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Abstract

Contingent reasoning is one of the essential
abilities in natural language understanding, and
many language resources annotated with con-
tingent relations have been constructed. How-
ever, despite the recent advances in deep learn-
ing, the task of contingent reasoning is still
difficult for computers. In this study, we focus
on the reasoning of contingent relation between
basic events. Based on the existing data con-
struction method, we automatically generate
large-scale pseudo-problems and incorporate
the generated data into training. We also in-
vestigate the generality of contingent knowl-
edge through quantitative evaluation by per-
forming transfer learning on the related tasks:
discourse relation analysis, the Japanese Wino-
grad Schema Challenge, and the JCommon-
senseQA. The experimental results show the
effectiveness of utilizing pseudo-problems for
both the commonsense contingent reasoning
task and the related tasks, which suggests the
importance of contingent reasoning.

1 Introduction

Contingency is the relation between two events,
one being an action or state and the other being
likely to happen after it. We humans reason contin-
gent relation between events on a daily basis. For
instance, when we read text, we unconsciously in-
fer what happens next to deepen our understanding.
In conversations, we guess the next topic from the
utterance of the opponent to make a contextual and
natural response. Thus, the ability to reason con-
tingent relation between events is essential when it
comes to natural language understanding (NLU).

Recently, many studies have built language re-
sources for contingent reasoning (Roemmele et al.,
2011; Mostafazadeh et al., 2016; Zellers et al.,
2018; Sap et al., 2019a; Hwang et al., 2021). These
resources focus on basic events and evaluate some
kind of commonsense reasoning ability. Although
the fundamental linguistic capabilities of comput-

I’m hungry, so
a. I’m gonna be absent from school.
b. I refrain from strenuous exercise.
c. I have a meal at a family restaurant.
d. I leave home.

Figure 1: Example from KUCI (English translated ver-
sion). KUCI is a Japanese QA dataset containing 104k
multiple-choice questions regarding contingent relation
between basic events. The correct choice is bolded.

ers, such as question answering, have greatly im-
proved with progress in deep learning, several stud-
ies have empirically demonstrated they still have
difficulty in commonsense reasoning (Talmor et al.,
2019; Sap et al., 2019b; Talmor et al., 2021).

In this study, we aim at two objectives: to im-
prove commonsense contingent reasoning and to
investigate the effects of learning contingent knowl-
edge on the related tasks to validate the importance
of contingent reasoning. To these ends, we use the
Kyoto University Commonsense Inference dataset
(KUCI)1. KUCI is a Japanese QA dataset with 104k
multiple-choice questions that ask contingent rela-
tion between basic events directly (Omura et al.,
2020). An example is shown in Figure 1. This
dataset is also characterized by its semi-automatic
data construction method: automatic extraction of
contingent pairs of basic event expressions from
a web corpus, verification through crowdsourcing,
and automatic generation of commonsense infer-
ence problems.

It is shown there is a performance gap between
humans and computers on this task (Omura et al.,
2020). Furthermore, through qualitative evaluation,
it has been confirmed computers sometimes an-
swer contingent relation between quite basic events
incorrectly. One straightforward approach to alle-
viating the above problem is to extend the train-

1https://nlp.ist.i.kyoto-u.ac.jp/EN/
?KUCI

https://nlp.ist.i.kyoto-u.ac.jp/EN/?KUCI
https://nlp.ist.i.kyoto-u.ac.jp/EN/?KUCI
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ing data and increase the coverage. However, it
is not practical from a cost perspective to increase
the number of training examples manyfold using
crowdsourcing.

We attempt to improve the performance by omit-
ting crowdsourcing, a bottleneck in data augmenta-
tion, and utilizing pseudo-problems generated auto-
matically from unverified contingent pairs of basic
event expressions. As a web corpus is scalable, and
all of the procedures except crowdsourcing are au-
tomatic, we can generate pseudo-problems at scale.
It is expected pseudo-problems complement the
lack of coverage though some problems are noisy
and might be unanswerable.

