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Abstract

Adversarial data collection has shown promise
as a method for building models which are
more robust to the spurious correlations that
generally appear in naturalistic data. How-
ever, adversarially-collected data may itself
be subject to biases, particularly with regard
to ambiguous or arguable labeling judgments.
Searching for examples where an annotator dis-
agrees with a model might over-sample am-
biguous inputs, and filtering the results for high
inter-annotator agreement may under-sample
them. In either case, training a model on such
data may produce predictable and unwanted
biases. In this work, we investigate whether
models trained on adversarially-collected data
are miscalibrated with respect to the ambigu-
ity of their inputs. Using Natural Language
Inference models as a testbed, we find no clear
difference in accuracy between naturalistically
and adversarially trained models, but our model
trained only on adversarially-sourced data is
considerably more overconfident of its predic-
tions and demonstrates worse calibration, es-
pecially on ambiguous inputs. This effect is
mitigated, however, when naturalistic and ad-
versarial training data are combined.

1 Introduction

End-to-end neural network models have had
widespread success on standard benchmarks in
NLP (Wang et al., 2018, 2019; Lee et al., 2017;
Dozat and Manning, 2017). However, models
trained with maximum-likelihood objectives un-
der the standard Empirical Risk Minimization
paradigm are liable to succeed in these settings by
fitting to features or correlations in the data which
are ultimately not representative of the underly-
ing task and fail to generalize out of distribution,
e.g., under domain shift or adversarial perturbation
(Gururangan et al., 2018; Ilyas et al., 2019). One
promising method to overcome this difficulty is to

∗Equal contribution.

move past the ERM paradigm and learn or evaluate
causal features which are invariant across domains
or distributions of data. While methods to do this
often require the use of explicitly specified domains
of data (Peters et al., 2016; Arjovsky et al., 2020),
a more lightweight approach is adversarial evalu-
ation and training (Nie et al., 2020a; Kiela et al.,
2021), in which annotators deliberately search for
examples on which a model fails. Adversarial data
annotation has been applied for a variety of tasks,
including question answering (Bartolo et al., 2020),
natural language inference (Nie et al., 2020a), hate
speech detection (Vidgen et al., 2021), and senti-
ment analysis (Potts et al., 2021). Adversarial data
can help reduce spurious correlations in existing
data (Bartolo et al., 2020), expose a model’s short-
comings in evaluation, and aid in training more
robust models (Wallace et al., 2022).

However, the process of developing adversarial
data is imperfect, and adversarial data may itself
not resemble naturalistic distributions. For exam-
ple, Phang et al. (2021) find that the AFLITE adver-
sarial filtering algorithm (Sakaguchi et al., 2020;
Bras et al., 2020), designed to find challenging
examples in existing datasets, disproportionately
favors contentious examples with annotator dis-
agreement. This is suggestive that adversarially col-
lected datasets, where humans actively try to fool a
model, may be subject to these same biases Indeed,
Phang et al. also show that adversarially-collected
datasets may disproportionately penalize models
that are similar to the one used during data col-
lection. The qualitative properties of adversarially-
collected data also vary depending on the adversary
used during data collection, as shown by Williams
et al. (2022) for the Adversarial NLI dataset (Nie
et al., 2020a). For these reasons, it is not clear what
a model’s performance under adversarial evalua-
tion implies about its performance characteristics
on naturalistic distributions, nor is it clear how
training on adversarial data aids a model’s perfor-
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mance in natural settings.
In this work, we focus on the interplay of adver-

sarial learning and evaluation with ambiguity, or
annotator disagreement. Just as adversarial filtering
may over-sample ambiguous inputs (Phang et al.,
2021), adversarial annotators may produce strange,
ambiguous, or disputable inputs as they employ
tricks to fool a model in the adversarial setting. To
preempt this issue and ensure data quality, adversar-
ial data collection methods filter out examples with
low human agreement (Nie et al., 2020a), but it’s
possible that this approach could over-correct for
the issue and under-sample such inputs in compari-
son to naturalistic data. For this reason, it is plausi-
ble that models trained on adversarially-collected
data may be miscalibrated against the ambiguity of
their inputs, forming a predictable blind spot.

