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Abstract
Complex question generation over knowledge
bases (KB) aims to generate natural language
questions involving multiple KB relations or
functional constraints. Existing methods train
one encoder-decoder-based model to fit all
questions. However, such a one-size-fits-all
strategy may not perform well since complex
questions exhibit an uneven distribution in
many dimensions, such as question types, in-
volved KB relations, and query structures, re-
sulting in insufficient learning for long-tailed
samples under different dimensions. To ad-
dress this problem, we propose a meta-learning
framework for complex question generation.
The meta-trained generator can acquire uni-
versal and transferable meta-knowledge and
quickly adapt to long-tailed samples through a
few most related training samples. To retrieve
similar samples for each input query, we de-
sign a self-supervised graph retriever to learn
distributed representations for samples, and
contrastive learning is leveraged to improve
the learned representations. We conduct ex-
periments on both WebQuestionsSP and Com-
plexWebQuestion, and results on long-tailed
samples of different dimensions have been sig-
nificantly improved, which demonstrates the
effectiveness of the proposed framework.

1 Introduction

Question generation (QG) over knowledge base
(KB) aims to generate natural language questions
with structured KB queries, which has been widely
used to improve the performance of question an-
swering (QA) by data augmentation for the training
corpora. It can also help chatbots ask questions dur-
ing human-computer interaction.

Traditional methods (Jia and Liang, 2016; Seyler
et al., 2017) rely on hand-crafted rules and tem-
plates to convert KB queries into questions, lead-
ing to poor generalization. Recently, neural ap-
proaches (Kumar et al., 2019; Chen et al., 2020)
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Figure 1: The distribution of question type (Typ-Con as
type constraint, Ent-Con as entity constraint, Com-con
as comparative constraint), relation type (the involved
KB relation in the query) and query structure in training
set of WebQSP. We also give the illustration of three
types of query structure

leveraged one encoder-decoder-based model to fit
the entire training set, then used the trained model
to generate questions in the testing phase. However,
such a one-size-fits-all strategy may not perform
well for generating complex questions which con-
tain multiple KB relations or functional constraints,
such as comparison and sorting, and have com-
plex semantic structures. This is due to the uneven
distribution of the training set.

Take a widely used dataset WebQuestionsSP
(WebQSP) (Yih et al., 2016) as an example, ques-
tions are unevenly distributed across multiple di-
mensions, including question types, involved KB
relations, and query structures. As illustrated in
Figure 1, single-hop questions are the most com-
mon type of questions in the dataset, e.g., the ques-
tion “What kind of money to take to Bahamas?”
relies on a single-hop KB query “(Bahamas, cur-
rency_used, ?x)”. In contrast, questions with com-
parative or sorting constraints are the long-tailed
samples, e.g., the question “ What was the first
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Figure 2: An example of meta-knowledge transferring.

book Charles Dickens wrote?” requires sorting
over the copyright date of Dickens’ books. The
same situation occurs in the dimensions of involved
KB relations and query structures. Existing neural
approaches can be easily biased towards dominant
samples and perform poorly on long-tailed ones.

To deal with the problem of data imbalance, we
resort to the process of human cognition. As shown
in Figure 2, when faced with a rare query, humans
can write the corresponding question according to
the previously learned query patterns. In this paper,
we collectively refer to these universal and trans-
ferable query patterns as meta-knowledge, which
can help generate long-tailed questions. To learn
such meta-knowledge, we propose a meta-learning
framework for KBQG, namely Meta-CQG. During
model training, each sample in the training set is
viewed as a query set, and its similar samples are
retrieved to form the support set. Our generator
adapts to each query set by trials and the supervi-
sion signals on the support set. Through the model-
agnostic meta-learning (MaML) (Finn et al., 2017)
algorithm, the QG model can learn to generalize
over varied samples to acquire the meta-knowledge,
instead of fitting all samples.

