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Abstract

In natural language, referencing objects at dif-
ferent levels of specificity is a fundamental
pragmatic mechanism for efficient communica-
tion in context. We develop a novel communica-
tion game, the hierarchical reference game, to
study the emergence of such reference systems
in artificial agents. We consider a simplified
world, in which concepts are abstractions over
a set of primitive attributes (e.g., color, style,
shape). Depending on how many attributes are
combined, concepts are more general (“circle”)
or more specific (“red dotted circle”). Based
on the context, the agents have to communi-
cate at different levels of this hierarchy. Our
results show that the agents learn to play the
game successfully and can even generalize to
novel concepts. To achieve abstraction, they
use implicit (omitting irrelevant information)
and explicit (indicating that attributes are irrele-
vant) strategies. In addition, the compositional
structure underlying the concept hierarchy is
reflected in the emergent protocols, indicating
that the need to develop hierarchical reference
systems supports the emergence of composi-
tionality.

1 Introduction

Humans excel at using language to convey informa-
tion efficiently in context. A speaker does not have
to communicate every detail. Rather, a listener can
infer the intended meaning of an utterance by as-
suming that sufficient information was provided.
This idea was first explicitly formulated by Grice
(1975) in his conversational maxims, in particular
the Maxim of Quantity: “1. Make your contribu-
tion as informative as is required (for the current
purposes of the exchange). 2. Do not make your
contribution more informative than is required.” An
illustration of this mechanism can be given in the
form of a simple referential context. In a scene with
a red circle and a green triangle, “circle” is enough
information to identify the referent, whereas more

complex scenes may require the speaker to name
both object attributes—shape and color—to allow
for an unambiguous interpretation. The Maxim of
Quantity requires a hierarchical reference system,
that allows the selection of the most appropriate
level of specificity for a given context.

In this paper, we follow the proposal by Higgins
et al. (2018) and define concepts as compositional
abstractions over a set of primitive attributes (e.g.,
color, style, shape), see Figure 1a. The concepts
are maximally specific at the leaf nodes, where all
attribute values are determined. Moving from the
subordinate levels up to the superordinate levels,
the number of concept-defining attribute values de-
creases. Thus, each parent concept is an abstraction
(i.e. a subset) over its children and over the original
set of attribute values. Given this definition of a
concept hierarchy, we use a language emergence
paradigm with artificial agents to study whether a
corresponding reference system can emerge given
a structured perception of the world.

In most language emergence simulations, a
sender and a receiver agent are trained on a refer-
ence game (e.g., Havrylov and Titov, 2017; Lazari-
dou et al., 2018; Rodríguez Luna et al., 2020; Da-
gan et al., 2021), based on the signaling game orig-
inally developed by Lewis (1969). The sender sees
a target object and sends a message to the receiver.
Using that message, the receiver tries to identify the
target among a set of distractor objects. Crucially,
in the current form, reference games completely
ignore that different contexts may require referen-
tial expressions at different levels of abstraction.
Having no access to the distractors, the sender can-
not choose relevant object attributes in a context-
dependent way. Moreover, random sampling of
the distractors typically encourages the sender to
communicate all object attributes. Therefore, the
standard reference game cannot account for the
emergence of hierarchical concepts in communica-
tion.
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Figure 1: a) Example of a concept hierarchy. Shown are all attribute values and the concept hierarchy constructed
from the concept “red filled circle”. b) Example languages for the concept hierarchy in part a). Possible abstraction
strategies include holistic and compositional languages. In compositional languages, abstraction can further be
indicated implicitly or explicitly.

We develop a hierarchical reference game to ad-
dress this shortcoming. Instead of an object, the
sender receives a concept as input. The concept
is defined by an attribute vector (object) and a rel-
evance vector (context). The relevance vector in-
dicates for each attribute whether it is relevant in
the current context or not. Based on the sender’s
message, the receiver must identify an object that
instantiates the target concept among a set of dis-
tractors. The input concepts have a compositional
and hierarchical structure. While the game is de-
signed to encourage communication at different
levels of abstraction, it does not regulate how this
abstraction is realized; in particular, there is no ex-
plicit pressure on the emergent language to reflect
the compositional input structure.

First, we evaluate if the agents can successfully
play the game, i.e. communicate specific contextu-
ally relevant object attributes. Second, to measure
whether the agents’ strategies are systematic, we
test whether they can generalize to novel concepts,
and also whether they consistently use the same
expressions for the same concepts at all levels of
abstraction. Third, we investigate the emerging
protocols to study the mechanisms by which sys-
tematic abstraction is achieved, see Figure 1b. In
natural language, there is holistic abstraction as in
“Dalmatian” ⊆ “dog” ⊆ “animal”; but also compo-
sitional abstraction as in “filled red circle” ⊆ “red
circle” ⊆ “circle”. Abstraction can further be im-
plicit, by omitting irrelevant attributes, and explicit,
by indicating that certain attributes are irrelevant
(as in saying “a circle of any color”). We evaluate
which, if any, of these abstraction strategies are
used by the agents.

