitive processes that are
distinct from linguistic processing (Diachek
et al., 2020; Blank et al., 2014).

Because these strategies and this general ap-
proach are broad and theoretically motivated, we
believe that our methods could be used to generate
adversarial examples on other Natural Language
Understanding tasks besides Question Answering.
In what follows, we characterize our approach in

both the pilot phase and official submission, pro-
vide our list of attack strategies, and discuss the
limitations of the task and model.

2 Task Definition

In Task 1 of DADC, titled “Better Annotators”,
each participating team submits 100 “official” ex-
tractive question answering (QA) examples through
the Dynabench platform. The organizers of the
shared task provide short passages as context and
the participants have to create questions that “can
be correctly answered from a span in the passage
and DO NOT require a Yes or No answer”. The ob-
jective is to find as many model-fooling examples
as possible – the winning team is the one with the
highest validated model error rate (vMER)3.

The competition uses Dynabench (Kiela et al.,
2021): “an open-source platform for dynamic
dataset creation and model benchmarking”. Dyn-
abench aims to facilitate human-and-model-in-the-
loop dataset creation. The annotators’ aim to gen-
erate examples that will be misclassified by an
automated model, but can be answered correctly
by competent human speakers. Dynabench has
been used to create data for Question Answering
(Kaushik et al., 2021), Natural Language Inference
(Williams et al., 2022), Online Hate Detection (Vid-
gen et al., 2021), and Sentiment Analysis (Potts
et al., 2021), among others.

3 Approach

Our team consisted of faculty, postdocs, and stu-
dents from the UT Austin linguistics department,
computer science department, information school,
and electrical and computer engineering depart-
ment.

We approached the problem of creating adver-
sarial attacks in a systematic manner, informed by
ideas from computational linguistics, psycholin-
guistics, and theoretical linguistics. We composed
a list of linguistic phenomena and reasoning capa-
bilities that we hypothesized would be difficult for
a state-of-the-art QA model. We then used some of
those phenomena to create our official submission
of adversarial examples. While the list is not ex-
haustive, it covers a wide range of potential attack
strategies and can be used to guide the creation of
adversarial examples for other tasks and systems.

3For full instructions, see https://dadcworkshop.
github.io/shared-task/

42

Separate from our official submission for the
competition, we ran a series of pilot experiments in
which we used the list as a guide for experimenting
with a variety of strategies for creating adversarial
example. To ensure a fair and competitive official
submission, all pilot experiments were carried out
either before the official start of the shared task or
after the official submission was made.

Our objective when evaluating the different ad-
versarial strategies was to explore the space of po-
tential attack strategies to determine the most suc-
cessful ones for fooling the model. For each strat-
egy, we measured the Model Error Rate (MER) on
a small sample of example, and we also analyzed
how frequently the attack can be used.

Based on the results of these pilot experiments,
we targeted the best strategies for our official sub-
mission. Official question submissions were made
by subsets of the team, in group sizes ranging from
1 to around 10. Since not all strategies can be used
for all example passages, we used the specific pas-
sages we were presented with in order to guide our
decision about what strategy to focus on for a par-
ticular question. When more than one participant
was present, question submissions were made by
consensus agreement among those present.

Anecdotally, we found that the attacks were
often more successful when multiple team mem-
bers are present, with each member hypothesiz-
ing model behaviors from diverse angles. Overall,
we found the adversarial question generation pro-
cess nontrivial, taking 5-10 minutes per passage,
although we became faster over time. We also
chose to skip passages occasionally when the pas-
sage covers very well-known entity, is too simple,
or is not promising to most of our strategies (not
having distractor entities, etc). We generated multi-
ple questions for promising passages.

4 Pilot Experiments: Evaluating
Adversarial Strategies

Many of our “adversarial strategies” are inspired by
prior work in adversarial data generation and unit
testing for Question Answering, Natural Language
Inference, and Paraphrase Identification (Glockner
et al., 2018; Kovatchev et al., 2018; Naik et al.,
2018; Dua et al., 2019; Kovatchev et al., 2019; Nie
et al., 2019; Wallace et al., 2019; Bartolo et al.,
2020; Gardner et al., 2020; Hossain et al., 2020;
Jeretic et al., 2020; Kaushik et al., 2020; Ribeiro
et al., 2020; Saha et al., 2020). We propose the

following linguistic and reasoning phenomena as a
source for potential adversarial attacks:

Lexical knowledge Examples that require under-
standing lexical properties and in partiuclar lexi-
cal entailments that require knowledge of hyper-
nyms/hyponyms (e.g., knowing that dog => ani-
mal, but animal =/> dog), named entities and their
properties (e.g., knowing Shakira is a singer), nom-
inalization (e.g., knowing “a submission” implies
something has been submitted), (a)symmetrical
relations (e.g., knowing that John marrying Mary
implies Mary marrying John, but John loving Mary
does not imply Mary loving John), polarity sub-
stitutions (e.g., knowing that a movie is good im-
plies that it is not bad), converse substitution (e.g.,
knowing that if something has been provided, it has
been received), comparisons with antonyms (e.g.,
knowing that if Clara is the tallest, she is not shorter
than Mary), reasoning about modal verbs (e.g.,
understanding that if something could happen, that
does not mean it did happen), and reasoning about
quantifers (e.g., knowing that if some swans are
white, that does not imply all swans are white).

Syntax and Discourse knowledge Examples
that require syntactic or discourse-level understand-
ing such as Genitives (e.g., knowing that elephant’s
foot = the foot of the elephant) and Datives (e.g.,
knowing that give her a cake = give a cake to her).
Relative Clauses can be used in attacks to either
include distracting information (e.g., “Maria, who
is the president of the company” when the correct
answer has nothing to do with Maria’s role in the
company) or to specify the correct referent (e.g.,
“the actor who bought the house” when that actor
must be distinguished from a set of other actors).

When Conjunction or Disjunction appear in
the passage (e.g., John and Mary love strawberries
and cake, but John doesn’t like chocolate), an ad-
versarial question targets the ability of the model
to correctly identify the syntactic scope (e.g.: Who
loves cake and chocolate?). Closely related are the
phenomena of Intersectivity (e.g., knowing that “a
singer and a good man” =/> a good singer) and Re-
strictivity (e.g., understanding that “all my work
due today” =/> all my work).

When a complex prepositional phrase attach-
ment appears in the passage (e.g., “I saw two men
with a telescope in the park”), an adversarial ques-
tion requires disambiguation (e.g., “Who has the
telescope”). Questions based on the Argumenta-

43

Figure 1: An example of “semantic similarity” model bias: when the model is fed a nonsensical question, it responds
with an answer with high semantic overlap with the question.

tive structure require the model to correctly iden-
tify the core arguments (e.g., knowing that “John
broke the vase” implies that “The vase broke”; but
does not imply “John broke.”). This attack can be
further complicated when the same verb appears
multiple times in the passage. Adversarial attacks
based on Ellipsis, Anaphora, and Coreference
test the ability of the model to process long dis-
tance syntactic dependencies.