The second objective of this study is to investi-
gate the effects of learning contingent knowledge
on the related tasks. On the premise that contingent
reasoning is essential to NLU, we can expect con-
tingent knowledge probably helps improve the per-
formance on other NLU tasks. While the transfer-
ability of major English datasets has been studied
(Phang et al., 2018; Sap et al., 2019b; Sakaguchi
et al., 2020; Pruksachatkun et al., 2020), there is
room to explore this dataset in terms of the task
and language. We investigate the generality of con-
tingent knowledge through quantitative evaluation
of transfer learning on the related tasks.

In summary, we improve commonsense contin-
gent reasoning by straightforward data augmenta-
tion. We generated 862k pseudo-problems, which
is about ten times as large as the training examples
in KUCI (83k), and incorporated them into training.
Owing to pseudo-problems, a high-performance
pre-trained model has achieved near human-level
performance on the commonsense contingent rea-
soning task. We also investigate the transferability
of contingent knowledge to the related tasks. Our
experiments demonstrate intermediate-task training
on KUCI with pseudo-problems positively affects
discourse relation analysis, the Japanese Winograd
Schema Challenge, and the JCommonsenseQA,
which suggests the importance of contingent rea-
soning2.

2 Approach

First, we describe our data augmentation approach
to improving commonsense contingent reasoning.
Our approach is to automatically generate large-
scale pseudo-problems based on the construction

2The links to the pseudo-data and code are available at
https://nlp.ist.i.kyoto-u.ac.jp/EN/?KUCI
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Figure 2: Overview of the method of generating com-
monsense inference problems in KUCI (gray) and
pseudo-problems (red). The further details are described
in Omura et al. (2020).

method of the Kyoto University Commonsense In-
ference dataset (KUCI).

2.1 A Method of Generating Problems

The construction method of KUCI consists of the
following four steps (Figure 2).

1. Acquire high-frequency predicate-argument
structures (hereafter, core events3) from case
frames (Kawahara et al., 2014b).

2. Extract event pairs that are unambiguously
connected by explicit discourse markers rep-
resenting contingent relation and composed
of a pair of core events (hereafter, contingent
basic event pairs).

3. Verify by crowdsourcing whether the ex-
tracted event pairs actually have contingent
relation or not.

4. Generate problems by taking one of the veri-
fied event pairs (hereafter, base3) and select-
ing distractors from the latter events of other
event pairs that are moderately similar to the
base.

In the above procedures, it becomes possible to
automatically generate pseudo-problems by omit-
ting step 3 (Figure 2). For the parameters in the

3We newly define these terms for clarification.

https://nlp.ist.i.kyoto-u.ac.jp/EN/?KUCI
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method, such as the thresholds of frequency for ac-
quiring core events and the conditions on selecting
distractors, we set them to the same values as in
the construction of KUCI.

2.2 Automatic Extraction of Contingent Basic
Event Pairs

We automatically extracted contingent basic event
pairs following the method described in Section
2.1. We used a Japanese web corpus containing
3.3 billion sentences as the source text. It had been
constructed by crawling web text from 2006 to
2015. There is no overlap of sentences between this
corpus and the web corpus used in the construction
of KUCI. As a result, we extracted 915k contingent
basic event pairs. Omura et al. (2020) reported one-
third of the extracted event pairs were removed by
crowdsourcing, thus we expect about 600k event
pairs to be valid.

2.3 Dealing with Data Leakage
There is a potential issue with generating training
data from large-scale text, which is called "Data
Contamination" (Brown et al., 2020). This issue is
that text may include information about evaluation
data, leading to overestimation of model perfor-
mance.

We deal with this issue by heuristically exclud-
ing event pairs that are identical or remarkably sim-
ilar to the bases in evaluation data4. Specifically,
we apply the following filters based on word order
and core event pairs.

Filter by word order Exclude an event pair if the
length of the overlapping word order between
the event pair and any base in evaluation data
exceeds 75% of the word count of the base.

Filter by core event pairs Exclude an event pair
if the event pair is composed of the core event
pair that also composes any base in evaluation
data.