To select similar samples and construct the sup-
port sets, we design a self-supervised graph re-
triever that takes into account the similarity be-
tween different samples in different dimensions,
including question types, involved KB relations,
and query structures. Specifically, the graph re-
triever encodes the input queries into distributed
representations, and the cosine similarities between
these vectors denote the similarities between differ-
ent queries. Due to lack of supervision, we train
the graph retriever in a self-supervised way, and
contrastive learning is leveraged to improve the
learned representations. To demonstrate the effec-
tiveness of the proposed framework, we conduct

New 
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adjoins_s adjoins capital

Country 
type

?a?x

SELECT  ?a WHERE {
Sri Lanka location.location.adjoin_s ?x .
?x ns:location.adjoining_relationship.adjoins ?a . 
?a ns:common.topic.notable_types Country .
?a ns:location.country.capital New Delhi . }

Figure 3: An example of SPARQL query and its corre-
sponding query graph.

extensive experiments and ablation studies on two
widely-used datasets, and the results on long-tailed
samples under different dimensions have been sig-
nificantly improved.

In general, our main contributions are listed as
follows:

• We propose a meta-learning framework for
complex question generation over knowledge
bases, overcoming the challenge of data im-
balance.

• We design a self-supervised graph retriever to
select the most similar samples to construct
support set during the phase of meta-learning
and help the generator better acquire meta-
knowledge.

• We demonstrate the effectiveness of the pro-
posed framework on two widely-used datasets
and achieve state-of-the-art performance.

2 Preliminary

We aim to generate complex questions from
queries, which can be executed on the knowledge
base to get the answers to the generated questions.
As the query is always displayed in the form of
graph, we represent the queryQwith a query graph
G. Then we translate the G to the corresponding
complex question.

Knowledge Base. A knowledge base K is a col-
lection of triples in the form of (s, r, o), where s,
r, and o denote subject, relation, and object respec-
tively.

Query Graph. As described in (Qiu et al.,
2020), query graph G is a graph representation
of SPARQL query. As shown in Figure 3, Our
query graph consists of two types of nodes: vari-
able nodes and non-variable nodes. Variable nodes
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represent ungrounded KB nodes or values. A non-
variable node can be a grounded KB entity or KB
type, such as Sri Lanka and Country.

Complex Question. While a simple question
can be answered by a single KB triple, complex
questions require more information and even func-
tional operations, such as comparison, aggregation,
and sorting.

3 Methodology

In this section, we will describe the proposed frame-
work, Meta-CQG. Figure 4 gives an overview of
our framework, which mainly consists of two parts:
Query-agnostic Meta Learning (QaML) and the
graph retriever. QaML trains a unique generator for
each target query by learning the potential features
of retrieved similar samples. The graph retriever
selects a few most similar samples and construct
the support set.

3.1 Query-agnostic Meta Learning
Considering the adaption cost, QaML adopts the
MAML algorithm, which can be adapted to the tar-
get query via a few training samples in a few train-
ing steps. QaML contains two components, the
meta learner and the adapted learner. The adapted
learner is the adaptive question generator and the
meta learner allocates initial parameters for the
adapted learner. The meta-learning process can
be divided into meta-training process and meta-
testing process. In the meta-training process, the
meta learner is trained on the support set data to
get the adapted learner. Then, we update the meta
learner through evaluating on the query set data by
the adapted learner. In the meta-testing process, the
meta learner is fixed and we leverage the adapted
learner to encode the query set data and generate
the question. We will describe the meta learner and
the adapted learner in detail below.

3.1.1 Meta Learner
In this section, we will describe the meta learner,
which aims to learn an initial set of parameters
that can quickly adapt to a task-specific learner via
similar samples.

In the meta learning setting, a task consists of
a support set and a query set. The query set only
contains one sample to be generated, and the sup-
port set contains the training samples which are
most similar to the query set. Take a sample q
as an example, the query set squery = {q}. We
denote the top-N similar samples selected by the

graph retriever to form the support set ssupport =
{xq,1, ..., xq,N}. We denote the query and the ques-
tion in the support set as gsupport and qsupport, the
query set as gquery and qquery.

In the meta-training process, the meta learner
allocates initial parameters for the adapted learner
and is updated through evaluating on the query
set data by the adapted learner. We denote the
parameter of the meta learner as θ and the adapted
learner as θ′.