Our work makes several contributions. We de-
velop the hierarchical reference game and show
that it can be used to model the emergence of ref-

erential expressions at different levels of abstrac-
tion. We also provide novel metrics to examine
how the agents achieve abstraction. Working with
different data sets, i.e. different concept hierar-
chies, allows us to disentangle data set specific and
general effects. Not least, our results suggest that
communication about concept hierarchies supports
the emergence of compositionality.

2 Related work

Referring expression generation (REG). There
has been a long history of research on understand-
ing how people generate referring expressions, dat-
ing back to Winograd (1972). The most influential
work on REG in both the eighties (Appelt, 1985;
Appelt and Kronfeld, 1987) and nineties (Reiter
and Dale, 1992; Dale and Reiter, 1995) integrated
the Gricean maxims into their systems. The latter
developed the iterative algorithm, which was used
and extended to model various aspects of REG
(Krahmer and van Deemter, 2012). Like Dale and
Reiter (1995), we define objects as sets of attribute-
value pairs and consider the subset of referring
expressions whose single purpose is to identify an
object. However, our main focus is not to generate
human-like referring expressions but rather to build
artificial agents capable of hierarchical reference.
Hence, we ignore many effects that play a role in
human REG, for example basic level categories
(Rosch and Mervis, 1975; Rosch et al., 1976).

By now, several large-scale data sets of refer-
ring expressions for complex real-world images
have been collected and are used to train deep
neural networks (DNNs) (e.g., Kazemzadeh et al.,
2014; Mao et al., 2016; Yu et al., 2016; Luo and
Shakhnarovich, 2017; Yu et al., 2018; Luo et al.,
2020). The data sets are collected in a reference
game setup: one participant has to refer to a target
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entity in a given image, and the other participant
has to identify the target. Models are often trained
on both components, expression generation and
comprehension (e.g. Mao et al., 2016; Luo and
Shakhnarovich, 2017). Several REG models try
to integrate deep learning with computational ac-
counts of pragmatic reasoning (e.g., Monroe and
Potts, 2015; Andreas and Klein, 2016; Le et al.,
2022), such as the Rational Speech Act framework
(Frank and Goodman, 2012). Our model also im-
plements expression generation (sender) and com-
prehension (receiver) using DNNs but hard codes
pragmatic inferences in the relevance vector. Most
importantly, the agents are not trained on a labeled
data set but develop their own referring expressions
in a language emergence game.

Emergent multi-agent communication. Lan-
guage emergence simulations are popular in evo-
lutionary linguistics as well as AI research. In
evolutionary linguistics, they are used to study the
origins and evolution of human and animal commu-
nication (e.g., Cangelosi and Parisi, 2002; Kirby,
2002; Wagner et al., 2003). In AI research, they
are used with the aim of building artificial agents
capable of flexible and goal-directed language use,
which arguably relies on grounding language in
interaction (e.g., Steels, 2001, 2003; Lazaridou and
Baroni, 2020).

Starting with Foerster et al. (2016) and Lazari-
dou et al. (2017), there has been an increasing inter-
est in language emergence simulations with DNN
agents (for a review, see Lazaridou and Baroni,
2020). These approaches stand in contrast to the
currently dominant DNN models in NLP, which
learn passively by being exposed to large amounts
of text (Bisk et al., 2020). As discussed above, in
many implementations, hierarchical reference sys-
tems cannot emerge because the sender does not
have access to information about the context. Even
in the rare cases where it does (e.g., Lazaridou
et al., 2017; Dessi et al., 2021), the emergence of
hierarchical reference has not yet been investigated.

3 General setup

3.1 Concept representation

We use symbolic, disentangled input representa-
tions. A concept is composed of an object vector
and a relevance vector. Objects have n attributes

and each attribute can take on k values.1 The rele-
vance vector r ∈ {0, 1}n indicates which attributes
are relevant (1) and which ones are irrelevant (0).
E.g., if the sender’s input is (4, 3, 1)(1, 0, 0), the
concept in question is (4, _, _) := {(4, x, y)|x, y ∈
N, 1 ≤ x, y ≤ k}. Object (4, 3, 1) could instanti-
ate the attributes shape, color, and style with spe-
cific values such as circle, red, and filled (see Figure
1a). Relevance vector (1, 0, 0) would then indicate
that only the first attribute value, circle, is relevant
and must be communicated.

3.2 Hierarchical reference game

Like the classical reference game, the hierarchical
reference game is played by a sender, S, and a
receiver, R. However, rather than communicating
the input object as it is, the sender must abstract
a concept from this object based on the relevance
vector. One round of the hierarchical reference
game proceeds as follows (see Figure 2):

1. An object, o, and a relevance vector, r, are
sampled randomly and passed to S.

2. Based on this input, S generates a message, m.
The message is a concatenation of symbols
from vocabulary V , si ∈ V , and has maximal
length L, such that m = (si)i≤L.

3. R receives the message m, as well as a set of
objects containing one target, t, and several
distractors. t has the same attribute values
as the input object o for relevant attributes
(as defined by r), while the values of irrel-
evant attributes are sampled randomly. The
distractors are constructed by sampling object
instances of concepts that would arise from o
in combination with other relevance vectors
than r.