We investigate this issue by training models on
naturalistically and adversarially collected datasets,
then comparing their performance with respect to
gold annotator distributions. As a testbed, we use
Natural Language Inference, an NLP benchmark
task with already-available adversarial data (Nie
et al., 2020a) and full annotator distributions (Nie
et al., 2020b). We find no clear difference in ac-
curacy between naturalistically and adversarially
trained models, but our model trained only on
adversarially-sourced data is considerably more
overconfident of its predictions and demonstrates
worse calibration, especially on ambiguous inputs.
On the other hand, including both naturalistic data
in training as well — as is standard practice (Nie
et al., 2020a) — mitigates these issues. While our
results do not raise alarms about standard practices
with adversarial data, they suggest that we should
keep in mind the importance of including naturalis-
tic data in training regimes moving forward.1

2 Background: Robustness and
Adversarial Data

Suppose we are interested in learning a conditional
probability distribution p(y | x). The classical
machine learning approach of Empirical Risk Min-
imization does so with the use of input data drawn
from a distribution D:

argmin
θ

Ex∼D,y∼p(·|x) − log p(y|x, θ), (1)

where θ are the model parameters. However, this
method can do a poor job of approximating p(y | x)

1Code to reproduce our experiments is available at https:
//github.com/julianmichael/aeae.

when x is drawn from very different distributions
than D. One approach which has been used to
address this is robust optimization, which mini-
mizes the worst-case loss subject to some con-
straints (Madry et al., 2018; Ghaoui and Lebret,
1997; Wald, 1945). We can view robust optimiza-
tion as solving a minimax problem:

argmin
θ

max
D∈D

Ex∼D,y∼p(·|x) − log p(y|x, θ), (2)

where D is a space of possible input distributions,
and D is adversarially chosen among them. This
formulation invites the question: what if D includes
all possible distributions? Then we are free to find
any x which the model gets wrong, and optimizing
the loss effectively should produce a model which
is robust to a wide range of distributions and hard
to exploit.

This suggests a practical approach to improving
robustness which involves actively searching for
examples on which a model fails, and using those
examples to train new, more robust models. This
general approach has been applied in a variety of
settings in NLP, such as the Build-It Break-It shared
task (Ettinger et al., 2017), adversarial filtering
of large datasets (Zellers et al., 2018; Sakaguchi
et al., 2020), and adversarial benchmarking and
leaderboards (Nie et al., 2020a; Kiela et al., 2021).

One complication that arises when sourcing ad-
versarial data is with ambiguous or arguable exam-
ples. Suppose θ̂ perfectly models p(y | x). Plug-
ging this into Formula 2 yields maxD∈D H(Y | x),
where D is concentrated on the inputs x which
maximize the entropy of Y .

In this context, high entropy in the conditional
distribution of Y corresponds to high annotator dis-
agreement.2 When a human searches for an adver-
sarial example, they are looking for a disagreement
between themselves and the model. In this setting,
there may be competition for inclusion in these
adversarial tasks between ambiguous examples on

2In this work, we assume all annotators implement the
same probabilistic labeling function (which we are calling
‘gold’) and disagreement between annotators arises as an in-
herent feature of the task we are trying to model. We also
assume that approximating annotator behavior on arguable
or ambiguous examples is a desirable goal. These are sim-
plifications: in some settings, e.g., the prescriptive paradigm
of Röttger et al. (2022), we may wish to minimize annotator
disagreement to learn a deterministic labeling function. In
such settings, model behavior on arguable inputs may be unin-
teresting from the evaluation perspective, though searching for
such examples could be useful for refining the task definition
or annotation guidelines. We leave such issues out of scope
for this work.
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which the model is close to the gold (annotator)
distribution and less ambiguous examples where
the model is further from gold. Thus an adversarial
data generation process may be biased towards in-
put examples which are ambiguous but unhelpful
for training.

Formally, a simple way to think about counter-
acting this may be to explicitly subtract the gold
entropy from the loss being minimized:

argmin
θ

max
D∈D

Ex∼D,y∼p(·|x)

− log p(y | x, θ) + log p(y | x).
(3)

Here, the objective focuses the distribution D
on examples which maximize the model’s KL-
Divergence from p(y | x), no longer favoring am-
biguous examples. Practical approaches to scal-
ing adversarial data collection have applied a sim-
ilar idea: in Adversarial NLI (Nie et al., 2020a)
and Dynabench (Kiela et al., 2021), annotators are
asked to find examples where they disagree with
the model, and then these examples are only kept if
multiple validators agree on the correct label. How-
ever, it is not clear how well-calibrated this process
is: it might, for example, systematically omit gen-
uinely ambiguous examples which the model gets
wrong with high confidence. Whether training on
data produced by this process results in pathologi-
cal model behavior is what we test in this work.