For instance, the base of the problem in Figure
1 is “I’m hungry, so → I have a meal at a family
restaurant” and composed of the core event pair
“be hungry → have a meal at a family restaurant”.
Let us consider whether the event pair “I’m hungry,
so → I have a big meal at the family restaurant”
is excluded by the base or not. They have the
overlapping word order, {I’m, hungry, so, I, have,

4To be specific, “evaluation data” refers to the development
and test splits of KUCI.

a, meal, at, family, restaurant}, of which length
(10) exceeds 75% of the word count of the base
(11). It is also composed of the same core event
pair. Thus, it will be excluded by both filters.

We expect the first filter to exclude syntactically-
similar event pairs and the second to exclude those
similar in content. As a result of filtering, we ac-
quired 881k contingent basic event pairs.

2.4 Automatic Generation of
Pseudo-problems

We went on performing an automatic generation of
problems. As a result, we obtained 862k pseudo-
problems from the 881k event pairs. The number
of the pseudo-problems is about ten times as large
as that of the training examples in KUCI (83k).

To analyze the quality of pseudo-problems, we
randomly sampled 50 problems and manually eval-
uated them. As a result of manual evaluation, 36
of 50 problems were judged as answerable, which
appears to be sufficient quality for pseudo-data.

3 Experiments

We conducted experiments to investigate the effects
of incorporating pseudo-problems into training on
the commonsense contingent reasoning task and
the related tasks.

3.1 Model
We evaluated the performance of the BERT (De-
vlin et al., 2019) and XLM-RoBERTa (XLM-R)
(Conneau et al., 2020) models.

BERT We employed the NICT BERT Japanese
Pre-trained model (with BPE)5. It was pre-trained
on the full text of Japanese Wikipedia for 1.1 mil-
lion steps with a batch size of 4,096, partly refer-
ring to the pre-training configuration of RoBERTa
(Liu et al., 2019). The model architecture is the
same as the BERTBASE.

XLM-R We adopted the XLM-RoBERTaLARGE
model6, which was pre-trained on a huge multilin-
gual corpus consisting of Wikipedia and CC-100
(Wenzek et al., 2020). The model architecture is the
same as the BERTLARGE, but the embedding layer
is relatively large due to its multilingual vocabulary.
It is one of the high-performance pre-trained mod-
els for Japanese among those publicly available.

5https://alaginrc.nict.go.jp/
nict-bert/index.html (in Japanese)

6https://huggingface.co/
xlm-roberta-large

https://alaginrc.nict.go.jp/nict-bert/index.html
https://alaginrc.nict.go.jp/nict-bert/index.html
https://huggingface.co/xlm-roberta-large
https://huggingface.co/xlm-roberta-large
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3.2 Experimental Settings

The hyper-parameters used in the experiments are
included in Appendix A.

3.2.1 Commonsense Contingent Reasoning

As is mentioned in Section 1, we used KUCI for as-
sessing commonsense contingent reasoning ability.
The task is to select the most appropriate sentence
following the context from 4 choices like Figure
1. The dataset contains 83,127 / 10,228 / 10,291
examples for training, development, and test split,
respectively.

During the fine-tuning phase, we minimize cross-
entropy loss between the scores of each choice nor-
malized by the softmax function and a one-hot vec-
tor representing the correct answer as 1. The scores
of each choice are computed by inputting pairs of a
context and the choice separated by special tokens
and converting the hidden representations of the
first token ([CLS]) into scalars by a linear transfor-
mation. When incorporating pseudo-problems into
training, we define the objective function L as the
weighted sum of cross-entropy losses of common-
sense inference problems and pseudo-problems.
The above can be expressed by the following equa-
tions.

H = − 1

N

N∑
k=1

log
exp(skj)∑4
i=1 exp(ski)

L = Hci + λ×Hpseudo

where N is a batch size, j is the index of a correct
choice among 1 to 4, ski is the score of the i-th
choice of k-th example, H is the cross-entropy loss
of commonsense inference problems or pseudo-
problems, and λ is the weight for pseudo-problems.

During the inference phase, the choice with the
highest score is selected as an answer. We evalu-
ated the models by accuracy.