4. Based on m, R selects one object among tar-
get and distractors.

By our choice of distractors, we simulate an en-
vironment in which the relevance vector matches
pragmatic needs: the speaker tries to be as spe-
cific as necessary in a given context. To further
discourage communication of irrelevant attributes,
we choose distractors that are more abstract than
the target concept but still similar, by replacing ex-
actly one 1 (relevant) in the relevance vector with
a 0 (irrelevant). Additional experiments, where we
sample distractors with equal probability from all

1We present objects as n-hot encodings to the agents, such
that each object o ∈ {0, 1}nk.
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Figure 2: Schematic illustration of the hierarchical ref-
erence game.

levels of the concept hierarchy, can be found in
Appendix A.2

3.3 Architecture
Both agents are implemented as single-layer GRUs.
The sender input is processed by two dense layers,
one receiving the object vector and one the rele-
vance vector, followed by a dense layer mapping
a concatenation of these two representations to the
sender’s initial hidden state. The message is pro-
duced incrementally. At each time step, the sender
generates a probability distribution over the vocab-
ulary which is used to sample a symbol from the
Gumbel-softmax distribution (Jang et al., 2017).
The GS distribution is a continuous distribution
that approximates categorical samples, and whose
parameter gradients can be easily computed via a
reparameterization trick. The receiver processes
the incoming message. An additional dense layer
maps target and distractor objects onto embeddings.
These embeddings have the same dimensionality as
the receiver’s hidden state. The receiver’s selection
probabilities are determined by applying a softmax
function to the dot products between object embed-
dings and hidden state.

4 Experiments

Our implementation is based on PyTorch,
and uses the EGG toolkit (Kharitonov et al.,
2019).3 Our code and results are available
at https://github.com/XeniaOhmer/
hierarchical_reference_game.

4.1 Data sets
In order to investigate how the number of attributes
and the number of values per attribute influence

2In that case, the agents still learn to play the game success-
fully and to form abstract concepts but they have a stronger
tendency to convey also irrelevant information.

3https://github.com/facebookresearch/
EGG

the formation of abstract concepts, we use a set of
different data sets, D(n, k) := {(m1, . . . ,mn) |
mi ∈ Nk} with Nk = {1, ..., k} (see Table 1).

k = 4 k = 8 k = 16

n = 3 D(3, 4) D(3, 8) D(3, 16)
n = 4 D(4, 4) D(4, 8)
n = 5 D(5, 4)

Table 1: Input data sets with n attributes and k values.
Data sets are labeled as D(n, k).

We sample relevance vectors with equal prob-
ability from each level of the concept hierarchy.4

We repeat that procedure until there are 10 samples
for each input object and each number of relevant
attributes in the data set. In addition, we create
10 distractors per sample. We reserve 20% of the
data for zero-shot testing (see Section 4.3), and
split the remaining data randomly into training and
validation sets at a ratio of 0.75/0.25.

4.2 Hyperparameter selection and training
In our simulations there is always exactly one target
object for the receiver, i.e. only that object—and
none of the distractors—is an instance of the target
concept. The agents minimize the cross-entropy
loss between target and selection. During training,
a message is given by the GS distributions across
symbols, whereas during testing the argmax values
are used. Hence, it is possible to jointly update the
weights of sender and receiver by backpropagating
through the approximated “discrete” messages.

We conducted a hyperparameter search to iden-
tify model and training parameters leading to high
performance on the validation set for the range of
different data sets we use (for details see Appendix
B). Agents have an embedding layer with 128 units
and a hidden layer with 256 units. The discrete mes-
sages are approximated using GS with an initial
temperature of 1.5, decaying exponentially at a rate
of 0.99. We train for 300 epochs using Adam opti-
mizer with batch size 32 and learning rate 0.0005.
For all data sets, we use the number of attributes as
maximal message length L. The minimal vocabu-
lary sizes in Table 2 allow the sender to generate
a distinct message for each input concept. They
correspond to the number of attribute values plus

4If relevance vectors are sampled uniformly from the set of
all relevance vectors, the amount of 0 and 1 entries follows a
binomial distribution. Sampling relevance vectors with equal
probability from each level of the hierarchy ensures that all
abstraction levels occur equally often.

https://github.com/XeniaOhmer/hierarchical_reference_game
https://github.com/XeniaOhmer/hierarchical_reference_game
https://github.com/facebookresearch/EGG
https://github.com/facebookresearch/EGG
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one additional symbol to indicate irrelevance. The
agents have an additional end-of-sequence symbol
to terminate the messages before L is reached. We
run our experiments with a factor f = 3 of the
minimal vocabulary size. Additional experiments
with other values for f be found in Appendix A.5

We conduct 5 runs per data set.

k = 4 k = 8 k = 16

n = 3 5 9 17
n = 4 5 9
n = 5 5

Table 2: Minimal vocab size for each data set.

4.3 Evaluation

We are interested in different aspects of the emer-
gent language, and use existing as well as novel
metrics to evaluate these.

Zero-shot evaluation. We generate two differ-
ent zero-shot test sets. The first test set is used
to evaluate whether the agents can generalize to
novel objects. It contains combinations of attribute
values that do not occur in the training and vali-
dation data, and is reserved for testing after the
data generation process. The second test set is used
to evaluate whether the agents can generalize to
novel abstractions. We withhold abstractions from
one value per attribute from the training data. The
agents are trained from scratch on the remaining
data and evaluated on the held-out data.