Negation can appear both in the passage and in
the question. It can be expressed in a variety of
ways: simple (e.g., no, not), adverbial (e.g., never),
pronoun (e.g., nobody), morphological (e.g., un-
finished), lexical (e.g., refuse to), implicit (e.g., I
wish I had a boat), double negation. Adversarial
questions can also target the ability of the model to
identify the scope of negation either in the question
or in the passage.

Garden Path questions (e.g., Who is the di-
rector of the movie directing?) are syntactically
confusing and much-studied in psycholinguistics
for causing processing difficulty in humans (Fra-
zier, 1979).

Questions about Mental States of individuals
are inspired by work in psychology showing that
it can be challenging to reason about the mental
states of others (e.g., knowing that “Why does
Maria think that Sandra is leaving?" could re-
quire a different answer than “Why is Sandra leav-
ing?”(Wellman, 1992; Kovatchev et al., 2020).

Reasoning Questions that require various kinds
of non-linguistic reasoning such as Conditionals
and hypothetical situations (e.g., Who would be
the champion if Mary didn’t lose the final?), Nu-
merical Reasoning (e.g., Who is the second richest
person?), Temporal Reasoning (e.g., What hap-
pened in a specific timeframe?), Commonsense
reasoning (including logical implications, contra-

diction, etc.), and List manipulations (e.g., Which
two of the actors in the list are male?).

Finally, distractor-based attacks make use of
model priors by expanding the question with ad-
ditional information. Meaningful distractors di-
rects the model towards a wrong answer, while the
strategy of adding noise relies on increasing the
complexity of the question.

The different phenomena can appear in the pas-
sages, in the question, or in both. Not every phe-
nomena can be used to generate attacks for every
passage, and the phenomena also appear with differ-
ent frequency in the data. In our pilot experiments
we distributed the different phenomena across the
members of the team. We measured the Model
Error Rate (MER) for the different strategies and
determined how frequently each attack could be
used.

5 Exploring Model Biases

During the pilot experiment step in Section 4 we
found that the model-in-the-loop performs surpris-
ingly well on a variety of different attacks. We
hypothesized that at least in some situations, the
strong performance is due to spurious correlations,
the nature of the underlying language model, and
the nature of the task. We further carried out a set
of experiments to determine some specifics of the
model behavior. We briefly discuss two "shortcuts"
used by the model.

Semantic similarity Figure 1 illustrates the
model bias towards “semantic similarity” on a non-
sensical question. When the model is unsure what
to do, or like in this example, when the question
is not a valid English sentence, it identifies parts
of the context that are similar to the question and
predicts neighboring words. Due to the relatively
short length of most of the passages, this strategy

44

Figure 2: When faced with nonsensical questions, the model will give salient answers of the correct entity type.
The passage is about Texas colonizer Stephen Austin, but the first question is about the Golden Globe awards. The
model confidently answers that Stephen Austin won the Gold Globe for Best Actor in 1997.

often gets the correct answer without actually un-
derstanding the question.

Type of question We noticed that the model is
very good at identifying some properties of the
answer based on the type of question. For example,
a “who” question typically asks for a named entity,
while a “how many” question asks for a quantity. A
strong heuristic adopted by the model is to return an
answer of the correct “type” regardless of the actual
question. Figure 2 illustrates that: neither question
can be answered from the passage, but the model
makes a guess based on the type of question. Once
again, the short length of the passages and the fact
that they typically contain just a few tokens of the
correct “type” artificially boosts the performance
of the model.

In our official submission, we used those model
biases to increase the difficulty of the adversarial
examples. When possible, we used those biases to
guide the model towards a wrong answer. In pas-
sages where we could not confuse the model (e.g.:
only one named entity in a “who” question), we
rephrased the questions in such a way that makes it
harder for the model to use heuristics.

6 Official Submission

After analyzing and discussing the results of our
preliminary experiments, for our official submis-
sion we focus on the following strategies: using
distractors, numerical reasoning, temporal reason-
ing, garden path questions, complex coreference,
list manipulations, and common-sense reasoning.

We also used the model biases to either confuse the
model or reduce it’s ability to rely on heuristics. In
the rest of this section we briefly describe each of
our strategies and provide examples.

6.1 Taking advantage of model priors

Distractors One of the most successful and easy-
to-use adversarial strategies was using distractors.
An example of that strategy can be seen in Figure
3: the phrasing of question has a high degree of
similarity with the portion of the text talking about
narrow belts (“between X and Y AU and relatively
sharp boundaries”), however the correct response
is “wide belts” due to the specified sizes. The
“distractor” strategy can be used frequently. We
often combined the distractor strategies with other
strategies. For example, in Figure 3, we combine
it with “numerical reasoning”. Anecdotally, we
found the distractors to be most successful when
the correct answer was not the most salient entity
of its type in the passage (e.g., targeting a briefly
mentioned director in a passage mostly about one
particular actor) and when there were many other
entities of the desired type available, as opposed
to just 1 or 2 (e.g., a “who" question for a passage
that mentions 10 people is more challenging than a
“who" question for a passage that mentions only 1
person).

6.2 Linguistically difficult utterances

Garden Path Questions Figure 4 shows an ex-
ample of a garden path question (Frazier, 1979).

45

Figure 3: An example of “distractor” and “numerical reasoning” strategies. The model has to reason that “between
80 and 90” is greater than the 50 AU boundary identified in the passage.

Figure 4: “Garden path” strategy. Until the very end of the sentence, the question seems to be about something else.

Until the last word, the question appears to be ask-
ing about “the person that Holly approached, along
with Valens and Richardson” (to which the answer
would be Dion). But the last word makes it clear
that the reader needs to reparse the question, to see
that it is actually asking who calls that person (i.e.,
Dion) – which makes the answer Holly. The model
is unable to correctly process the complex syntac-
tic structure of the sentence and responds “Dion”.
Garden path questions are easier to generate than
temporal and numerical reasoning questions since
they can be generated for a wider variety of texts,
but we found that the model can often handle even
quite complex syntactic constructions. We hypoth-
esize that this is mainly due to the length of the
passages and the “type of question” model bias.