During the training phase, the model will be ini-
tialized with the parameters of the meta learner. Af-
ter t iterations of training on ssupport, the model up-
dates the parameter θ and gets the adapted learner
for the query set. In other words, the model param-
eterized by θ, is updated to θ′ by standard gradient
descent,

θ′ ← θ − η1∇θL(gsupport, qsupport;θ), (1)

where L is the loss function.
Then, we leverage the adapted learner to obtain

the loss on the query set. We apply stochastic gra-
dient descent on the initial parameter θ, i.e. the
parameter of the meta learner, by minimizing the
loss from query set,

θ ← θ − η2∇θL(gquery, qquery;θ′) (2)

where η2 is meta-learning rate. The pseudo code
of meta training process is shown in Algorithm 1.

In the meta-testing process, the meta learner is
fixed. We initialize the adapted learner by the pa-
rameter of the meta learner.

3.1.2 Adapted Learner
In our task, the adapted learner is the question gen-
erator, which translates the generated query graph
into a natural language question. Based on the
query graph constructed above, we adopt a novel
graph-to-sequence model to generate sequences.

Inspired by (Guo et al., 2019), we leverage
Densely Connected Graph Convolutional Network
(DCGCN) as the graph encoder. It applies dense
connectivity among Graph Convolutional Network
(GCN) layers. Each DCGCN block consists of two
sub-blocks to capture graph structure at different
abstract levels. Each sub-block consists of several
GCN layers, where each GCN layer is connected
to all previous layers. The input of layer l for node
u is defined as,

g(l)u =
[
xu;h

(1)
u ; . . . ;h(l−1)

u

]
, (3)
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Figure 4: The overall architecture of our framework for question generation over knowledge bases. It can be divided
into two parts, i.e., the graph retriever and QaML are shown on the left and right respectively. (i) Graph Retriever
(left): from top to bottom, we first pre-train the graph encoder with the task of link prediction. Then we used
Similarity-based Contrastive Learning (SCL) to fine-tune the pre-trained graph encoder as the graph retriever. (ii)
QaML(right): Given a target query (as query set) in the training set, we retrieve similar samples to construct a
support set for the target query. The blue square (above) describes the training process on the support set, while the
pink square(below) describes the testing process on the query set.

Algorithm 1 Meta-training process

Require: Dataset: Strain ; step hyper parameters:
η1, η2;

1: start training:
2: Randomly initialize θ
3: for Si in Strain do
4: Expand Si→Di

5:
(
Ssupport
i ,Squery

i

)
∼ Taski.

6: Evaluate ∇θL(gsupport, qsupport;θ) using
Ssupport
i

7: Compute adapted parameters with gradient
descent:

8: θ′ ← θ − η1∇θL(gsupport, qsupport;θ)
9: Evaluate ∇θL(gquery, qquery;θ′) using
Squery
i

10: θ ← θ − η2∇θL(gquery, qquery;θ′)
11: end for
12: end training

where [·; ·] denotes the concatenation of vectors; xu

denotes the node embedding of u ; and h
(i)
u denotes

the output of layer i for node u. We randomly
initialize the embedding of nodes.

In our case, the edge information is crucial as
it corresponds to important tokens in the gener-
ated question. In order to model both the node
and edge information with GNNs, we utilize Levi
graph transformation method to transform the in-
put query graph into its equivalent Levi graph(Levi,
1942), which views the predicates as nodes in the

graph. Following (Beck et al., 2018), we add re-
verse and self-loop edges to the Levi graph. To
compute the graph-level embedding, we leverage
the pooling-based method, which feeds the output
node embedding into a fully-connected neural net-
work and applies the element-wise max-pooling
operation on all node embeddings to derive the
graph embedding hG ∈ Rd.

We adopt an attention-based LSTM de-
coder (Bahdanau et al., 2014) that generates the
output sequence one word at a time. The graph
embedding hG is used as the initial input of the
decoder. We carefully follow the attention mecha-
nism used in (Tu et al., 2016).

