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Abstract

In this paper, we explore the relation between
gestures and language. Using a multimodal
dataset, consisting of TED talks where the lan-
guage is aligned with the gestures made by
the speakers, we adapt a semi-supervised mul-
timodal model to learn gesture embeddings.
We show that gestures are predictive of the
native language of the speaker, and that ges-
ture embeddings further improve language pre-
diction result. In addition, gesture embed-
dings might contain some linguistic informa-
tion, as we show by probing embeddings for
psycholinguistic categories. Finally, we ana-
lyze the words that lead to the most expres-
sive gestures and find that function words
drive the expressiveness of gestures. Our code
is available at https://github.com/
MichiganNLP/gestures-language.

1 Introduction

Gestures are often referred to as “non-verbal lan-
guage” and extensive studies in psychology, sociol-
ogy, and anthropology have demonstrated the im-
portant role they play in communication (McNeill,
1992; Iverson and Goldin-Meadow, 1998; Alibali
et al., 2000). While language and gesture can occur
independently, people often use them together to
communicate, suggesting that multimodality plays
an important role in understanding gestures. In this
work, we consider human gestures together with
their corresponding utterances. We jointly learn
gesture and word embeddings, and attempt to pre-
dict psycholinguistic categories and the language
of the speaker from their gesture embeddings.

Even for humans it is very challenging to pre-
dict words from gestures alone (or vice versa), due
to the many-to-many relationship between words
and gestures. Therefore, instead of directly predict-
ing one modality from the other (Desai and John-
son, 2021), we use contrastive pre-training learning
to learn a joint embedding space that aligns both

modalities (Kiros et al., 2014; Tian et al., 2020;
Radford et al., 2021). This allows our model to
learn an association between language and gestures,
despite a large amount of uncertainty inherent in
the task.
The main contributions of this work are as follows:
• First, we explore a multimodal approach to learn

gesture embeddings through contrastive learn-
ing. Through validation experiments relying on
these embeddings, we demonstrate that there is
an association between gestures and languages
representations.

• Second, we probe gesture embeddings for vari-
ous psychological and linguistic categories and
show that gestures can be predictive of several
categories with better-than-random accuracy. We
find that function words, such as pronouns, prepo-
sition or modal verbs, can be predicted from the
gestures. We also show that gesture embeddings
can be used to predict discourse markers.

• Third, we show that it is possible to predict the
language of a speaker from our learned gestures
embeddings. Our findings indicate that the dif-
ference in gestures across the languages may be
driven by the function words.

• Finally, we conduct several analyses to better
understand the learned gesture representations.

2 Related Work

Semi-supervised Multimodal Learning. Our
work builds on the idea of multimodal learning,
where a model is trained to represent several modal-
ities in a shared embedding space (Chen et al.,
2019; Li et al., 2019; Lu et al., 2019; Tan and
Bansal, 2019). In particular, we focus on semi-
supervised multimodal learning (Yuan et al., 2021;
Wu et al., 2021; Zhai et al., 2021), which is effec-
tive and useful training strategy for settings where
obtaining labeled training data is laborious or pro-
hibitive. We base our model on CLIP (Radford
et al., 2021), which uses a large amount of (multi-

https://github.com/MichiganNLP/gestures-language
https://github.com/MichiganNLP/gestures-language
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modal) unlabeled data combined with efficient pre-
training objective leading to strong zero-shot per-
formance in both language and vision tasks.
Pose Estimation and Gesture Understanding.
While most of the recent multimodal work has fo-
cused on modalities such as vision (Morency et al.,
2007), language, or speech (Levine et al., 2009;
Ginosar et al., 2019), there are also studies that
highlight the importance of gestures for various
aspects of human activities; see Kelly et al. (2008)
for an overview.

Work in this space has addressed, among other
tasks, gesture recognition (Zhang et al., 2020), ges-
ture generation (Kucherenko et al., 2020b; Fer-
stl et al., 2021; Yoon et al., 2020; Kucherenko
et al., 2020a; Alexanderson et al., 2020), gesture-
to-gesture generation (Tang et al., 2019). All of
these tasks, while close to our problem space, are
not directly applicable for gesture representation.

Another line of work focuses on the temporal
alignment and interaction of speech and gestures.
Loehr (2007), shows that speech and gestures oc-
cur synchronously. (Rieser, 2015) shows that ut-
terances and gestures are not always synchronous
and suggests using λ-π calculus to model them.
(Saint-Amand et al., 2013) provide a comprehen-
sive study of the alignment of speech and gestures
in a constraint-based grammar, while (Lücking
et al., 2013) show that gestures follow the language
but the opposite does not hold.

An important question is how to obtain labels
that describe gesture. We use pseudo ground-truth
pose estimates from OPENPOSE (Cao et al., 2019).
While even state-of-the-art gesture recognition sys-
tems can be noisy, this noise is significantly re-
duced on videos such as TED talks (Yoon et al.,
2018) given that there is only one speaker and
have good light conditions. For a comprehensive
overview of recent progress in the field of pose
estimation see Munea et al. (2020).