Anaphora and Coreference Adversarial exam-
ples based on anaphora and coreference can require

the model to demonstrate the ability to resolve long
distance syntactic dependencies and often require
making common-sense inferences as well. In Fig-
ure 5, the founders were worried about their own
death. To correctly respond to the question, the
model first has to identify “their” as the answer and
then resolve the coreference between “their” and
“the founders”. Instead, the model just returns a
salient named entity. Examples based on anaphora
and coreference are relatively infrequent, as they
require multiple entities and potentially ambiguous
coreference in the passage.

6.3 Non-linguistic reasoning

Numerical Reasoning Adversarial examples
based on numerical reasoning require the model
to carry out simple mathematical calculations or
comparisons to identify the correct answer. For
example, in Figure 3, the model had to calculate

46

Figure 5: “Coreference” strategy. The model has to figure out that the word “their" refers to the founders.

Figure 6: “Temporal reasoning” strategy. The model has to understand that June 13, 1935 is during the period when
the Opry moved to the Hillsboro Theatre.

Figure 7: “List manipulations” strategy. The model has to identify the 9 composers asked for, but only gives 3.

that “between 80 and 90” is “over 50” in order to
answer correctly.

Temporal Reasoning Adversarial examples
based on temporal reasoning require the model to
reason about the chronological order of events and
the different states of the world at different points
in time. In the example shown in Figure 6 the Opry
moves to Hillsboro in 1934 and then to Dixie Taber-
nacle in 1936. We ask the model for a date that is

not mentioned explicitly (June 13, 1935). The cor-
rect answer is “Hillsboro”, but the model is fooled
by recognizing a portion of the date (June 13) and
predicts Dixie Tabernacle.

Temporal-based examples are relatively rare, as
they require the passage to have multiple dates as
well as multiple different events and world states
associated with the dates. However, when available,
temporal-based attacks were very successful.

47

Figure 8: “Common-sense reasoning” strategy. The model has to flexibly adapt the naming convention to a
hypothetical example: a kind of creative reasoning task that humans do easily but that models often struggle with.

List Manipulations We used two different strate-
gies to create adversarial examples based on lists.
Figure 7 illustrates one of them. The question re-
quests the full list of 9 composers, while the model
only extracts the first three due to the syntactic
structure of the sentence. The second list-based
strategy asks for a subset of a list that fulfills cer-
tain criteria. List-based adversarial attacks are rel-
atively infrequent in a single passage setting we
study.

Common-sense Reasoning Adversarial attacks
based on common sense reasoning test the basic
understanding of the world of the model or its abil-
ity to reason about different entities and objects.
In Figure 8, the model is required to break apart
the string “737-300C” and “737-200C” correctly
and then reason about the naming convention: we
are told that “C” stands for cargo and so the hy-
pothetical “737-300C” should also have the cargo
feature.

7 Discussion

A fundamental feature of language is that it is a
cooperative enterprise (Clark, 1996) that enables
efficient communication between parties (Gibson
et al., 2019). Therefore, in ordinary language, peo-
ple typically talk about discourse-relevant entities
(Sperber and Wilson, 1986), avoid difficult syn-
tactic constructions (Futrell et al., 2015; Gibson,
1998), and structure information in a way that is
easy to produce and understand (MacDonald, 2013;
Levy, 2008). If anything unifies all of our most
successful attack strategies, it is that they eschew
these principles in the context of the given task
and passages. Instead, successful attacks ask about
surprising aspects of the text (e.g., by including

distractors), often using complex language (e.g.,
garden path sentences and complex coreference
resolution) and reasoning (e.g., temporal and nu-
meric reasoning).

So, in some ways, the successful attack ques-
tions are less likely to be encountered in ordinary
language use (leading to claims that adversarial
examples are brittle, e.g., Phang et al., 2021; Bow-
man, 2022). But another key property of human
language is that it is flexible and generative, such
that people can produce and understand surpris-
ing and unexpected utterances. To that end, we
think these adversarial questions are a fair target
for improving systems precisely because they are
linguistically unusual: human language is not just
for the “average case" but can be used to express
meanings that are subtle, interesting, and compli-
cated.

Perhaps because these questions also require hu-
mans to think creatively outside their ordinary lin-
guistic experience, we also found that we achieved
better performance when we had larger groups of
people working on generating questions at once, so
that there was a wider diversity of ideas.

Indeed, while some questions may be less likely
to appear in a “extractive question answering”
dataset, they are understandable by humans and
are likely to be useful for efficient communication
in real-world settings. The objective behind “ex-
tractive QA” is that a machine should answer any
question that a human would, given the passage.
A variety of real-world tasks can be reduced to
extractive QA and in many cases the “correct” pas-
sage corresponding to the question is not known
a priori. Asking questions such as “Where was X
at a time Y” and “What is the difference between
737-200 and 737-200C” may be less natural for a

48

human that has access to the passage, but are ques-
tions that someone would, for example, ask their
automated assistant. Therefore, a well functioning
model needs to embrace the creativity and be able
to correctly answer adversarial questions.

Finally, the adversarial attacks that we present
are not just interesting from the scientific point
of view, but also have clear practical implications.
Most of the attacks correspond to specific capaci-
ties of the model-in-the-loop such as coreference
resolution, numerical and temporal reasoning. The
consistently high MER indicates that the model un-
derperforms in tasks that require those capacities.

Our approach towards creating adversarial ex-
amples allows us to implicitly evaluate the perfor-
mance of the model and the quality of the data with
respect to a wide variety of linguistic and reasoning
categories. Overall, we found that the model-in-the-
loop performs impressively good on the majority
of question types. Only a small subset of the strate-
gies could consistently obtain above 50% MER
and these strategies did not necessarily work for all
questions. For instance, questions with relatively
few possible entities matching the question type
meant fewer possibilities for distractors.

The performance of the model is also a function
of the varying difficulty of the passages. We found
the majority of the passages to be short declarative
texts with a simple syntactic structure, few named
entities, and low amount of information. Generat-
ing and answering questions from those passages is
a rather trivial task. The selection of more complex
paragraphs will likely result in a lower performance
of the model and a lot more possibilities for creative
and successful adversarial attacks.

8 Conclusions

In this paper we presented the strategies used by
team “longhorns” for Task 1 of DADC: generat-
ing high-quality adversarial examples. We obtain
the best results in the competition by taking a sys-
tematic approach, using linguistic knowledge, and
working in a collaborative environment.

Our approach outperforms prior work in terms
of model error rate and also provides a variety of
insights. For instance, our pilot analysis covers
a large number of linguistic and reasoning phe-
nomena and explores different model biases. This
facilitates a more in-depth analysis of the perfor-
mance of the model. The systematic approach also
gives us insight into the quality and difficulty of

the data.
Our strategies for generating adversarial exam-

ples are not limited to extractive question answer-
ing. They can be adopted at larger scale to improve
the quality of models and data on a variety of dif-
ferent tasks. We believe that our work opens new
research directions with both scientific and practi-
cal implications.