Comparative Method To investigate the effec-
tiveness of a multiple-choice format, we also per-
formed additional pre-training referring to Task-
Adaptive Pre-Training (Gururangan et al., 2020).
Specifically, we ran an additional Masked Lan-
guage Modeling (MLM) task on the 881k event
pairs used for generating pseudo-problems. For
convenience, we name it “AMLM”. After the ad-
ditional pre-training, we fine-tuned the models on
KUCI and the related tasks.

3.2.2 Intermediate-Task Transfer Learning
We performed transfer learning from the models
fine-tuned on KUCI with pseudo-problems to inves-
tigate the effects of learning contingent knowledge.
In this study, we employed discourse relation anal-
ysis, the Japanese Winograd Schema Challenge
(JWSC) (Shibata et al., 2015), and the Japanese
CommonsenseQA (JCQA) (Kurihara et al., 2022)
as the related tasks.

Discourse Relation Analysis We used the Ky-
oto University Web Document Leads Corpus
(KWDLC)7 (Kawahara et al., 2014a; Kishimoto
et al., 2018) for this task. KWDLC has been built
by collecting the first three sentences of various
kinds of web documents, and its size amounts to
6,445 documents. All the documents have been
annotated with discourse relations between clauses
using crowdsourcing. Moreover, 500 of 6,445 doc-
uments have also been annotated by linguistic ex-
perts. In this study, we used about 37k clause pairs
with crowdsourced labels as training data and evalu-
ated the classification performance on 2,320 clause
pairs with expert labels.

The task is a seven-way classification of dis-
course relations between clauses, including “No
Relation”. We fine-tuned the models following the
sentence pair classification framework proposed by
Devlin et al. (2019) and ran five-fold cross valida-
tion. We used micro-averaged precision, recall, and
F1 score computed without examples with the “No
Relation” label as evaluation metrics.

JWSC The Winograd Schema Challenge (WSC)
is the task to select the antecedent of a pronoun
from two candidates (Levesque, 2011). The task
itself is coreference resolution but designed to re-
quire commonsense reasoning. JWSC8 is con-
structed by translating the Rahman and Ng (2012)
version of WSC into Japanese.

As we excluded the event pairs containing
demonstrative pronouns so as not to generate prob-
lems that require more context, there is concern that
intermediate-task training on KUCI with pseudo-
problems might hurt performance on JWSC due
to forgetting the knowledge about demonstratives.
Accordingly, we recast JWSC as binary question
answering by replacing a pronoun with each an-
tecedent candidate. The resulting dataset is bal-

7https://github.com/ku-nlp/KWDLC
8https://github.com/ku-nlp/

Winograd-Schema-Challenge-Ja

https://github.com/ku-nlp/KWDLC
https://github.com/ku-nlp/Winograd-Schema-Challenge-Ja
https://github.com/ku-nlp/Winograd-Schema-Challenge-Ja
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Model Setting Acc.

BERT

KUCI 79.3 ± 0.2
KUCI + Pseudo-problems (λ = 0.1) 84.1 ± 0.1
KUCI + Pseudo-problems (λ = 0.5) 84.7 ± 0.1
KUCI + Pseudo-problems (λ = 1.0) 84.6 ± 0.2
AMLM → KUCI 83.9 ± 0.1

XLM-R

KUCI 86.0 ± 0.1
KUCI + Pseudo-problems (λ = 0.1) 88.5 ± 0.1
KUCI + Pseudo-problems (λ = 0.5) 88.8 ± 0.1
KUCI + Pseudo-problems (λ = 1.0) 88.6 ± 0.1
AMLM → KUCI 86.2 ± 0.2

Human (Omura et al., 2020) 88.9

Table 1: Accuracy on the test split of KUCI. The scores are the mean and standard deviation over three runs with
different random seeds. Arrows denote multi-stage fine-tuning. For instance, “AMLM → KUCI” means fine-tuning
on KUCI after additional pre-training.

anced and consists of 2,644 / 1,128 examples for
training and test split, respectively. Since the de-
velopment split is not provided, we carried out
five-fold cross validation by splitting the training
set into 8:2. We trained bert-based logistic regres-
sion models and evaluated them by accuracy and
Area Under the ROC Curve (AUC).