3 Data

Our primary source of data is the YouTube Ges-
ture Dataset (Yoon et al., 2018). The dataset con-
sists of over 1,500 TED talk videos of English
speakers addressing various topics like science,
medicine, society, and others. The camera is usu-
ally in front of the speaker, so the gestures are visi-
ble. The dataset contains precomputed key points
for the head, neck, shoulders, elbows, and wrists,
with each pose represented as a 16-dimension vec-

Radio can help stimulate
interest and demand ...

... by playing Kenyan music
done in English, Kiswahili

... voy a hablar de
infarto cardíaco ...

Un hombre entra a
una guardia con un infarto ...

(I’m going to talk
about heart attack)

(A man enters a guard
with a heart attack)

Figure 1: Examples of gestures aligned with the corre-
sponding language. All videos and corresponding ut-
terances are one second in length. Top row: English
speaker. Bottom row: Spanish speaker.

tor, with x and y coordinates for each key point.
The dataset includes subtitles, auto-generated by
YouTube and aligned by gentle 1.We also use an ad-
ditional dataset that we compiled ourselves, consist-
ing of 600 videos of Spanish speakers. We process
videos from the TEDx channel using the playlist
“TEDx talks en Español." Subtitles for Spanish data
are auto-generated and aligned by YouTube, so we
just download the appropriate subtitle file. Figure
1 shows an example of gestures aligned with the
corresponding language.

We split each video into several clips using
PySceneDetect,2 which detects changes in the cam-
era angle during the talk and splits a single video
into several sub-clips. This is necessary so that
the pose movements remain continuous during the
short clips, even if the camera angle is changed.

Table 1 shows the summary statistics of the
dataset. The numbers differ from those reported
in Yoon et al. (2018) because we used a more ag-

1https://github.com/lowerquality/
gentle

2https://github.com/Breakthrough/
PySceneDetect

https://github.com/lowerquality/gentle
https://github.com/lowerquality/gentle
https://github.com/Breakthrough/PySceneDetect
https://github.com/Breakthrough/PySceneDetect
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English Spanish
Videos train 1,349 543
Videos val 167 64
Clips train 127,003 61,810
Clips val 16,813 9,299
Average # words val 3.74 3.4
Average # words train 3.75 3.37
Duration train 35.27h 17.16h
Duration val 4.67h 2.58h

Table 1: Dataset statistics

gressive video filtering strategy,3 to make sure that
only clips with enough gesture variety remain in
the dataset.

4 Model

4.1 Input Representation

One of the key considerations for our approach is
how to represent gestures and language as input
to our model. We start by dividing each clip into
a series of gestures using the sliding window ap-
proach of Yoon et al. (2018). We cut every clip
into 1 second sequences of frames; with 15 frames
per second, our input becomes 15 frames. Detailed
per-millisecond word alignments are available in
our datasets.

We align each one second interval with the cor-
responding phrase. Our method requires that ges-
tures and language are timely-aligned within some
interval of t seconds, where we use t=1 second.
It does not require them to be aligned exactly, as
the pose encoder and gesture encoder use differ-
ent positional embeddings. One limitation of such
an approach is that longer gestures are truncated,
and very short gestures are collapsed together. We
experimented with several lengths of the sliding
window and found out that the choice of the time
interval does not affect the overall performance.

Another possibility would be to split the ut-
terances by word and take all the corresponding
frames that fall within the given time interval. For
instance, we can take the word ‘hello’ from the sub-
titles, and get all the corresponding frames while
the word is pronounced. This way we guarantee
that there is no overlap between the gestures, and a
single word corresponds to a single series of ges-
tures. However, previous results in the literature

3We used a threshold of 250 for circular variance, com-
pared to the original value of 150

McNeill (2005) indicate that there are different ges-
ture phases, and they are not necessarily timely
aligned with the words. In such a case this ap-
proach would be limited. We experimented with
such a setting as well, but the resulting performance
is only marginally better than random.

4.2 Approach

Figure 2 shows the overview of our approach. Af-
ter preprocessing, poses and phrases are passed
through two separate encoders. We use a trans-
former architecture to separately encode the text
and the poses. The pose encoder model very closely
follows the CLIP’s base image encoder: it is a 12-
layer 768-wide model with 12 attention heads. We
have to adjust the width from 512 to 768 to match
the size of the text model, which is necessary for
cosine similarity. The pose encoder is randomly ini-
tialized and takes as input a tensor of size (15, 16)
where 15 is the number of frames in a 1 sec. clip
and 16 is the joint dimension. This input gets trans-
formed to (15, 768) with the fully connected layer
and is passed directly to the attention block, by-
passing the input embedding layer. This is possible
because the pose is already represented as a vec-
tor, and does not have to be embedded. We use
the last frame as an end-of-sentence token for the
prediction. On top of the transformer, there is a
768 × 768 projection layer. We use the multilin-
gual XLM-RoBERTa (Conneau et al., 2019) as a
pre-trained encoder for language with another pro-
jection layer on top of the encoder.