Acknowledgements

This research was supported in part by NSF grants
IIS-1850153 and IIS-2107524, as well as by Wipro,
the Knight Foundation, the Micron Foundation, and
by Good Systems,4 a UT Austin Grand Challenge
to develop responsible AI technologies. The state-
ments made herein are solely the opinions of the
authors and do not reflect the views of the sponsor-
ing agencies.

References
Max Bartolo, Alastair Roberts, Johannes Welbl, Sebas-

tian Riedel, and Pontus Stenetorp. 2020. Beat the
AI: investigating adversarial human annotations for
reading comprehension. CoRR, abs/2002.00293.

Idan Blank, Nancy Kanwisher, and Evelina Fedorenko.
2014. A functional dissociation between language
and multiple-demand systems revealed in patterns of
bold signal fluctuations. Journal of neurophysiology,
112(5):1105–1118.

Samuel Bowman. 2022. The dangers of underclaim-
ing: Reasons for caution when reporting how NLP
systems fail. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7484–7499, Dublin,
Ireland. Association for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Herbert H Clark. 1996. Using language. Cambridge
university press.

Evgeniia Diachek, Idan Blank, Matthew Siegelman,
Josef Affourtit, and Evelina Fedorenko. 2020. The
domain-general multiple demand (md) network does
not support core aspects of language comprehension:
a large-scale fmri investigation. Journal of Neuro-
science, 40(23):4536–4550.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.

4http://goodsystems.utexas.edu/

49

DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1971–1982,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Yanai Elazar, Hongming Zhang, Yoav Goldberg, and
Dan Roth. 2021. Back to square one: Artifact detec-
tion, training and commonsense disentanglement in
the Winograd schema. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 10486–10500, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Fernanda Ferreira and John M Henderson. 1991. Re-
covery from misanalyses of garden-path sentences.
Journal of Memory and Language, 30(6):725–745.

Lyn Frazier and Keith Rayner. 1982. Making and cor-
recting errors during sentence comprehension: Eye
movements in the analysis of structurally ambiguous
sentences. Cognitive psychology, 14(2):178–210.

Lynn Frazier. 1979. On comprehending sentences: Syn-
tactic parsing strategies. ETD Collection for Univer-
sity of Connecticut.

Richard Futrell, Kyle Mahowald, and Edward Gibson.
2015. Large-scale evidence of dependency length
minimization in 37 languages. Proceedings of the Na-
tional Academy of Sciences, 112(33):10336–10341.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. Cognition, 68(1):1–76.

Edward Gibson, Richard Futrell, Steven P Piantadosi,
Isabelle Dautriche, Kyle Mahowald, Leon Bergen,
and Roger Levy. 2019. How efficiency shapes human
language. Trends in cognitive sciences, 23(5):389–
407.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings

of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 650–655, Melbourne, Australia. Association
for Computational Linguistics.

Md Mosharaf Hossain, Venelin Kovatchev, Pranoy
Dutta, Tiffany Kao, Elizabeth Wei, and Eduardo
Blanco. 2020. An analysis of natural language infer-
ence benchmarks through the lens of negation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9106–9118, Online. Association for Computa-
tional Linguistics.

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and
Adina Williams. 2020. Are natural language infer-
ence models IMPPRESsive? Learning IMPlicature
and PRESupposition. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8690–8705, Online. Association
for Computational Linguistics.

Elsi Kaiser and Emily Fedele. 2019. Reference resolu-
tion. The Oxford Handbook of Reference.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Divyansh Kaushik, Douwe Kiela, Zachary C. Lipton,
and Wen-tau Yih. 2021. On the efficacy of adversar-
ial data collection for question answering: Results
from a large-scale randomized study. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6618–6633, Online.
Association for Computational Linguistics.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking benchmarking in NLP. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4110–4124, Online. Association for Computa-
tional Linguistics.

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo
Kim, and Jaewoo Kang. 2020. Look at the first sen-
tence: Position bias in question answering. ArXiv,
abs/2004.14602.

Venelin Kovatchev, M. Antònia Martí, and Maria
Salamó. 2018. ETPC - a paraphrase identification
corpus annotated with extended paraphrase typology
and negation. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

50

Venelin Kovatchev, M. Antonia Marti, Maria Salamo,
and Javier Beltran. 2019. A qualitative evaluation
framework for paraphrase identification. In Pro-
ceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP
2019), pages 568–577, Varna, Bulgaria. INCOMA
Ltd.

Venelin Kovatchev, Phillip Smith, Mark Lee, Imogen
Grumley Traynor, Irene Luque Aguilera, and Rory
Devine. 2020. “what is on your mind?” automated
scoring of mindreading in childhood and early adoles-
cence. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 6217–
6228, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126–1177.

Maryellen C. MacDonald. 2013. How language pro-
duction shapes language form and comprehension.
Frontiers in Psychology, 4:226.

Gary Marcus. 2020. The next decade in ai: four steps
towards robust artificial intelligence. arXiv preprint
arXiv:2002.06177.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019.
Analyzing compositionality-sensitivity of nli models.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):6867–6874.

Jason Phang, Angelica Chen, William Huang, and
Samuel R Bowman. 2021. Adversarially constructed
evaluation sets are more challenging, but may not be
fair. arXiv preprint arXiv:2111.08181.

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and
Douwe Kiela. 2021. DynaSent: A dynamic bench-
mark for sentiment analysis. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2388–2404, Online. As-
sociation for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of

the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Swarnadeep Saha, Yixin Nie, and Mohit Bansal. 2020.
ConjNLI: Natural language inference over conjunc-
tive sentences. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 8240–8252, Online. As-
sociation for Computational Linguistics.

Dan Sperber and Deirdre Wilson. 1986. Relevance:
Communication and cognition, volume 142. Cite-
seer.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. olmpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743–758.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1667–1682, Online. Association for Computa-
tional Linguistics.

Eric Wallace, Pedro Rodriguez, Shi Feng, Ikuya Ya-
mada, and Jordan Boyd-Graber. 2019. Trick me if
you can: Human-in-the-loop generation of adversar-
ial examples for question answering. Transactions of
the Association for Computational Linguistics, 7:387–
401.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Jason Wei, Dan Garrette, Tal Linzen, and Ellie Pavlick.
2021. Frequency effects on syntactic rule learning
in transformers. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 932–948, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Henry M Wellman. 1992. The child’s theory of mind.
The MIT Press.

51

Adina Williams, Tristan Thrush, and Douwe Kiela.
2022. ANLIzing the adversarial natural language
inference dataset. In Proceedings of the Society for
Computation in Linguistics 2022, pages 23–54, on-
line. Association for Computational Linguistics.