3.2 Graph Retriever

To construct the support set, we retrieve samples
that are most similar to the target KB query from
training set. As queries are always be represented
by graphs, this problem is defined as a graph re-
trieval problem. The core and most challenging
part is to measure similarity between two graphs.

Considering both the structure and content in-
formation of the query graph, we adopt the neural-
based method to measure graph similarity. Most
neural-based models only focus on homogeneous
graphs and require large-scale annotated data. How-
ever, our task lacks gold label about the similarity
between graphs. Thus, we train the graph retriever
in an unsupervised way. To pre-train the graph, we
utilize DCGCN to encode the graph and the link
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predication task as downstream task.
Take (g1, q1) and (g2, q2) as an example. The

query representation is calculated as:

hg1 = DCGCN(g1),

hg2 = DCGCN(g2),
(4)

where hg1 and hg2 is the graph embedding of g1
and g2. And we adopt cosine function to calculate
the query similarity:

δg = cos(hg1,hg2) (5)

where δg is the similarity score between g1 and
g2

Only focusing on the query graph itself is hard
to learn the mapping relation between query graph
and question, leading to many false samples which
have similar query graphs but quite different ques-
tions. Thus, we propose a Similarity-based Con-
trastive Learning (SCL) method to fine-tune the
pre-trained graph encoder, which utilizes question
semantic to emphasize some easily overlooked but
crucial information on the query graph.

3.2.1 Contrastive Samples Construction
Each sample contains one query and one question,
which is in the form of a graph and a sequence.
We construct contrastive samples according to the
similarity between queries and questions. We use
fixed Bert (Devlin et al., 2018) to encode question
and get its representation,

hq1 = Bert(q1),

hq2 = Bert(q2),
(6)

where hq1 and hq2 is denoted as the representation
of q1 and q2. We adopt cosine function to calculate
question similarity δs as follow,

δq = cos(hq1,hq2) (7)

The query similarity between two sample has been
presented above. Then, we define positive and
negative sample selection score λpos, λneg as:

λpos = (δg − δgpos)(δq − δqpos),

λneg = (δg − δgneg)(δqneg − δq),
(8)

where δgpos , δqpos, δgneg, δqneg is a series of thresh-
olds we set according to the similarity distribution.

If both the two similarities are larger than the
thresholds, i.e., δg > δgpos and δq > δqpos, the pair
of the two samples is positive.

If either δq < δqneg or δg < δgneg, the sample
pair is negative.

3.2.2 Contrastive Training

Our goal is to encourage the graph encoder E to
learn discriminative query representations. After
pre-training, We denote the node features in pos-
itive samples and negative samples as X and X̃,
the adjacency matrix as A and Ã, the query rep-
resentation in target, positive and negative sample
as hg, hgp and hgn. We leverage the discrimina-
tor D to maxmize the mutual information, such
that D (hg,hgn) represents the probability scores
assigned to this pair.

For the objective, we follow the intuitions from
Deep Graph InfoMax (Velickovic et al., 2019) and
introduce a contrastive objective LCL with a stan-
dard binary corss-entropy (BCE) loss. The LCL is
defined as:

LCL =

N∑
i=1

E(X,A) [logD (hg,hgp)] +

N∑
j=1

E
(X̃,Ã)

[log (1−D (hg,hgn))] ,

(9)

where N is denoted as the number of positive and
negative samples sampled.

After fine-tuning with above loss, we use average
pooling to compute the query representation, and
retrieve the most similar samples through cosine
similarity function.

4 Experiments

In this section, we evaluate Meta-CQG on two
widely-used benchmark datasets and show the ef-
fectiveness of our method. We first introduce
datasets and training settings. Then, we evaluate
the proposed model with the state-of-the-art mod-
els on both datasets. In addition, we investigate
the performance on different dimensions and the
influence of different sampling strategies. Finally,
we conduct human evaluation to verify the effec-
tiveness of our method.

4.1 Datasets and Preprocessing

We conduct experiments on two widely-used
datasets.