3 Experimental Setup

Task Setting We use Natural Language Inference
(Dagan et al., 2005; Bowman et al., 2015) as our
underlying task, as there exist adversarial annota-
tions for this task (Nie et al., 2020a; Kiela et al.,
2021) and annotator disagreement has been well
studied (Pavlick and Kwiatkowski, 2019; Nie et al.,
2020b; Zhang and de Marneffe, 2021).

Model Variants We train models under three
conditions:

• CLASSICAL: These models are trained on
data elicited from annotators in a model-
agnostic way, i.e., naturalistically.3 For this
we use the SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets.

3Unfortunately, since the NLI task is somewhat artificial,
there is no “natural” distribution of input texts. This is one of
the issues that leads to annotation artifacts in the first place
(Gururangan et al., 2018) since some of the input text must be
annotator-generated. Regardless, spurious correlations exist
in any naturalistic distribution so we will use these training
sets as proxies for something naturalistic.

Dataset Train Dev

SNLI 550,152 10,000
MultiNLI 392,702 10,000
ANLI (all rounds) 162,865 3,200

Chaos-SNLI 1,514
Chaos-MultiNLI 1,599

Table 1: Number of examples in training and develop-
ment sets we use. For training data (top), development
sets are used for model selection, while our evaluations
(bottom) are on the ChaosNLI-annotated subsets of the
SNLI and MultiNLI development sets.

• ADVERSARIAL: These models are trained
on data elicited from annotators under the re-
quirement that they must fool the model. For
this we will use the adversarial annotations of
Nie et al. (2020a).4

• ALL: These models are trained on the con-
catenation of all of the above data.

Evaluation Data We test the performance of our
models in the setting where we have comprehensive
distributions of annotator behavior. For this, we
will use the ChaosNLI evaluation sets (Nie et al.,
2020b) which have 100 independent annotations
for each example (where the task is 3-way multi-
class classification). ChaosNLI includes evaluation
sets for SNLI (Bowman et al., 2015), MultiNLI
(Williams et al., 2018), and αNLI (Bhagavatula
et al., 2020, Abductive NLI). Of these, we use the
SNLI and MultiNLI sets, since αNLI has a differ-
ent task format than other NLI datasets. Dataset
statistics are shown in Table 1.

Metrics Using densely-annotated evaluation
data, we compute several evaluation metrics. Each
metric is stratified across non-overlapping ranges of
annotator agreement in order to analyze the depen-
dence of model performance (or model differences)
on the ambiguity of its input examples. Let p(y)
be the empirical distribution of annotator labels for
an input example, and ŷ be the model’s prediction.
Then, our metrics are:

• Accuracy in Expectation: The expectation
of the accuracy of the model against a ran-
domly sampled annotator in ChaosNLI (i.e.,

4In order for this to properly count as adversarial data for
our model, we use the same model family as Nie et al. (2020a),
which is BERT-large (Devlin et al., 2019) fine-tuned on SNLI
and MultiNLI.
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p(ŷ)). We stratify this by the human accuracy
in expectation, the accuracy of a randomly-
sampled human against the plurality vote of
all annotators (maxy(p(y))). We use discrete
bins to allow for precise comparison of model
performance within and between different
regimes of ambiguity.

• Accuracy against Plurality: The accuracy of
the model against the plurality vote of the 100
annotators (ŷ = max(p(y))). We also stratify
this by human accuracy in expectation.

• Model perplexity: The exponentiated en-
tropy of the model’s predicted distribution;
higher corresponds to more uncertainty. (This
is independent of the gold labels.) We stratify
this by the perplexity of the human annotator
distribution.

• KL-Divergence: The KL-Divergence of the
model’s predicted label distribution against
the empirical distribution of annotated labels.
This gives a measure of how well-calibrated
the model is with respect to the true annotator
distribution. We stratify this measure by the
entropy of the human annotator distribution.

Accuracy in expectation emulates the typical ac-
curacy computation in an IID empirical risk mini-
mization setting, while accuracy against plurality
allows us to measure accuracy scores above human
performance (assuming the plurality among 100
annotators can be treated as the ground truth).5 We
also include the annotator distribution as a human
reference point (for KL-Divergence, this is 0 by
construction).

Implementation Details
In all of our experiments, we begin with RoBERTa-
Large (Liu et al., 2019), a masked language model
pretrained on a large text corpus comprised of in-
ternet and book corpora. We then attach a classi-
fier head and fine-tune each model according to
the dataset combinations listed in Section 3. The
model was implemented using the AllenNLP li-
brary and trained using the AdamW optimizer to
maximize accuracy on the combined development
sets of the model variant’s respective corpora.