52

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 53 - 60
July 14, 2022 ©2022 Association for Computational Linguistics

Collecting high-quality adversarial data for machine reading
comprehension tasks with humans and models in the loop

Damian Y. Romero Diaz, , Magdalena Anioł, John Culnan
damian@explosion.ai∗, magda@explosion.ai, jmculnan@arizona.edu

Explosion, University of Arizona

Abstract

We present our experience as annotators in the
creation of high-quality, adversarial machine-
reading-comprehension data for extractive QA
for Task 1 of the First Workshop on Dynamic
Adversarial Data Collection (DADC). DADC
is an emergent data collection paradigm with
both models and humans in the loop. We set
up a quasi-experimental annotation design and
perform quantitative analyses across groups
with different numbers of annotators focusing
on successful adversarial attacks, cost analy-
sis, and annotator confidence correlation. We
further perform a qualitative analysis of our
perceived difficulty of the task given the dif-
ferent topics of the passages in our dataset and
conclude with recommendations and sugges-
tions that might be of value to people working
on future DADC tasks and related annotation
interfaces.

1 Introduction

We present quantitative and qualitative analyses of
our experience as annotators in the machine read-
ing comprehension shared task for the First Work-
shop on Dynamic Adversarial Data Collection.1.
The shared task was a collection of three sub-tasks
focused on the selection of excerpts from unstruc-
tured texts that best answer a given question (extrac-
tive question-answering). The sub-tasks included:
(A) the manual creation of question-answer pairs
by human annotators, (B) the submission of novel
training data (10,000 training examples), and (C)
the creation of better extractive question-answering
models. In this paper, we focus on our participation
in the the manual creation of question-answer pairs
task dubbed as "Track 1: Better Annotators".

∗Corresponding author.
1https://www.aclweb.org/portal/conten

t/call-participation-shared-task-first-w
orkshop-dynamic-adversarial-data-collect
ion-dadc

Machine reading comprehension (MRC) is a
type of natural language processing task that re-
lies in the understanding of natural language and
knowledge about the world to answer questions
about a given text (Rajpurkar et al., 2016). In some
cases, state-of-the-art MRC systems are close to
or have already started outperforming standard hu-
man benchmarks (Dzendzik et al., 2021). However,
models trained on standard datasets (i.e., collected
in non-adversarial conditions) do not perform as
well when evaluated on adversarially-chosen inputs
(Jia and Liang, 2017).

To further challenge models and make them ro-
bust against adversarial attacks, researchers have
started creating adversarial datasets which contin-
uously change models as they grow stronger. Dy-
namic Adversarial Data Collection (DADC) is an
emergent data collection paradigm explicitly cre-
ated for the collection of such adversarial datasets.
In DADC, human annotators interact with an ad-
versary model or ensemble of models in real-time
during the annotation process (Bartolo et al., 2020)
to create examples that elicit incorrect predictions
from the model (Kaushik et al., 2021). DADC al-
lows for the creation of increasingly more challeng-
ing data as well as improved models and bench-
marks for adversarial attacks (Dua et al., 2019;
Kaushik et al., 2021; Nie et al., 2020).

There is evidence that data collected through ad-
versarial means is distributionally different from
standard data. From a lexical point of view,
Kaushik et al. (2021) note that “what-” and “how-”
questions dominate in adversarial data collection
(ADC) as opposed to “who-” and “when-” ques-
tions in the standard datasets. In the context of
reading comprehension, DADC has been champi-
oned by Bartolo et al. (2020), who observe that
DADC QA datasets are generally syntactically and
lexically more diverse, contain more paraphrases
and comparisons, and often require multi-hop in-
ference, especially implicit inference.

53

Annotation Result Total Single Annotator Two-Annotator Three-Annotator
Sessions Sessions Sessions

Model fooled 45 21 19 5
Model not fooled 43 22 13 8
False negative 10 5 4 1
False positive 2 1 1 0
Total 100 49 37 14

Table 1: Overall annotation results before verification.

Apart from corpus analyses, researchers have
also noted certain limitations of the DADC
paradigm. For instance, Kiela et al. (2021) note
that annotators overfitting on models might lead
to cyclical progress and that the dynamically col-
lected data might rely too heavily on the model
used, which can potentially be mitigated by mixing
in standard data. Similarly, Kaushik et al. (2021)
find that DADC models do not respond well to dis-
tribution shifts and have problems generalizing to
non-DADC tests.

Contributions In this paper, we present our expe-
rience as annotators in the reading comprehension
shared task for the First Workshop on Dynamic
Adversarial Data Collection. Through quantitative
and qualitative analyses of a quasi-experimental
annotation design, we discuss issues such as cost
analysis, annotator confidence, perceived difficulty
of the task in relation to the topics of the passages
in our dataset, and the issues we encountered while
interacting with the system, specifically in rela-
tionship with the commonly-used F1 word-overlap
metric. We conclude with recommendations and
suggestions that might be of value to people work-
ing on future DADC tasks and related annotation
interfaces.

2 Task Description

Track 1 of the First Workshop on Dynamic Adver-
sarial Data Collection consisted in generating 100
reading comprehension questions from a novel set
of annotation passages while competing against the
current state-of-the-art QA model (Bartolo et al.,
2021), which would remain static throughout the
task. Through Dynabench (Kiela et al., 2021),2 an
annotation platform specialized in DADC, anno-
tators would create model-fooling questions that
could be answered with a continuous span of text.
Successful attacks required the annotators to pro-

2https://dynabench.org/

vide explanations of the question and a hypothesis
for the model’s failure. These were then subject to
a post hoc human validation.

2.1 F1 metric and false negatives

During our participation, we discovered two is-
sues with the implementation of the metric used in
Dynabench to decide whether the model had been
fooled or not.

Dynabench uses a word-overlap metric to calcu-
late the success of the model(s)’ responses against
those selected by the annotators (Kiela et al., 2021).
This metric is calculated as the F1 score of the over-
lapping words between the answer selected by the
annotators and the answer predicted by the model,
where model responses with a score above 40% are
labeled as a successful answer for the model. For
example, the answer “New York” would be con-
sidered equivalent to the answer “New York City"
(Bartolo et al., 2020).

In practice, we observed that the F1 metric led
to many false negatives,3 or, in other words, to an-
swers that were considered unsuccessful attacks
from the annotators when, in reality, the model
was wrong. This happened in two different circum-
stances. First, in the form of incomplete answers
where critical information was missing from the
model’s answer, and the answer was still consid-
ered equivalent due to a sufficient word overlap, as
in example A from Table 2.