Message consistency and effectiveness. To mea-
sure whether agents consistently use the same
messages for the same concepts we employ
information-theoretic metrics. Let C be the set
of concepts, and M be the set of messages. The
conditional entropy of messages given concepts,

H(M | C) = −
∑

c∈C,m∈M
p(c,m) log

p(c,m)

p(c)
,

measures how much uncertainty about the mes-
sages remains after knowing the concepts. Low
values indicate that the agents consistently use the
same messages for the same concepts, i.e. the lan-
guage does not contain many synonymous expres-
sions. H(C | M), in turn, measures how much

5Smaller factors make the task more difficult and perfor-
mance decreases, while larger factors do not yield any further
improvements.

uncertainty about the concepts remains after know-
ing the messages and should therefore negatively
correlate with the agents’ performance. Low val-
ues indicate that agents effectively use messages
that uniquely identify the target concept, i.e. the
language does not contain many polysemous ex-
pressions. On this basis, we define a consistency
an effectiveness score, using the marginal entropies
H(C) and H(M) for normalization:

consistency(C,M) = 1− H(M | C)

H(M)

effectiveness(C,M) = 1− H(C | M)

H(C)
.

Finally, the normalized mutual information,

NI(C,M) =
I(C,M)

0.5 ·
(
H(C) +H(M)

)
=

H(M)−H(M | C)

0.5 ·
(
H(C) +H(M)

) ,
is a symmetric measure that combines the two con-
ditional entropies into one score.

Symbol redundancy. We develop this metric to
approximate whether agents repeat information
about attribute values in their messages. It assumes
that each attribute value, av (e.g a=color, av=red),
is encoded by a specific symbol and counts how
often that symbol is repeated given that av is being
encoded. The preferred symbol for each attribute
value is defined sav := argmaxs I(av, s), where
we code for each message whether s occurs at least
once (the position of s is irrelevant). Symbol re-
dundancy is defined as the average number of oc-
currences of sav per message given that av is part of
the target concept.

Topographic similarity. Topographic similarity
(topsim) measures to what degree similar inputs
are described by similar messages and is frequently
used as a measure of compositionality. The metric
calculates the pairwise distances between the in-
puts, as well as the pairwise distances between the
corresponding messages, and then correlates the
two distance vectors (Brighton and Kirby, 2006).
In the hierarchical reference game, we need to cal-
culate the topographic similarity between messages
and concepts. We use an n-hot encoding of the con-
cepts (n being the number of attributes) and treat
abstraction from each attribute as an additional at-
tribute value. If an attribute is relevant, that value
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is zero (no abstraction), if an attribute is irrelevant
this value is one (abstraction) and overwrites the
original attribute value. Assuming that each at-
tribute can take on k = 4 different values, the input
encoding for the example in Figure 2 becomes:

sender input : [ 4 3 1 ] [ 1 0 0 ] (object + relevance)

encoding : [ 0 0 0 1 0 0 0 0 0 1 0 0 0 01 ]

Analogously to Lazaridou et al. (2018), we calcu-
late the pairwise distances of the inputs using the
cosine distance, and the pairwise distances between
the messages using the edit distance. The topsim
score is calculated as the Spearman correlation be-
tween the two resulting distance vectors.

Disentanglement. Positional disentanglement
(posdis) and bag-of-symbols disentanglement (bos-
dis) are used to measure different types of com-
positionality (Chaabouni et al., 2020). For both
metrics, concepts are encoded as for the topsim
score. Posdis measures whether symbols in spe-
cific positions encode the values of a specific at-
tribute, i.e. whether the compositional structure is
order-dependent. Let sj be the j-th symbol of a
message, then posdis is defined as

posdis =
1

L

L∑
j=1

I(sj , aj1)− I(sj , aj2)
H(s)

,

where L is the maximal message length, and aj1 and
aj2 are the attributes that achieve the highest and
second-highest mutual information with sj (aj1 =
argmaxa I(sj , a); aj2 = argmax

a̸=aj1
I(sj , a)).

Bosdis measures whether symbols refer to specific
attribute values independent of their position. In
that case, the language is permutation-invariant and
only symbol counts matter. Let nj be a counter of
the j-th symbol in a message, then bosdis is defined
as

bosdis =
1

|V |

|V |∑
j=1

I(nj , a
j
1)− I(nj , a

j
2)

H(nj)
,

where V is the vocabulary size, and aj1 and aj2
achieve the highest and the second-highest mutual
information with nj .

5 Results

In this section, quantitative and aggregated results
will be presented. Random examples of concepts

and messages, together with a qualitative analysis
can be found in Appendix D. Appendix D.1 shows
example mappings between abstract concepts and
messages and Appendix D.2 highlights different
abstraction strategies.

5.1 Performance and generalization

Figure 3 shows the mean accuracies on training,
validation, and zero-shot test sets for all data sets.
Training accuracies (top left) and validation accu-
racies (top right) are very high for each data set,
considering that chance performance is < 10%.
Thus, the agents learn to refer to objects at differ-
ent levels of abstraction, and their strategies do not
overfit the training data.