5The accuracy metrics provided for NLI datasets in prac-
tice are somewhere between the two, as the development and
test sets of SNLI and MultiNLI were labeled by 5 annotators
each and the majority label was chosen for the purposes of
evaluation (Bowman et al., 2015; Williams et al., 2018).

4 Results

All results in this section are reported on the SNLI
and MultiNLI development set portions of the
ChaosNLI data. In all graphs, we provide smoothed
kernel density estimates of the distributions over
X and Y values in the margins where appropriate.
Shaded areas around the lines represent 95% confi-
dence intervals.

Accuracy in Expectation Model accuracy
against randomly sampled annotators is shown in
Figure 1. All models exhibit the same overall trend,
approaching or reaching human performance on
the most ambiguous and least ambiguous examples,
with a dip in the middle of the range. Even if adver-
sarial data collection does under-sample ambigu-
ous inputs, we find no noticeable (or significant)
effect on model performance in the low-agreement
regime. A potential reason for this is that the base-
line performance is already so low in these cases
— very close to chance level — that there is little
room for decreasing performance further.

Accuracy against Plurality Model accuracy
against the plurality vote among annotators is
shown in Figure 2. Once again, all models exhibit
the same overall trend. While performance seems
to level off or even increase for some models on
extremely high-ambiguity examples (<50% human
accuracy in expectation), there are too few such
examples for us to draw any reliable conclusions
in this regime.

Perplexity To understand the confidence levels
of our models, we measure the perplexity of their
output distributions and compare it to the perplex-
ity of the human annotator distributions, shown
in Figure 3. Here, there is a clear difference be-
tween ADVERSARIAL and the other models: it
has extremely low perplexity on many more ex-
amples, and high perplexity on very few. Further-
more, while model perplexity is positively corre-
lated with annotator perplexity for all models, the
ADVERSARIAL model is less sensitive to it, with
its perplexity growing less with respect to annota-
tor perplexity. This suggests the adversarial data
collection process may, on aggregate, favor exam-
ples with less ambiguity, skewing the behavior of
the model. The ALL model, which was exposed to
naturalistic data as well, does not display the same
effect.
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(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 1: Model accuracy stratified by human accuracy, relative to a randomly sampled human judgment. Chance
accuracy is approximately 1

3 , and the human baseline (which uses the plurality vote as the prediction) is an upper
bound.

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 2: Model accuracy stratified by human accuracy, relative to the human plurality vote. The early dip in the
human baseline below 50% is from a few cases with tied plurality votes (where we break ties randomly).
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(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 3: Model perplexity relative to annotator perplexity.

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 4: KL-Divergence of model outputs from the annotator distribution, graphed relative to annotator entropy.
Both axes are measured in nats.
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(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 5: Calibration curves for accuracy against a randomly sampled human. As the confidence score, we use the
probability assigned by the model to its prediction.

(a) Chaos-SNLI. (b) Chaos-MultiNLI.

Figure 6: Calibration curves for accuracy against the plurality vote among humans. As the confidence score, we use
the probability assigned by the model to its prediction.
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KL-Divergence To get a sense of how well the
model fits the annotator distributions, we show the
KL-Divergence of the models’ predictions against
the annotator distributions in Figure 4. What we
find is that ADVERSARIAL diverges greatly from
the gold distributions in comparison to CLASSI-
CAL and ALL: it has much higher KL-Divergence
in aggregate, many more examples with high KL-
Divergence, and its KL-Divergence scores grow
more quickly as the entropy of the annotator dis-
tribution increases. The biases in adversarial data
collection, then, have led more to overconfidence
on ambiguous examples than wrong predictions on
unambiguous examples. These results provide sup-
porting evidence for the hypothesis that training
a model on adversarially-collected data may un-
derexpose it to ambiguous examples and that this
could have undesirable effects on its performance.
However, these effects seem to be mitigated with
the additional inclusion of naturalistic data (in the
ALL model).

Calibration Calibration curves are shown in Fig-
ure 5. We find that the ADVERSARIAL model is
highly confident more often than the other mod-
els, and at least in the very-high-confidence regime
(>80% confidence), it has significantly worse cal-
ibration on SNLI (for MultiNLI, the results are
borderline and only for the highest-confidence bin).