WebQSP (Yih et al., 2016) consists of 4,737
question-answer pairs. All the questions are col-
lected through Google Suggest API, and the an-
swers are fetched from Freebase.
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Method
CWQ WebQSP

BLEU-4 METEOR Rouge-L BLEU-4 METEOR Rouge-L

L2A 4.01 13.78 30.59 8.01 19.45 32.58
Zero-shot 6.37 16.32 32.10 9.45 21.52 34.78
MHQG 9.35 19.42 35.78 13.34 24.88 39.14
BiGraph2seq 26.01 28.12 53.58 27.86 30.24 62.77
DCGCN 27.36 29.53 54.11 29.82 31.28 63.93
DCGCN+ROS 28.15 30.13 54.69 30.68 32.19 64.56
DCGCN+Finetune 28.43 30.51 55.07 31.37 32.44 64.92

Meta-CQG 29.52 31.72 56.03 32.87 32.92 65.09
w/o Graph Retriever 27.66 29.68 53.88 29.75 31.45 64.08
w/o SCL 28.51 30.63 55.08 31.83 31.73 64.27

Table 1: Experimental results of automatic metrics on two benchmark datasets.

CWQ (Talmor and Berant, 2018) contains
34,689 questions in total. It modified the SPAR-
QLs in WebQSP by including more constraints,
and then generated corresponding natural language
questions.

Each question in both datasets has a correspond-
ing SPARQL query. We design transformation
rules to convert SPARQL query into query graph
as our input. For each dataset, we randomly select
80% of the examples for training, 10% for valida-
tion, and 10% for testing.

4.2 Baseline Methods

We compare the proposed model with several base-
line methods, including the current state-of-the-art
model over the two benchmark datasets. L2A (Du
et al., 2017) is an attention-based Seq-to-Seq model
to generate natural language questions from con-
text in open domain conversational systems. Zero-
shot (Elsahar et al., 2018) is an RNN-based Seq-to-
Seq model paired with an original part-of-speech
copy action mechanism to generate questions.
MHQG (Kumar et al., 2019) is a Transformer-
based model for automatic generation of multi-hop
questions over knowledge bases. BiGraph2seq
(Chen et al., 2020) is a graph-to-sequence model
which leverages Bidirectional Gated Graph Neu-
ral Network (Bi-GNN) as the graph encoder to
encode the KB subgraphs, and enhance the RNN
decoder with copying mechanism. DCGCN ap-
plys DCGCN as graph encoder and LSTM as de-
coder. DCGCN+ROS leverages DCGCN as the
basic model and adopt the Random Over Sampling
(ROS) strategy on question type to solve the data

imbalance problem. DCGCN+Finetune leverages
DCGCN to pre-train the training set. When testing,
for each sample, we use the graph retriever to build
an adaption and finetune the pre-trained model on
it.

4.3 Implementation Details

We implement our method on PyTorch platform.
The parameters with the best performance on the
validation set are selected. For both datasets, the
KB embeddings were randomly initialized and up-
dated in the process of training. In meta-learning,
we set N=5 when forming the support set. We set
η1 = 1e − 4 (Equation 1) and η2 = 0.2 (Equa-
tion 2). For SCL, we random select three posi-
tive and negative samples for each sample. We
set δqpos = 0.8, δspos = 0.8, δqneg = 0.6 and
δqneg = 0.4.

We set the number of DCGCN as 3 and 6 for the
two sub-block respectively with an initial learning
rate of 0.0003 is adopted as the optimizer. Dur-
ing decoding, beam search with beam size 10 is
leveraged.

4.4 Results and Discussion

Following previous studies, we evaluate the perfor-
mance by a set of N-grams-based metrics for ques-
tion generation: BLEU-4(Papineni et al., 2002)(B-
4.), METEOR(Banerjee and Lavie, 2005), and
ROUGE-L(Lin, 2004).

Table 1 shows the results of Meta-CQG and the
adopted baselines. Meta-CQG outperforms all the
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Dimesion Categories
BiGraph2Seq DCGCN Meta-CQG

B-4. ME. R-L. B-4. ME. R-L. B-4. ME. R-L.