Figure 3: Mean accuracies across five runs for each
of the training data sets. Shown are accuracies on the
training set, the validation set, and the two zero-shot test
sets.

Accuracies for novel combinations of attribute
values (bottom left) are consistently higher than ac-
curacies for novel combinations of abstraction and
attribute value (bottom right), except for D(3, 8).
Accordingly, generalizing to novel abstractions of
attribute values is harder than generalizing to novel
objects. Both types of generalization tend to im-
prove with the number of attributes as well as the
number of values, which may be due to an increase
in input space size (Chaabouni et al., 2020). Similar
to training and validation accuracies, generalization
to novel objects reaches almost perfect accuracies,
if there are many attributes. While generalization
to novel abstractions is more difficult, accuracies
strongly exceed chance performance and are still
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very high for D(3, 16) with 84.76% and D(4, 8)
with 94.38%. A large number of attribute values
seems to be more important for generalizing to
novel abstractions than for generalizing to novel
objects, possibly because it is more useful to learn
systematic abstraction if there are many attribute
values. A strategy that abstracts from a certain
attribute can be applied to more concepts if that at-
tribute has many values (i.e. has more children on
the concept hierarchy). Overall, the agents develop
hierarchical reference systems and, with enough
attributes and values, these systems generalize well
to novel objects and novel abstractions.

5.2 Mapping between concepts and messages

We determine the structure of correspondences be-
tween messages and concepts. Figure 4 shows the
mean effectiveness and consistency scores. The ef-
fectiveness score measures how much information
about the target concept is contained in the mes-
sage. It follows that the agents can only achieve
high performance if the language is effective. The
results show this interrelation, in that the pattern
of effectiveness scores matches the pattern of train-
ing and validation accuracies across the different
data sets. The consistency score, on the other hand,
measures whether a concept is consistently mapped
onto the same message, and high consistency is not
necessary to achieve high performance. The score
is higher for a larger number of attribute values,
supporting the finding above that many values per
attribute increase the pressure to develop system-
atic abstraction strategies.

Figure 4: Mean effectiveness and consistency scores.
We display the mean scores across five runs for each of
the training data sets.

For each data set, the normalized mutual infor-
mation lies between the effectiveness and the con-
sistency score. It is generally high (0.902 ≤ NI ≤
0.945), indicating that messages and concepts are
strongly predictive of each other. A one-to-one cor-

respondence between words and messages is not
enforced by the setup because the message space is
far larger than the concept space. The high entropy
scores mean that a systematic mapping between
concepts and messages, and therefore also system-
atic abstraction emerge nonetheless.

To analyze where the languages deviate from a
one-to-one correspondence between concepts and
messages, we consider the relation between en-
tropy scores and level of abstraction (see Figure 5).
The mutual information between messages and con-
cepts is higher for more concrete concepts. This ef-
fect is largely driven by an increase in consistency,
while effectiveness is relatively constant across all
levels of abstraction. Thus, deviations from the
one-to-one correspondence between concepts and
messages occur mostly for abstract concepts. These
deviations arise because different messages map to
the same concept, not vice versa. In other words,
the languages contain synonymy but no polysemy.

Figure 5: Mean entropy scores across all data sets for
different numbers of relevant attributes: from left to
right concepts become more concrete. Error bars indi-
cate bootstrapped 95% confidence intervals.

5.3 Linguistic abstraction strategies
Here, we look more closely at the types of internal
message structures used to create a hierarchical
reference system.

Implicit versus explicit abstraction. In natural
language, there are implicit and explicit ways of
communicating that attributes are irrelevant. A
commonplace implicit strategy is to simply omit in-
formation about irrelevant attributes, e.g. one might
say “car” rather than “red car” if sufficient. Since
the maximal message length corresponds to the
maximal number of relevant attributes, the agents
could achieve a similar effect by using shorter mes-
sages for more abstract concepts or by using mes-
sages that contain more redundancies. Figure 6
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shows message length and symbol redundancy av-
eraged across data sets for each level of abstraction.
The agents indeed use implicit abstraction strate-
gies and this is captured by both metrics. The mes-
sage length decreases for more abstract concepts
while symbol redundancy increases. For abstract
concepts, symbols that encode irrelevant attributes
are either omitted or replaced by repetitions of sym-
bols encoding relevant information.

Figure 6: Average message length and symbol redun-
dancy across data sets for different numbers of relevant
attributes: from left to right concepts become more con-
crete.

Explicit abstraction would mean that the agents
dedicate symbols to express that information is
irrelevant. Such abstraction operators should co-
occur frequently with abstract concepts. We calcu-
late the average number of symbol occurrences per
message for each level of abstraction. We rank the
symbols by their occurrences for the most abstract
concepts to identify candidate symbols. Figure 7
shows the results for the top ten candidates, aver-
aging multiple runs for each ranked symbol. The
ranking is visible in the left-most columns, where
the number of occurrences per message decreases
monotonously from the highest to the lowest rank.
Strikingly, for all data sets except D(3, 4) only 1–3
symbols occur very frequently together with very
abstract concepts and the occurrence values de-
crease rapidly when going further down the ranks.
Importantly, these symbols do not occur frequently
at every level of the concept hierarchy. Rather, their
usage decreases continuously as concepts become
more concrete, as indicated by the gradient from
left to right in the top rows. Thus, it seems likely
that the agents use one or a few symbols to explic-
itly communicate information about the irrelevance
of one or more attributes. The formation of ab-
straction operators is surprising since the message
space is large enough to encode irrelevance differ-
ently, for example by combining symbols or using

different symbols for different attributes.