We also plot calibration curves relative to the
plurality vote among annotators (Figure 6), which
reflects the assumption that the model’s maximum
output probability reflects its epistemic uncertainty
over the max-probability label. Here, the results
are similar: the ADVERSARIAL model is worse cal-
ibrated in the very-high-confidence regime. Note,
however, that when optimizing to maximize the
likelihood of labels sampled from annotators, the
output probabilities of a perfect model will not
be well-calibrated against a plurality-based ground-
truth. Optimizing for a model calibrated in this way
is an alternative design choice which may require
different training methods.

5 Discussion

In our experiments using SNLI, MultiNLI, and
ANLI, we find that training only on adversarially-
collected data produces similar accuracies across
all regimes of ambiguity, but worse calibration at
high confidence, and more overconfidence on am-
biguous examples. This suggests that the adversar-
ial data collection process may bias the model by

favoring less ambiguous examples, but there are
other potential interpretations of our results.

In particular, the observed miscalibration of AD-
VERSARIAL may the result of a more general do-
main shift between SNLI/MultiNLI and ANLI.
This could explain why adding SNLI and MultiNLI
to training, as in the ALL model, eliminates the ef-
fect. However, one might also expect to see a clear
difference in accuracy as well if this were the is-
sue. It’s also worth noting that the SNLI and MNLI
training sets are larger than ANLI’s (see Table 1),
which could explain why the ALL model behaves
similarly to CLASSICAL. It remains an open ques-
tion how little naturalistic (or, in-domain) data may
be sufficient to mitigate the overconfidence issues
we observe.

Some notable trends hold for all models we test.
First, they all perform worse on ambiguous exam-
ples (Figure 1, Figure 2). This may be in part due to
the relative scarcity of such examples in the training
data or the relative difficulty of learning to model
them. Second, they all demonstrate overconfidence,
with model perplexity growing slower than human
perplexity (Figure 3) and relatively poor calibration
at high confidence levels (Figure 6). Even though
augmenting training with adversarially-collected
data has been shown to improve robustness in some
settings (Bartolo et al., 2021a; Vidgen et al., 2021),
our results do not yet show any benefits to calibra-
tion on ambiguous examples in existing data.

Finally, while we hypothesize that the overconfi-
dence issue with training on adversarial data arises
from filtering for annotator agreement, it is also
possible that for ANLI, the adversarial annotators
found examples that were less ambiguous in the
first place (as annotators might, for example, want
to focus on sure-fire model mistakes). Williams
et al. (2022) found that about 5% of examples in
ANLI “could reasonably be given multiple correct
labels,” suggesting a low level of ambiguity, but
this was by the judgment of a single expert and may
not correspond to the full variation in label assign-
ment seen with crowdsourced annotators (which
could potentially be investigated using the origi-
nal unfiltered ANLI data). Measuring, controlling,
managing, or representing ambiguity in adversarial
annotation should be an interesting direction for
future work, perhaps incorporating insights from
recent work about construal (Trott et al., 2020;
Pavlick and Kwiatkowski, 2019), explicit disam-
biguation (Min et al., 2020), model training dynam-
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ics (Swayamdipta et al., 2020; Liu et al., 2022), and
other model-in-the-loop adversarial data collection
efforts (Bartolo et al., 2020, 2021b; Vidgen et al.,
2021; Potts et al., 2021).

6 Conclusion

We have shown that training only on adversarially-
collected data, at least in the case of the Adversarial
NLI (ANLI) dataset, can produce undesirable per-
formance characteristics in the resulting models. In
particular, when tested on SNLI and MultiNLI data,
these models produce output distributions that are
much further from annotator distributions and fail
to accurately convey annotator uncertainty, with
highly confident predictions even on highly am-
biguous examples. It is also possible that adver-
sarial training in this setting could produce lower
prediction accuracy in regimes of low human agree-
ment, but baseline accuracy is already so low for
our models and data, and there are so few examples
in the extremely-ambiguous regime, that such an
effect is hard to find.

In our results, if a large amount of naturalistic
data is also included in training (as in the ALL

model) — as is standard practice — the overcon-
fidence problem is mitigated. This is encouraging,
as any adversarially-collected data must start with
some naturalistic data to construct the initial adver-
sary. However, it remains an open question how
little naturalistic data is sufficient; a large enough
seed corpus may be beneficial for avoiding such
issues in a setting of dynamic adversarial data col-
lection (Wallace et al., 2022). Future work can in-
vestigate this question, as well as how using full an-
notator distributions at training time (Zhang et al.,
2021) or model calibration techniques may further
help models deal with ambiguous inputs.
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