JCQA JCQA9 is the Japanese version of Com-
monsenseQA (Talmor et al., 2019) and consists of
11k five-choice questions regarding a wide range
of relations between basic concepts. The questions
are based on subgraphs extracted from Concept-
Net (Speer et al., 2017) and manually created using
crowdsourcing.

Since the task is multiple-choice question an-
swering, we fine-tuned models following the same
method described in 3.2.1. We also evaluated the
models by accuracy.

3.3 Experimental Results

Commonsense Contingent Reasoning Table 1
shows the experimental results of the common-
sense contingent reasoning task. Owing to pseudo-
problems, both the BERT and XLM-R models im-
proved the accuracy by 5.4 and 2.8 points, respec-
tively. Notably, the XLM-R model has achieved
performance comparable to humans. Putting mod-
erately low weight on pseudo-problems makes the
performance slightly better.

Figure 3 shows the learning curves of the mod-
els on the development split of KUCI. The crosses

9https://github.com/yahoojapan/JGLUE

Figure 3: Learning curves of the BERT and XLM-R
models on the development split of KUCI. We excluded
the degenerate results of the XLM-R model when fine-
tuned on a small number of training examples (N ∈
{103, 3× 103}).

representing the accuracy on the "KUCI + Pseudo-
problems" setting are under the extrapolated learn-
ing curves, which implies the difference in qual-
ity between the training examples in KUCI and
pseudo-problems.

Discourse Relation Analysis As for the related
tasks, we can see from Table 2 that intermediate-
task training on KUCI with pseudo-problems is
effective in discourse relation analysis, particularly
in BERT. Since the problems are based on con-

https://github.com/yahoojapan/JGLUE
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Model Setting Prec. Rec. F1

BERT

KWDLC 55.2 ± 2.9 38.4 ± 1.0 45.1 ± 1.1
KUCI → KWDLC 58.1 ± 2.4 38.3 ± 1.3 45.7 ± 0.8
KUCI + Pseudo-problems (λ = 0.5) → KWDLC 55.9 ± 1.1 41.0 ± 2.9 47.0 ± 2.4
AMLM → KUCI → KWDLC 51.8 ± 3.7 38.4 ± 1.3 43.7 ± 0.7

XLM-R

KWDLC 57.4 ± 1.7 45.5 ± 2.8 50.3 ± 1.3
KUCI → KWDLC 57.8 ± 2.3 48.2 ± 0.3 51.9 ± 0.2
KUCI + Pseudo-problems (λ = 0.5) → KWDLC 57.2 ± 1.0 47.4 ± 1.8 51.5 ± 0.7
AMLM → KUCI → KWDLC 55.2 ± 1.6 34.5 ± 0.6 40.9 ± 1.0

Human (Crowdworker) (Kishimoto et al., 2020) 54.7 48.6 51.5

Table 2: Performance of discourse relation analysis on KWDLC. The scores are the mean and standard deviation
over three runs of five-fold cross-validation with different random seeds. As with Table 1, arrows denote multi-stage
fine-tuning. Note that we performed additional Masked Language Modeling (AMLM) on the 881k event pairs
used for generating pseudo-problems, not the training examples in KWDLC, to compare the methods of utilizing
pseudo-data.

Model Setting Ca./Re. Cond. Purp. Justif. Cont. Conc. F1

BERT
(ensemble)

KWDLC 76 / 138 32 / 43 18 / 37 0 / 6 2 / 19 54 / 84 46.7
KUCI → KWDLC 81 / 132 32 / 43 18 / 31 1 / 6 2 / 17 47 / 72 48.0
KUCI + Pseudo-problems → KWDLC 81 / 139 33 / 49 17 / 29 0 / 4 1 / 12 56 / 85 48.8

XLM-R
(ensemble)