Figure 7: Average number of symbol occurrences per
message for each level of abstraction. Symbols are
ranked based on their occurrences for the most abstract
concepts (i.e. with the fewest relevant attributes). Re-
sults are averaged across runs based on ranked symbols
and shown only for the top ten ranks.

Compositional versus holistic abstraction. The
hierarchical reference game requires the agents to
repeatedly communicate the same attribute values
but for different concepts—different because of the
values of other attributes (traversing the hierarchy
horizontally) or because of the level of abstrac-
tion (traversing the hierarchy vertically). Although
the agents could develop holistic protocols, this
repeated reference across contexts might encour-
age them to develop “reusable” mappings from
attribute values to symbols, i.e. compositional ex-
pressions.

We use the different compositionality metrics to
quantify the degree and nature of compositionality
in the messages. Mean scores for each metric and
data set can be found in Appendix C. The mean
topsim score across data sets is 0.424. The score is
even higher, with 0.501, if only concrete concepts
are taken into account (as in a standard reference
game). The mean posdis score across data sets is
0.115 and the mean bosdis score 0.406. So, there
is compositional structure in the messages, and
the agents prefer to use specific symbols per at-
tribute value, independent of their position in the
messages.

In additional experiments (see Appendix A), we
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trained the agents on D(4, 8) with different vocab-
ulary sizes, using factors f ∈ {1, 2, 3, 4} of the
minimal vocab size in Table 2. While a fully po-
sitional encoding can be achieved with a smaller
vocabulary (f = 1), a fully position-independent
encoding requires a larger vocabulary. Mean train-
ing accuracies for f = 1 are 0.936, and for all other
factors > 0.99. Figure 8 shows the compositional-
ity scores for each factor. Surprisingly, all scores
tend to increase with the vocabulary size, regard-
less of whether the corresponding type of compo-
sitionality requires a large vocabulary size or not.
Usually, vocabulary size is reduced to increase the
pressure for compositional solutions (Kottur et al.,
2017). In our case, compositionality probably in-
creases with vocabulary size because the emerging
compositional structure is largely non-positional.

Figure 8: Boxplots of the compositionality scores for
D(4, 8) and different vocabulary sizes.

6 Conclusion

In this work, we developed a hierarchical reference
game to study the emergence of hierarchical refer-
ence systems. In the game, concepts are defined
as abstractions over a set of attributes. To refer
to these concepts, our agents developed abstract
terms and used these terms systematically, in the
sense that they could generalize to novel objects
and novel abstractions. It seems that, aside from
more obvious strategies such as leaving out irrele-
vant information, the agents developed abstraction
operators to explicitly indicate the irrelevance of
certain attributes. Even more surprisingly, for some
data sets, they used the same few symbols to indi-
cate irrelevance across attributes, rather than a ded-
icated symbol per attribute. While the game design
encourages the emergence of abstract concepts, the
use of specific abstraction operators emerged with-
out any explicit pressure.

In addition, our results suggest that composi-
tional language may emerge as part of a hierar-
chical reference strategy. In the classical reference
game, the sender typically tries to communicate the
union of all object attributes. Without additional
pressures, the emerging languages are not composi-
tional (Kottur et al., 2017; van der Wal et al., 2020;
Dagan et al., 2021). In the hierarchical reference
game, in contrast, the sender must pick out specific
attributes for communication, which potentially
stimulates disentanglement. This interpretation is
in line with the finding that the emergence of com-
positionality is supported by an increasing number
of relevant events that can be referred to (Nowak
et al., 2000). In the hierarchical reference game,
cross-situational reuse is increased, as reference to
attribute values occurs not only across objects but
also across levels of abstraction.

We envision two main directions for future work.
First, we would like to implement a hierarchical
reference game with raw visual inputs instead of
symbolic input vectors. Higgins et al. (2018) have
developed a neural network (SCAN) that not only
learns disentangled visual primitives in an unsuper-
vised manner but also abstractions over such primi-
tives from very few symbol-image pairs that apply
to a particular concept. Combining our language
emergence game with such a network would allow
us to study the simultaneous emergence of abstract
visual and linguistic concepts, as well as interac-
tions between these two processes. Second, instead
of hard-coding the relevance vector, the relevance
of certain attributes should arise from the agents’
intentions. Ideally, the agents would play a more
complex game and determine themselves which
properties of the environment are relevant for their
objectives in the current context. Besides, sender
and receiver could use pragmatic reasoning (as for
example in Choi et al., 2018; Kang et al., 2020;
Yuan et al., 2020) to encode and decode which
attributes should be emphasized to communicate
certain concepts.
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A Varying distractor sampling and vocab
size

A.1 Setup
We conduct control experiments, changing the vo-
cabulary size, and changing the distractor sampling
strategy. In the original experiments, the message
space is much larger than the space of concepts
that need to be communicated. By reducing the
vocabulary size, we aim to test whether a smaller
message space increases the probability of one-to-
one associations between concepts and messages.
In addition, the distractors are sampled from con-
cepts that are one level more abstract than the target
concept on the concept hierarchy. Here, we relax
this assumption by sampling distractors from all
levels of the concept hierarchy with equal probabil-
ity. Together, these additional experiments allow us
to extend our results to different vocabulary sizes,
and more general distractor distributions.