In this case, since "Tinker Tailor Soldier Spy"
is a movie, it cannot be said that the first movie
and the sequel are equivalent. This behavior was
so common that we decided to turn it into an
adversarial-attack strategy by forcing the model
to provide full answers, which it could not do be-
cause of its strong bias towards short answers. For
example, we asked questions such as "What is the
full location of the plot of the TV show?", for which

3Notice that, from a model-evaluation perspective, these
would be considered false positives.

54

Question Model’s answer Annotators’ answer

A) What was Eric Fellner working on? Tinker Tailor Soldier Spy
A sequel to Tinker Tailor
Soldier Spy

B) At what times is the eastern
5:00 am to 3:30 pm

5:00 am to 6:00 pm,
walkway open to pedestrians only? or 9:00 pm during DST

Table 2: Examples of questions, model answers, and annotators’ answers in the data creation procedure. All
question-answer examples are adapted from the Dynabench dataset.

the model tended to answer with the bare minimum
of information due to being trained using the F1
word-overlap metric.

In other cases, the model selected a different text
span than the one selected by the annotators, as in
example B from Table 2.

In this case, not only is the model’s answer in-
complete but 3:30 pm and 6:00 pm have entirely
different meanings. Cases such as the one above oc-
curred in passages that had two very similar strings
in the text. In these cases, the F1 metric lead Dyn-
abench to score in favor of the model even when
the answer was incorrect. We believe that the an-
swer provided by the annotators, in cases where
annotators are hired as experts in a given domain,
should be considered a gold standard subject to the
validation process. In other cases, when annota-
tions come from crowdsourcing platforms, the F1
metric could be more adequate.

3 Methodology

Our annotator roster consisted of three annotators
with postgraduate degrees in linguistics and natural
language processing. One of the annotators spoke
English as a first language, while the other two
were proficient speakers of English as a second
language who completed their graduate degrees in
English-speaking universities. For the annotation
process, we set up a quasi-experimental design
using convenience sampling where approximately
half of the annotations would be performed by a
single annotator (n=49), and the other half would
be performed synchronously by a group of two or
more annotators (n=51). Because the annotators
live in different time zones, annotator groups did
not remain consistent across group sessions.

During the annotation task, the platform ran-
domly picked a passage, usually of the length of
a short paragraph (of about 160 words on aver-
age) from different topics. Annotators could then
choose to create questions for that passage or skip

it entirely. Annotators skipped passages when we
agreed that it would be difficult to create even a
single question to fool the model.4 Table 1 contains
our overall annotation results by the number of an-
notators. We report our results using the following
typology:

Model fooled: Items marked by Dynabench as
successful annotations.
Model not fooled: Items marked by Dynabench as
unsuccessful annotations.
False negatives: Instances where the model was
fooled, but Dynabench marked them as not fooled.5

False positives: Items marked by Dynabench as
successful annotations but deemed unsuccessful by
the annotators.6

Even though the limited number of examples
does not allow us to draw any strong conclusions
about the annotation task, we find our analyses
worth presenting as a preliminary step for other an-
notators to further reflect on the annotation process
during the planning stages of any DADC task.7

3.1 Model fooled ratio by annotator group

In order to capture if we as annotators are increas-
ingly improving our model-fooling skills, we in-
vestigate the progression of the “model fooled /
model not fooled” ratio throughout the annotation
sessions. Figure 1 summarizes the results.

For the single-annotator group, the progression
seems apparent with a progressive fool ratio of 0,
.44, .50, and .61. Sessions with two annotators do
not have a clear progression (0.57, 0.60, 0.58, and

4We did not keep track of the passages we skipped.
5Mainly due to F1 score problems.
6There are two of these in the dataset and they were prod-

ucts of mistakes the annotators made when selecting the an-
swers on Dynabench that lead to a mismatch between the
question asked and the answer given to the model.

7The code for our analyses can be found at https://gi
thub.com/fireworks-ai/conference-papers/
tree/master/naacl-dadc-2022

55

Figure 1: Model fooled ratio by annotator group by session. False negatives and false positives are excluded.
Missing sessions had a score of zero.

Figure 2: Mean time in seconds spent per annotator for
every successful adversarial attack across groups with
different annotators.

0.62), which may be because annotators did not
remain the same in each session. The worst perfor-
mance happened with the three-annotator sessions
(0.50 and 0.33), which indicates a possible high
degree of disagreement across annotators.

3.2 Annotation costs
We investigate the efficiency of the different an-
notator groups by calculating the mean time per
successful adversarial attack. Formally, we define
annotation group efficiency E(g) as:

E(g) =

∑k
n tn × an
N

Where tn is the total time in seconds spent in
annotation session n, k is the total number of ses-
sions for annotator group g, an is the number of
annotators in the session, and N is the total num-
ber of successful adversarial attacks across all the
annotation sessions for group g. Table 3 shows
annotation efficiency in seconds.

Number of Mean time (s) per
annotators in group successful example

1 1537.04
2 2777.58
3 4423.80

Total mean time 8738.42

Table 3: Mean time in seconds spent per annotator for
every successful adversarial attack across groups with
different annotators.

The single-annotator group took 8h 58’ 58” to
create 21 model-fooling examples, rendering ef-
ficiency of 25’ 37” per successful attack. For
the group annotations, the two-annotator sessions
took 14h 39’ 34” to create 19 model-fooling ex-
amples, with an efficiency of 46’ 17”, while the
three-annotator sessions took 6h 8’ 39” to create
five successful examples with an efficiency of 1h
13’. The total time spent on the task was 29h 46”
11’. Figure 2 shows (in seconds) how the time
increment is almost linear.

3.3 Confidence scores

Lastly, to better understand why annotation times
took longer when working in groups, we investi-
gate the level of confidence agreement between
annotators via correlation. To measure confidence
agreement, annotators individually logged in con-
fidence scores for all of the 100 questions in our
dataset. The scores range between 0 and 3 points,
with three being entirely confident that they would
fool the model.

We first test our data for normality using the

56

"normaltest" function of the Python SciPy library
(Virtanen et al., 2020). After ensuring that normal-
ity tests came out negative across all annotators’
ratings (p < 0.001), we used the Spearman rank
correlation test (Figure 3) as implemented in the
Python Pandas library (McKinney, 2010; Reback
et al., 2022).

Figure 3: Correlation heatmap of annotators’ confidence
metrics through the full dataset.

The fact that correlation coefficients range from
weak to moderate supports our view that the lower
efficiency in annotation costs might be due to dif-
ferences in how annotators perceive how the model
will evaluate their questions. This could lead to
more debate during the synchronous annotation
sessions. The lack of exponential time increase
when more annotators are present, as was the case
of the sessions with three annotators, may be due to
the fact that annotators were often tired of the feel-
ing of low-productivity of the sessions and were,
at times, willing to risk questions without fully
debating them.