KWDLC 98 / 159 33 / 46 16 / 34 2 / 4 0 / 18 60 / 88 52.1
KUCI → KWDLC 109 / 201 34 / 53 18 / 32 3 / 7 0 / 26 56 / 85 51.3
KUCI + Pseudo-problems → KWDLC 99 / 168 33 / 50 18 / 28 1 / 2 0 / 22 64 / 98 52.4

Human (Crowdworker) (Kishimoto et al., 2020) 100 / 175 37 / 54 19 / 44 6 / 32 4 / 30 54 / 67 51.5

Total number of true positives and false negatives 242 54 36 15 6 100 —

Table 3: Detailed results of discourse relation analysis by the ensemble models. The third to eighth columns stand for
the discourse relations, “Cause or Reason”, “Condition”, “Purpose”, “Justification”, “Contrast”, and “Concession”,
respectively. The values on the left side are the numbers of true positives for the discourse relation, and those on the
right side are total numbers of true positives and false positives.

tingent basic event pairs, which are connected by
explicit discourse markers representing causal or
conditional relation10, we presume the knowledge
about these discourse relations is successfully trans-
ferred.

We also describe the detailed results of discourse
relation analysis in Table 3. The models trans-
ferred from KUCI with pseudo-problems perform
better on classifying causal and purpose relations.
Compared with crowdworkers, there is room for
improvement in precision of concession and infre-
quent relations.

JWSC The experimental results of JWSC are
shown in Table 4. We observed a few degen-

10These discourse relations are corresponding to “CON-
TINGENCY:Cause” and “CONTINGENCY:Condition” in the
Penn Discourse Treebank (Prasad et al., 2008) and automati-
cally analyzed by the Japanese parser, KNP (Kurohashi and
Nagao, 1994).

erate runs11 (Phang et al., 2018; Pruksachatkun
et al., 2020) on the “JWSC” setting despite fine-
tuning for 50 epochs. This phenomenon often oc-
curs when training large models on a small dataset,
and several studies have reported intermediate-task
training can alleviate it (Phang et al., 2018; Pruk-
sachatkun et al., 2020). We also confirmed the
same result in this experiment.

We found KUCI is beneficial to JWSC, but
pseudo-problems are not necessarily. JWSC con-
tains a non-negligible number of questions regard-
ing concession relation (e.g. “James asked Robert a
favor. However, James/Robert declined.”), thus we
consider putting much emphasis on contingent re-
lation would rather worsen performance. Learning
various discourse relations is a promising solution,

11The training runs that models result in around chance
performance. Specifically, we regard less than 0.55 accuracy
or AUC as the degenerate runs.
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Model Setting Acc. AUC

BERT

JWSC
66.0 ± 3.4† 71.4 ± 4.5†

(68.4 ± 0.1) (74.5 ± 0.1)

KUCI → JWSC 69.9 ± 0.3 77.0 ± 0.6
KUCI + Pseudo-problems (λ = 0.5) → JWSC 68.8 ± 1.1 75.0 ± 2.0
AMLM → KUCI → JWSC 58.1 ± 1.0 61.9 ± 1.1

XLM-R

JWSC
78.7 ± 3.2† 85.6 ± 4.0†

(80.7 ± 0.4) (88.0 ± 0.5)

KUCI → JWSC 81.2 ± 0.1 88.7 ± 0.2
KUCI + Pseudo-problems (λ = 0.5) → JWSC 80.0 ± 0.2 88.7 ± 0.0
AMLM → KUCI → JWSC 50.8 ± 0.5 51.7 ± 0.8

Table 4: Accuracy and AUC on the test split of JWSC. The scores are the mean and standard deviation over three runs
of five-fold cross-validation with different random seeds. † denotes the results include a few degenerate runs. We also
report the results excluding the degenerate runs in parentheses for reference. As for the “AMLM → KUCI → JWSC”
setting of XLM-R, the models failed to learn.

which we leave for future work.