Question
Type

Single-hop(>40%) 28.56 31.38 63.89 30.56 31.79 64.30 33.21 33.15 65.83
Multi-hop(>20%) 27.60 29.76 63.01 28.86 31.05 64.08 32.03 31.86 64.07

Type Constraint(<10%) 26.53 28.76 60.23 28.27 30.19 62.76 31.23 31.77 63.38
Ordinal(<5%) 23.43 27.01 53.99 24.73 27.53 57.07 29.04 30.69 63.25

Query
Structure

Chain-Style(>75%) 29.38 31.23 63.65 31.45 32.96 64.45 33.18 33.42 65.79
Tree-Style(<20%) 23.53 23.46 58.17 25.77 26.08 59.39 32.16 31.93 64.92
Ring-Style(<5%) 6.78 17.01 48.65 9.48 20.57 50.78 23.23 30.79 56.79

Relation
Type

Notable Types(>30%) 28.77 30.94 60.17 31.27 32.48 62.59 33.02 34.08 65.28
Inventor(<10%) 17.53 22.96 47.47 20.29 24.57 51.86 27.33 31.88 62.13

Award Honor(<1%) 4.58 14.77 33.58 7.33 15.45 37.54 20.29 24.11 52.77

Table 2: Experimental results of automatic metrics on different dimensions.

baselines on the two benchmark datasets. Specifi-
cally, Meta-CQG improves the BLEU-4 score by
3.51 on CWQ, 5.01 on WebQSP compared with
BiGraph2seq. Meanwhile, Meta-CQG exceeds the
baselines by a larger margin on METEOR and
ROUGE-L.

Graph-to-Seq models (BiGraph2seq, DCGCN,
DCGCN+ROS, DCGCN+Finetune and Meta-
CQG) outperform the Seq-to-Seq models (L2A,
Zero-shot and MHQG) on both datasets, which
indicates the advantages of GNN-based encoders
for modeling query graphs, since the RNN-
based model and the transformer-based model
ignores the explicit graph structure of query
graphs. In addition, DCGCN-based models
(DCGCN, DCGCN+ROS, DCGCN+Finetune and
Meta-CQG) outperform BiGraph2seq, which in-
dicates that DCGCN better captures the non-local
interactions between the nodes compared with Bi-
GNN.

Meta-CQG outperforms DCGCN+ROS by more
than 1.37 on BLEU-4, which indicates that the pro-
posed model is more effective in reducing the data
imbalance problem compared with existing data
re-balancing approaches. Moreover, it outperforms
DCGCN+Finetune by more than 1.09 on BLEU-4,
which indicates that the meta-learning framework
is better at transferring meta-knowledge compared
with the pretrain-finetune framwork.

4.5 Ablation study

To further analyze the effectiveness of different
components, we conduct ablation studies which
remove the graph retriever and SCL in Meta-CQG.

The results are shown in Table 1.
Graph Retriever. To evaluate the effectiveness

of graph retriever, we remove it and randomly se-
lect samples for each training sample (w/o Graph
Retriever). The performance has dropped by more
than 1.86 on BLEU-4. This indicates that random
select samples cannot provide task-specific knowl-
edge for the training sample, and they may intro-
duce noise during training.

SCL. To evaluate the effectiveness of SCL, we
remove the contrastive learning loss (w/o SCL).
The performance has dropped by more than 1.01 on
BLEU-4. This indicates that SCL utilizes question
semantic to enhance query graph information.

4.6 Analyses on Different Dimensions

As mentioned above, complex questions are im-
balanced in multiple dimensions. We divide the
questions in the WebQSP according to each dimen-
sion and evaluate the performance of BiGraph2Seq,
DCGCN, and Meta-CQG. We sample some cat-
egories from majority types and minority types
respectively for each dimension. The proportion of
each type in the training set is also listed after the
categories.

As shown in Table 2, Meta-CQG achieves the
best performance in all three dimensions.

In each dimension, Meta-CQG outperforms the
other two baselines on minority types (i.e., <10%
in training set), which shows the learning ability of
Meta-CQG on imbalanced data. The poor perfor-
mance of BiGraph2Seq and DCGCN on minority
types also verifies that the data imbalance problem
greatly affects the model performance.
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Strategies B-4. ME. R-L.