4 Qualitative Analysis

The relative difficulty of a dynamic adversarial
dataset creation task may vary partly as a function
of the genre and specific topic of the text passages
from which question-answer pairs are drawn. Dur-
ing the shared task, Dynabench randomly assigned
passages for the creation of question-answer pairs,
revealing several important aspects of this chal-
lenge. Topics of the passages used in our data vary
as shown by the success by topic scores in Table 4.

Our more successful questions came from music,
science, and technology topics. On the one hand,
we are more familiar with these topics than comics,

sports, and video games. Furthermore, the para-
graphs in literature and music tended to be more
narrative in nature which, we believe, also made it
easier for us to process them and create better ques-
tions. Data-heavy, enumeration-based paragraphs
typical of sports, history, and TV and movies top-
ics proved more challenging for the creation of
model-fooling questions. Still, further examination
is necessary to understand each of these possibili-
ties separately.

A closer examination of the DADC task included
evaluating the success of different strategies for cre-
ating questions. Overall, the model successfully
answered questions about dates and names, as well
as questions that could be answered with a single
short phrase, especially if that phrase was produced
as an appositive. For example, asking “Which po-
litical associate of Abraham Lincoln was aware of
his illness while traveling from Washington DC to
Gettysburg?” allowed the model to select a name
as the answer, which it did with a high degree of
success, even when multiple distractor names ap-
peared in the same paragraph. On the other hand,
formulating questions that required longer answers,
especially questions that asked for both “what” and
“why”, frequently fooled the model. Furthermore,
requiring references to multiple non-contiguous
portions of the passage to make predictions also
often fooled the model. Still, using synonymous
words or phrases or similar sentence structures to
the critical portions of the passage allowed the
model to make correct predictions, even when these
other strategies may have fooled it under different
circumstances.

5 Discussion

Based on the experience with DADC shared task
Track 1, we recommend several strategies to im-
prove the efficiency of data collection.

5.1 Experimenting with the task

We found that allowing annotators to run "dry" tri-
als before starting data collection, as done by the
organizers of the DADC Shared Task, might help
them form initial hypotheses about the potential
weaknesses of the model and what strategies could
be helpful to fool it, e.g., targeting different ca-
pabilities such as NER or coreference resolution.
Additionally, it could be possible that once annota-
tors are familiarized with the task and understand
what examples have a better chance of fooling the

57

Comics History Literature Music Science Sports
TV and

Technology
Video

Movies Games

Model Fooled 1 6 5 5 4 8 9 2 5

Total Items 3 16 7 9 4 23 20 4 14

Ratio Fooled 0.33 0.37 0.71 0.55 1.00 0.35 0.45 0.50 0.36

Table 4: Number of times our questions fooled the model out of the total number of questions we generated for each
passage topic in our dataset. False negatives and false positives are included in the total number of items.

model, productivity between multiple annotators
might increase as their confidence starts to align.

5.2 Familiarity with the domain

We believe it may be significantly easier to come
up with good-quality questions if the annotators
are familiar with the domain of the contexts. Not
only can they read and understand the paragraphs
faster, but it is easier to abstract from the immediate
context and, thus, ask more challenging questions.
Annotation managers of campaigns with heteroge-
neous datasets might want to consider recruiting
experts for technical or specific sub-domains and
crowdsourced workers for those texts consisting of
general knowledge.

5.3 Having a list of strategies

Keeping a rough track of what annotation strategies
worked best proved useful to us during annotation.
As an example of the types of strategies that anno-
tators can keep track of and implement, below we
list the strategies we favored for creating model-
fooling questions.

1. Play with the pragmatics of the question, for
instance:

Question: What is the full location of the plot
of this TV show?

Annotators’ answer: A mysterious island
somewhere in the South Pacific Ocean

Model’s answer: South Pacific Ocean

Explanation: The model is biased towards
the shortest answer, which does not always
cover the information human need as an an-
swer (Grice’s principle of quantity)

2. Change the register, e.g., ask a question as a
five-year-old would.

3. Whenever possible, ask a question that re-
quires a holistic understanding of the whole
paragraph (not just a particular sentence).

4. Ask questions that require common sense rea-
soning, e.g., about the causes and effects of
events.

5. Ask questions about entities that appear mul-
tiple times or have multiple instances in the
paragraph.

5.4 Discussing created prompts with other
annotators

Another practice that can help is to work in teams
whereby annotators would come up with questions
in isolation and then rank and further modify them
in a brainstorming session. In our experience, hav-
ing two annotators in one session was almost as
efficient as having only one annotator and made the
task more engaging,ludic and, consequently, less
tedious, potentially reducing the risk of burnout
syndrome.

5.5 Suggestions for future DADC annotation
interfaces

Because DADC annotation applies to NLI and QA
datasets (Kiela et al., 2021), we believe that spe-
cific considerations would be necessary for future
projects that make use of a dedicated DADC inter-
face, including the following:

• Given that one of the issues we observed was
that many of the successful questions were
unnatural and, thus, probably, not helpful for
real-life scenarios, annotation platforms could
include a naturality score to encourage an-
notators to create data that will be used in
real-world scenarios.

• Because the word-overlap F1 threshold seems
to vary depending on what is enough informa-
tion and the appropriate information needed
to answer specific questions, we believe that a
language model could be trained to replace or
aid the F1 metric.

• Annotation interfaces could also help annota-
tors by displaying relevant visualizations of

58

the training data so that annotators could try to
fool the model in those cases where the model
contains little or no data. For example, Bar-
tolo et al. (2020, pp. 17-19) provide bar plots
and sunburst plots8 of question types and an-
swer types for each of their modified datasets.
We believe that displaying such visualizations
to the annotators in a targeted way could po-
tentially increase their performance while also
helping balance the creation of datasets.

• Finally, we believe that augmenting the inter-
face with functionality for storing and man-
aging annotation strategies such as the ones
mentioned above, together with their rate of
effectiveness, could make the annotation pro-
cess more efficient.

5.6 Final considerations

Beyond any of the suggestions above, we believe
that the DADC has certain limitations that annota-
tion campaigns should be aware of.

In our experience in the context of this extractive
QA task, we found it extremely difficult to fool
the model, primarily because of its powerful lexi-
cal and syntactic reasoning capabilities. This was
partly because we were constrained to create ques-
tions that a continuous string of text could answer.
In many cases, we relied on very complex lexical
and syntactic inferences (e.g., violating syntactic
islands), which often led to unnatural questions that
were unlikely to appear in the real world.