JCQA Referring to Table 5, we can see perfor-
mance gain regarding XLM-R. We speculate it
is thanks to the domain match between pseudo-
problems and JCQA, considering the report by
Kurihara et al. (2022) that pre-training on CC-100
is more effective in JCQA than Wikipedia. Pseudo-
problems alone are somewhat insufficient for adapt-
ing to the web domain, but they complement some
knowledge.

Comparison to AMLM Although AMLM is
somewhat effective in KUCI, it is poor at trans-
ferring the knowledge12. It can be inferred the
models learn task-specific knowledge.

3.4 Qualitative Analysis
Figure 4 shows the example problems that BERT
got to answer correctly by incorporating pseudo-
problems into training. We can see the improve-
ment in accuracy of the problems regarding quite
basic contingent relation like Figure 4. The model
sometimes gave low scores to all the choices and
appeared to choose by elimination, but we observed
it became less frequent. We speculate pseudo-
problems complement the lack of coverage of the
training examples in KUCI. For further informa-
tion, we include the confusion matrix in Table 6.
The improvement is greater though the model got
to make a wrong prediction to some problems.

12We also tried the “AMLM → related task” setting, but the
performance is generally worse than those on the “AMLM →
KUCI → related task” setting.

4 Related Work

Owing to large-scale pre-training, the pre-trained
models have achieved unprecedented performance
on a variety of NLU tasks, including common-
sense reasoning (Wang et al., 2019). Besides such
improvement in general language understanding,
there have been many approaches to improving the
performance on commonsense reasoning tasks.

One group of approaches is to utilize automat-
ically created data, to which our approach be-
longs. For instance, Ye et al. (2019) performed
additional pre-training on 16 million fill-in-the-
blank multiple-choice questions generated from
Wikipedia and ConceptNet (Speer et al., 2017).
They improved the performance on two bench-
marks for entity-level commonsense reasoning,
CommonsenseQA (Talmor et al., 2019) and Wino-
grad Schema Challenge (WSC) (Levesque, 2011),
though their method requires the manually con-
structed resource (ConceptNet). Staliunaite et al.
(2021) proposed a data augmentation method for
the Choice of Plausible Alternatives (COPA) and
its extension (Roemmele et al., 2011; Kavumba
et al., 2019), which consists of roughly three steps:
filtering web text by several conditions, extracting
causal pairs of clauses with the clue of discourse
connectives, and generating distractors using lan-
guage models. They have not investigated the ap-
plication to the related tasks, focusing on improv-
ing commonsense causal reasoning. Shen et al.
(2021) improved unsupervised pronoun resolution
and commonsense reasoning by pre-training on
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Model Setting Acc.

BERT

JCQA
81.8 ± 0.1

(82.3)

KUCI → JCQA 82.0 ± 0.3
KUCI + Pseudo-problems (λ = 0.5) → JCQA 81.9 ± 0.2
AMLM → KUCI → JCQA 68.1 ± 0.4

XLM-R

JCQA
84.0 ± 0.5

(84.0)

KUCI → JCQA 85.0 ± 0.4
KUCI + Pseudo-problems (λ = 0.5) → JCQA 85.3 ± 0.6
AMLM → KUCI → JCQA 75.2 ± 0.5

Human (Kurihara et al., 2022) 98.6

Table 5: Accuracy on the development split of JCQA. The scores are the mean and standard deviation over three
runs with different random seeds. We also include the reported values in the original paper (the numbers in the
parentheses) for reference.

霧が晴れると、 嫌な夢を見ると、 午後から病院へいくので
(When a fog clears,) (If I have a bad dream,) (I’m going to see a doctor this afternoon, so)

a. 景色が素晴らしい a. とりあえず寝る a. 滅多に病院に行かない
(the scenery is amazing) (I’ll go to bed for now) (I rarely see a doctor)
b. 川の音がすごい b. もう寝ます b. 土日は勉強に勤しみます
(the sound of river is loud) (I’m going to go to bed now) (I’ll study hard on weekends)
c. 雪遊びも楽しそうだ c. さっさと寝ることにする c. 今日は休暇をとる
(playing in the snow sounds nice) (I’ll go to bed quickly) (I take a vacation today)
d. 写真写りがいまいちだ d. 目を覚まします d. 火曜日は眠い
(it’s not photogenic) (I’ll wake up) (I’m sleepy on Tuesday)

Figure 4: Example problems that the BERT model got to answer correctly by incorporating pseudo-problems into
training. The correct choice is bolded, and the choice that BERT previously selected is highlighted in red.