We focus on a single data set. We use the data set
with four attributes and eight values per attribute,
D(4, 8), which achieved the highest mean valida-
tion accuracies and normalized mutual information
scores in the original setup. In the original ex-
periments, we used a factor of 3 of the minimal
vocabulary size 9 (8 for each value plus 1 for cod-
ing irrelevance). Now, we run the same experiment
for factors of 1, 2, and 4; and in addition, we repeat
the experiment for each factor with the alternative
sampling strategy. Again, we conduct five runs for
each factor and sampling strategy.

A.2 Results
Figure 9 shows the accuracy scores for the different
vocabulary size factors, and the different distractor
sampling strategies, where unbalanced refers to
the original strategy of selecting distractors from
more abstract concepts, and balanced refers to the
control strategy of sampling distractors with equal
probability from all levels of abstraction. For both
sampling strategies, performance is higher if the vo-
cabulary size is large, likely because having a larger
message space increases the number of solutions.
A larger vocabulary size seems to be particularly
important if distractor sampling is balanced.

The original, unbalanced sampling strategy
achieves higher performance than the control strat-
egy on all data sets. So, choosing distractors very
similar to the target facilitates learning, and proba-
bly also abstraction as suggested by the zero-shot
evaluation with new abstractions. To make sure that

Figure 9: Mean accuracies for the control experiments
across five runs, on the training data, the validation
data, and the two zero-shot test sets. The y-axis gives
the factor used to determine the vocabulary size, vocab
size = factor × minimal vocab size, and the x-axis in-
dicates whether distractors are sampled from concepts
that are one level more abstract than the target concept
(unbalanced), or sampled from all levels of the concept
hierarchy with equal probability (balanced).

the unbalanced sampling strategy only facilitates
learning but does not make the task easier, we run
an ablation test. We evaluate each sender-receiver
pair on the validation set of the sampling strategy
that was not used for training. For all vocabulary
sizes and runs, the agents perform better on the bal-
anced validation set compared to the unbalanced
validation set, regardless of the sampling method
used during training. In conclusion, sampling dis-
tractor concepts that are very similar to the target
concept makes the task more difficult but improves
learning by increasing the pressure to communi-
cate only relevant aspects, and thereby to develop
abstract concepts.

These results are confirmed by the entropy-based
evaluation metrics shown in Figure 10. Effective-
ness and consistency are consistently lower for the
balanced distractor sampling strategy. However,
while the level of abstraction does not have a strong
effect on the difference in effectiveness scores, the
difference in consistency scores decreases contin-
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uously with the level of specificity. In line with
the generalization ability, this suggests that the un-
balanced sampling strategy supports the formation
of abstract concepts by reducing the probability of
successful target selection if irrelevant attributes
are communicated.

Figure 10: Effectiveness and consistency scores for
balanced and unbalanced distractor sampling, separated
for each level of abstraction. Distributions show the
results across the different vocabulary sizes and runs.
The level of abstraction is given on the x-axis: from left
to right the concepts become more concrete.

B Hyperparameter search

We ran our hyperparameter search for the three data
sets spanning up the space of all data sets we use,
D(3, 4), D(5, 4), and D(3, 16) (see Table 1). We
expected that hyperparameters working across all
these extreme cases should also work for interpola-
tions between them. Certain hyperparameters were
fixed across the search. We used GRUs with Adam
optimizer, and a GS temperature of 1.5 with an
exponential decay rate. Message length cost was
0, and vocab size factor 3. We varied the following
hyperparameters:

• batch size: {32, 64, 128}

• learning rate: {0.0005, 0.001}

• hidden layer dimension: {128, 256}

• embedding layer dimension:
always half of the hidden layer dimension

• GS temperature decay rate: {0.97, 0.99}

For the grid search we stopped the training process
after 60 epochs. All results can be found in our
repository.

C Compositionality scores

Figure 11: Mean compositionality scores per data set.

D Qualitative examples

This section provides qualitative examples of
concept-message pairs. Examples were randomly
selected from the first run of each data set. Interest-
ingly, this microcosm of random examples reflects
all communication patterns that were identified in
the quantitative analyses.

D.1 Mappings between concepts and messages

We are interested in whether the agents use the
same message to refer to abstract concepts regard-
less of how these concepts are instantiated. Figure
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12 shows the messages for a randomly selected con-
cept at the highest level of abstraction (only one
attribute is relevant), instantiated by different at-
tribute vectors for each data set. Shown are twenty
randomly selected instances each, and the exam-
ples are sorted by message.