The problem of creating model-fooling exam-
ples has already been acknowledged in previous
research (Bartolo et al., 2020; Kiela et al., 2021)
and is generally addressed by either providing ques-
tion templates to edit or mixing questions from
other "more naturally-distributed" datasets. We
want to draw the attention of anyone wishing to
apply DADC to their problem of this risk.

Kiela et al. (2021) note that applying DADC
for generative QA is not a straightforward task.
However, it is perhaps in generative tasks where
DADC could offer more value. Given how pow-
erful the SOTA models are, the DADC extractive
datasets seem doomed to be eventually skewed to-
wards long and unnatural examples. This is one
of ours: "Despite knowledge of which fact does
Buffy still allow herself to pass at the hands of an

8The dataset statistics are only available in
the pre-print version of their paper, available at:
https://arxiv.org/abs/2002.00293

enemy, protecting the one to whom the fact relates
by doing so?"

Acknowledgements

We thank the organizers and sponsors of the first
DADC shared task, especially Max Bartolo, who
was in direct contact with us and provided us with
the data we needed for our analyses. We would also
like to thank Dr. Anders Søgaard for his valuable
insights during the revision of this article.

References
Max Bartolo, Alastair Roberts, Johannes Welbl, Sebas-

tian Riedel, and Pontus Stenetorp. 2020. Beat the
AI: Investigating Adversarial Human Annotation for
Reading Comprehension. Transactions of the Associ-
ation for Computational Linguistics, 8:662–678.

Max Bartolo, Tristan Thrush, Robin Jia, Sebastian
Riedel, Pontus Stenetorp, and Douwe Kiela. 2021.
Improving question answering model robustness with
synthetic adversarial data generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8830–8848, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Daria Dzendzik, Jennifer Foster, and Carl Vogel. 2021.
English machine reading comprehension datasets: A
survey. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8784–8804, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Divyansh Kaushik, Douwe Kiela, Zachary C. Lipton,
and Wen-tau Yih. 2021. On the efficacy of adversar-
ial data collection for question answering: Results
from a large-scale randomized study. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing

59

(Volume 1: Long Papers), pages 6618–6633, Online.
Association for Computational Linguistics.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking benchmarking in NLP. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4110–4124, Online. Association for Computa-
tional Linguistics.

Wes McKinney. 2010. Data Structures for Statistical
Computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 56 – 61.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Jeff Reback, jbrockmendel, Wes McKinney, Joris Van
den Bossche, Tom Augspurger, Matthew Roeschke,
Simon Hawkins, Phillip Cloud, gfyoung, Sinhrks,
Patrick Hoefler, Adam Klein, Terji Petersen, Jeff Trat-
ner, Chang She, William Ayd, Shahar Naveh, JHM
Darbyshire, Marc Garcia, Richard Shadrach, Jeremy
Schendel, Andy Hayden, Daniel Saxton, Marco Ed-
ward Gorelli, Fangchen Li, Matthew Zeitlin, Vytau-
tas Jancauskas, Ali McMaster, Torsten Wörtwein,
and Pietro Battiston. 2022. pandas-dev/pandas: Pan-
das 1.4.2.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
fundamental algorithms for scientific computing in
Python. Nature Methods, 17(3):261–272.

60

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 61 - 61
July 14, 2022 ©2022 Association for Computational Linguistics

Generalized Quantifiers as a Source of Error
in Multilingual NLU Benchmarks

Ruixiang Cui, Daniel Hershcovich, Anders Søgaard
University of Copenhagen

{rc, dh, soegaard}@di.ku.dk

Abstract

Logical approaches to representing language have developed and evaluated computational models of
quantifier words since the 19th century, but today’s NLU models still struggle to capture their semantics.
We rely on Generalized Quantifier Theory for language-independent representations of the semantics of
quantifier words, to quantify their contribution to the errors of NLU models. We find that quantifiers are
pervasive in NLU benchmarks, and their occurrence at test time is associated with performance drops.
Multilingual models also exhibit unsatisfying quantifier reasoning abilities, but not necessarily worse
for non-English languages. To facilitate directly-targeted probing, we present an adversarial generalized
quantifier NLI task (GQNLI) and show that pre-trained language models have a clear lack of robustness in
generalized quantifier reasoning.

61

Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 62 - 62
July 14, 2022 ©2022 Association for Computational Linguistics

Adversarially Constructed Evaluation Sets Are More Challenging,
but May Not Be Fair

Jason Phang,1 Angelica Chen,1 William Huang,2∗Samuel R. Bowman134

1Center for Data Science, New York University
2Capital One

3Dept. of Linguistics, New York University
4Dept. of Computer Science, New York University

Correspondence: jasonphang@nyu.edu

Abstract

Large language models increasingly saturate existing task benchmarks, in some cases outperforming
humans, leaving little headroom with which to measure further progress. Adversarial dataset creation,
which builds datasets using examples that a target system outputs incorrect predictions for, has been
proposed as a strategy to construct more challenging datasets, avoiding the more serious challenge of
building more precise benchmarks by conventional means. In this work, we study the impact of applying
three common approaches for adversarial dataset creation: (1) filtering out easy examples (AFLite), (2)
perturbing examples (TextFooler), and (3) model-in-the-loop data collection (ANLI and AdversarialQA),
across 18 different adversary models. We find that all three methods can produce more challenging datasets,
with stronger adversary models lowering the performance of evaluated models more. However, the resulting
ranking of the evaluated models can also be unstable and highly sensitive to the choice of adversary model.
Moreover, we find that AFLite oversamples examples with low annotator agreement, meaning that model
comparisons hinge on the examples that are most contentious for humans. We recommend that researchers
tread carefully when using adversarial methods for building evaluation datasets.

*Work done while at NYU.

62

Author Index

Anioł, Magdalena, 53

Botzer, Nicholas, 23
Bowman, Samuel R., 62

Chatterjee, Trina, 41
Chen, Angelica, 62
Chen, Jifan, 41
Choi, Eunsol, 41
Chronis, Gabriella, 41
Cui, Ruixiang, 61
Culnan, John, 53

Das, Anubrata, 41
Das, Sudeshna, 1
Datta, Siddhartha, 7
Ding, Yifan, 23

Erk, Katrin, 41

Govindarajan, Venkata S, 41

Hershcovich, Daniel, 61
Huang, William, 62

Kollnig, Konrad, 7
Kovatchev, Venelin, 41

Lease, Matthew, 41
Li, Junyi Jessy, 41
Li, Margaret, 30

Mahowald, Kyle, 41
Michael, Julian, 30

Paik, Jiaul, 1
Phang, Jason, 62

Romero Diaz, Damian Y., 53

Shadbolt, Nigel, 7
Søgaard, Anders, 61

Weninger, Tim, 23
Wu, Yating, 41

63