KUCI

correct incorrect

KUCI
+

Pseudo-problems
(λ = 0.5)

correct 7,891 1,028

incorrect 401 908

Table 6: Confusion matrix organizing the numbers of
correct and incorrect answers on the development split
of KUCI. The matrix shows the results of the BERT
model (ensemble).

auto-generated examples that imitate the task.

As for the second objective of this study, there
are several studies about the transferability of
commonsense knowledge from existing language
resources. For instance, it has been reported
intermediate-task training on two benchmarks for
commonsense reasoning, Social IQA (Sap et al.,
2019b) and WinoGrande (Sakaguchi et al., 2020),

helps improve the performance on WSC and COPA.
Pruksachatkun et al. (2020) showed the datasets
that require complex commonsense reasoning, such
as CosmosQA (Huang et al., 2019) and HellaSwag
(Zellers et al., 2019), are beneficial to several target
tasks. Lourie et al. (2021) ran multi-task learning
on multiple resources for commonsense reasoning
to examine their interactions. Since they have used
the datasets that require complex reasoning, they
have not focused on a specific type of common-
sense reasoning. We focus on commonsense con-
tingent reasoning and investigate the transferability
in the language other than English.

5 Conclusion

In this study, we improved commonsense contin-
gent reasoning by incorporating large-scale pseudo-
problems into training. We automatically generated
862k pseudo-problems from a Japanese web cor-
pus of 3.3 billion sentences using the existing data
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construction method with modification. Owing to
pseudo-problems, a high-performance pre-trained
model has achieved near human-level performance
on the commonsense contingent reasoning task.

We also investigated the effects of learning con-
tingent knowledge on the related tasks: discourse
relation analysis, the Japanese Winograd Schema
Challenge, and the JCommonsenseQA. Our experi-
ments demonstrated intermediate-task training on
KUCI with pseudo-problems has a positive impact
on the related tasks, which indicates the importance
of contingent reasoning.

We will further analyze what kind of problems
current models still answer incorrectly. From the
qualitative analysis, we consider building a lan-
guage resource for evaluating deeper language un-
derstanding. As another research direction, it is
also tempting to pursue the improvement in NLU
by learning various discourse relations between
entities or events in documents.
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A Hyper-parameters

Table 7, 8, 9, 10, and 11 show the hyper-parameters
used in the experiments. We found lower learning
rate makes the training of the XLM-R model more
stable, thus we set the learning rate of the XLM-R
model lower than that of BERT.

Name Value
BERT XLM-R

Epoch 3

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 7: Hyper-parameters for fine-tuning on KUCI and
pseudo-problems.

Name Value
BERT XLM-R

Epoch 100

Batch size 256

Max sequence length 128

Optimizer AdamW

Learning rate 1e-4

Weight decay 0.01

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.06

gradient clipping value - 0.25

Seed 0

Table 8: Hyper-parameters for AMLM. Almost all of
the hyper-parameters are referred to Gururangan et al.
(2020).

Name Value
BERT XLM-R

Epoch 10

Patience for early stopping 3

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 9: Hyper-parameters for fine-tuning on KWDLC.
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Name Value
BERT XLM-R

Epoch 50

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5 5e-6

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 10: Hyper-parameters for fine-tuning on JWSC.
We set the number of epochs to a large value referring
to Mosbach et al. (2021).

Name Value
BERT XLM-R

Epoch 4

Batch size 32

Max sequence length 128

Optimizer AdamW

Learning rate 2e-5

Weight decay 0.01 0.1

Adam’s betas params (0.9, 0.999) (0.9, 0.98)

Scheduler Linear decay
with linear warmup

Warmup proportion 0.1

Seed {0, 1, 2}

Table 11: Hyper-parameters for fine-tuning on JCQA.