Abstraction is relatively systematic. For all data
sets, the agents group together different concept
instances in their messages. For some data sets,
the instances are grouped under very few mes-
sages. For example, the sender trained on D(4, 4)
groups together all example instances of the con-
cept (_, 1, _, _) under just two different messages
((2, 1, 2, 0) and (2, 2, 1, 2)). Across data sets, 2, 3,
5, or 7 different messages are used to describe the
20 example instances. In line with the quantitative
results, there is no perfect one-to-one correspon-
dence between abstract concepts and messages.
How many different messages are used also de-
pends on the abstraction strategy (see Appendix
D.2).

D.2 Abstraction strategies

To visualize the agents’ abstraction strategies, we
randomly selected an object (i.e. attribute vector)
for each data set, and show the messages for that
object across the concept hierarchy, so for each
abstraction in the training set. Because of their
large number the examples are split into two figures,
Figure 13 (D(3, 4), D(3, 8), and D(3, 16)) and
Figure 14 (D(4, 4), D(4, 8), and D(5, 4)), which
will be analyzed together. The messages will first
be analyzed for compositional structure, and then
for implicit versus explicit abstraction.

Compositional versus holistic abstraction. For
some data sets, the agents seem to use trivially com-
positional messages, i.e. messages whose meaning
corresponds to the intersection of meanings of their
constituents. An unambiguous pattern can be iden-
tified for D(3, 4) and D(4, 8), where a mapping
between each attribute value and a specific symbol
can be established (color-coded in orange, green,
blue, and purple). In the case of data set D(4, 8),
the number of additional “filler” symbols increases
with the level of abstraction (color-coded in red).
These might serve as abstraction operators (see
below). For other data sets, like D(5, 4), such map-
pings can only be identified for specific attribute
values (color-coded in purple). Here, symbol 1 oc-
curs if and only if the third attribute has the value 3.
For all identified mappings, the symbols are used to

encode specific attribute values relatively indepen-
dent of their position, which is in line with the high
bosdis and low posdis scores in our quantitative
analyses.

For the remaining data sets, the messages are not
unstructured but no one-to-one correspondences
can be identified. For example, looking at the mes-
sages for D(3, 16), symbol 26 might encode value
5 at position 1 for the most concrete and most ab-
stract concepts but is not used at the intermediate
level of abstraction. So, while the abstraction strate-
gies are almost perfectly compositional in some
cases, there are large variations between data sets,
and potentially also runs and concepts.

Implicit versus explicit abstraction. The exam-
ples show instances of implicit and explicit abstrac-
tion strategies. Implicit abstraction is identified
through shorter messages and more symbol redun-
dancy for higher levels of abstraction; explicit ab-
straction through the use of abstraction operators.
At least for some data sets, the messages tend to be-
come shorter with increasing abstraction. E.g. mes-
sages become shorter in the case of D(3, 16) and
D(4, 4) (the end-of-sequence symbol 0 is color-
coded in gray).

Symbol redundancy and abstraction operators
can best be identified in reference systems with
compositional structure. D(3, 4) is a perfect exam-
ple of increasing symbol redundancy. Each symbol
corresponds to a specific attribute value, and sym-
bols are repeated to fill up the messages for more
abstract concepts. E.g., the concept (1, 2, 2) is en-
coded as (5, 12, 11), the concept (1, _, 2) as (5, 12,
12), and the concept (1, _, _) as (12, 12, 12).

D(4, 8), on the other hand, is a perfect exam-
ple of explicit abstraction. As messages become
more abstract the frequency of symbols that do not
encode an attribute value ({3, 10, 11, 13, 14, 16},
marked in red) increases. Note that symbol 3 seems
to serve both roles, encoding an attribute value as
well as encoding abstractions. To confirm the intu-
ition that these additional symbols serve as abstrac-
tion operators, we look at other abstract concepts
for D(4, 8). Figure 15 shows the messages for 20
random examples. Indeed, at least two of the ab-
straction operators occur in each message. Only
symbol 11 does not occur and might serve a dif-
ferent function. The quantitative analyses suggest
that usually less abstraction operators are used than
in this specific example. Less compositional pro-
tocols may also use explicit abstraction operators



5703

Figure 12: Example messages for one abstract concept per data set. For each data set, we randomly select a concept
at the highest level of abstraction. We then randomly select 20 instances of that concept in the training data and
display these instances together with the corresponding messages (from the first run). The same messages are
grouped together in colored boxes.

or symbol redundancy but these cannot easily be
identified in a qualitative analysis.
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Figure 13: Messages for a random object at each level of abstraction available in the training data. The corresponding
messages are shown for the first run of each data set: D(3, 4), D(3, 8), and D(3, 16). The highlighted patterns are
explained in the text.
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Figure 14: Messages for a random object at each level of abstraction available in the training data. The corresponding
messages are shown for the first run of each data set: D(4, 4), D(4, 8), and D(5, 4). The highlighted patterns are
explained in the text.
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Figure 15: Messages for 20 randomly selected concepts
at the highest level of abstraction, for the first run of
D(4, 8). The highlighted patterns are explained in the
text.