Question Type 31.07 32.87 64.97
Relation Type 31.22 32.39 64.43
Query Structure 30.09 31.53 64.27
Our Model 32.87 32.92 65.09

Table 3: Experimental results of different sampling
strategies.

In addition, Meta-CQG outperforms the base-
lines on majority types (i.e., >30% in training set).
This may be some samples in a majority type may
be in minority type of another dimension. For ex-
ample, a single-hop question may contain relation
of Award Honor. Therefore, Meta-CQG is able to
find similar samples across multiple dimensions.

4.7 Analyses on Different Sampling Strategies
We design different sampling strategies to verify
the effectiveness of our graph retriever. First, we
devise different retrievers according to the three
dimensions we mentioned above. For each dimen-
sion, the retriever randomly selects a few samples
that belong to the same category with the sample to
be generated. The results shown in Table 3 demon-
strate the effectiveness of our model and verify that
our model is able to comprehensively consider the
imbalance in all dimensions.

4.8 Human Evaluation
We randomly choose 100 questions from the test
set of each dataset. We pair the questions generated
by our model and BiGraph2seq. Two human an-
notators are asked to judge which is better in pairs
from three aspects: naturalness, correctness, and
semantic. Results are shown in Table 4. Our model
outperforms BiGraph2seq as it has more winning
instances than losing instances on all two datasets.
These results indicate that our model improves the
quality of questions from the three aspects.

5 Related Work

Question Generation over Knowledge Bases
Most recent works for KBQG mainly adopt
encoder-decoder models, and focus on enriching
the input information. In (Serban et al., 2016)
and (Indurthi et al., 2017), recurrent neural net-
works are introduced for generating natural lan-
guage questions from KB facts. To address the
challenge of unseen predicates and entity types,

Results
CWQ WebQSP

Nat. Sem. Cor. Nat. Sem. Cor.

Win 19 37 28 35 35 29
Tie 79 59 69 59 59 64
Lose 2 4 3 6 6 7

Table 4: Wins, losses, and ties of Meta-CQG against
the current SOAT (BiGraph2seq) based on the manual
evaluation.

(Elsahar et al., 2018) leverages auxiliary contexts
in the WiKidata corpus in an encoder-decoder archi-
tecture. However, the context cannot cover all pred-
icates. Thus, (Liu et al., 2019) presents a neural
encoder-decoder model that integrates diversified
off-the-shelf contexts. To tackle the semantic drift
problem, (Bi et al., 2020) presents a knowledge-
enriched, type-constrained, and grammar-guided
model. (Kumar et al., 2019) proposes a model
for generating complex multi-hop and difficulty-
controllable questions over knowledge bases. To
model the graph-structured data, (Chen et al., 2020)
applied a bidirectional Gated Graph Neural Net-
work model to encode the KB subgraph. However,
existing methods train one model to fit all questions,
ignoring the data imbalance in the real world.

Meta-Learning Meta-Learning, i.e.learning-to-
learn, aims to build efficient algorithms that can
learn the new task quickly. In pursuing this prob-
lem, there are three categories of meta-learning
methods: learning a metric space to compare low-
resource testing samples and rich training samples
(Snell et al., 2017; Koch et al., 2015), using an ad-
ditional meta-learner to update the original learner
with a few training examples (Ravi and Larochelle,
2016) and learning a good initialization parame-
ter for fast adaptation(Finn et al., 2017). In this
work, we follow the third idea and propose a meta-
learning framework based on MaML to solve the
data imbalance problem in complex question gen-
eration tasks.

6 Conclusion

In this paper, we focus on the task of complex
question generation over knowledge bases. We
propose a meta-learning framework for complex
question generation, namely Meta-CQG, to deal
with the data imbalance problem. To consider the
imbalance of all dimensions, we adopt the MaML
method to train a unique generator for each sam-
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ple to be generated via a few most similar training
samples. Specially, we design a self supervised
graph retriever to flexibly retrieve most similar sam-
ples. We evaluate the effectiveness of Meta-CQG
on two widely-used benchmark datasets, and it out-
performs all the baselines.
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