After encoding the pose and language into vec-
tors of fixed length, they are normalized and the dot
product is taken separately for each modality. The
Multi-class N-pair loss (Sohn, 2016) objective is
used to learn the match between the poses and the
corresponding utterances in a single batch. We se-
lected a batch of size two to make the training task
easier. While contrastive learning benefits from
large batch sizes (Newcombe, 2018), we found that
in our case the higher the batch size, the harder it is
for the model to learn. We tried batch sizes 8, 16,
and 32, and the results were worse. We hypothesize
this is due to a large amount of noise in the data.
We use AdamW with a learning rate of 1e− 5 as
an optimizer, and cosine schedule as a learning rate
schedule.

One possible concern for our approach is the
size of the training dataset. CLIP uses more than
350 million image-text pairs, while our dataset in-
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Figure 2: Overview of our approach: we train joint pose and language encoders on training data and produce
embeddings. We show we can predict the native language of the speaker and several linguistic categories from the
gesture embeddings alone.

cludes only 180,000 1-second clips. To mitigate
this, we first conduct an experiment where we show
that the proposed pose encoder can predict whether
the source of motion was left or right hand. Sec-
ond, we use a pre-trained text encoder, namely
XLMRoberta, as a text encoder. This is in con-
trast to CLIP, where the authors train the model
from scratch. This way we only train a pose en-
coder, while the text encoder is only fine-tuned.
Third, contrary to images that are represented as
a 336x336 matrix, poses have much lower dimen-
sionality, namely, our input has a dimension of
15x16. Our intuition is that these factors combined
can substantially reduce the required amount of
training data.

4.3 Alignment Validation

To make sure that the model is capable of learning
gesture–language alignments, we conduct two sim-
ple experiments. We aim to verify whether a pose
encoder can associate many similar (but with a sub-
stantial degree of variety) gestures with a single
word/phrase, given the limited amount of training
data and proposed model architecture. In other
words, before learning a many-to-many mapping
(many possible gestures can correspond to the same
word, and many possible words can correspond to
the same gesture), we want to verify that one-to-

many mapping is even possible.
In the first validation experiment, from our

dataset, we select only the poses where the source
of motion is either the left or the right hand. We do
this by calculating the circular variance (Pedregosa
et al., 2011) of the angles between joints on the
right side and the left side. Only the clips where
the circular variance is above 750 on one side and
less than 100 on the other side are selected. For
these clips, we artificially insert the words ‘left’ or
‘right’ at random position in the existing utterance,
depending on which side has is a high variance.
This process resulted in 12,287 pose sequences
with right-hand movement and 11,846 with left-
hand movements.

We set the batch size equal to two and include
only one left and one right pose in each batch so
that it can be matched with the corresponding text
in only one correct way. The resulting accuracy on
the validation set is 99.93% and 100% for poses and
language respectively. This experiment suggests
that learning gesture-text alignments is possible
when the gestures have sufficient expressiveness.

In the second validation experiment, given an
input gesture and its embedding, we use a simple
cosine similarity measure to find the closest text
embedding. For each (gesture, text) pair from the
validation set, we pick another random pair and
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Class Embeddings Raw poses # Observations Description and Examples
PREPS 51.8 (±2.31) 51.1 (±2.18) 12978.4 Prepositions: to, with, above
PRONOUN 52.5 (±2.94) 52.3 (±2.83) 10235.0 Pronouns: I, them, itself
DISCREP 52.8 (±6.16) 51.6 (±5.79) 2343.2 Discrepancy: should, would, could

Table 2: Accuracy on the LIWC category prediction task for English. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We use Wilcoxon signed-rank test for significance testing. ± denotes standard
deviation

Class Embeddings Raw poses # Observations Description and Examples
PREPS 52.2 (±3.51) 51.2 (±3.29) 6308.4 Prepositions: sin, con, acerca

Table 3: Accuracy on the LIWC category prediction task for Spanish. The accuracy of majority baseline is 50%.
We show the categories where the accuracy of the embeddings model is significantly larger than the majority model
at a 0.05 significance level, using a Wilcoxon signed-rank test for significance testing.

Figure 3: Representation of the input. The main diago-
nal represents the ground truth.

calculate the cosine similarity between each gesture
and text, so we end up with 4 similarity scores, 2
for each gesture (or correspondingly 2 for each
text). For each gesture, we take the text with the
highest score as a prediction and compare the text
we find using the similarity against the correct text
paired with the gesture in the data. Figure 3 shows
an example.

On the validation dataset, this experiment leads
to 65.4% accuracy. When reversed, i.e., starting
with a text embedding, we find the most similar ges-
ture embedding according to a cosine similarity and
compare it against the gold standard, we achieve
64.9% accuracy. This performance significantly
higher than the random baseline indicates that the
learned representations contain useful information.

5 Experiments and Results

To evaluate the strength of the connection between
gestures and language, we perform two types of
experiments. First, we perform experiments within
one single language only, i.e. how gestures and
language interact in either English or Spanish. The
second type is cross-language, how gestures are
different among English and Spanish speakers.

5.1 Single Language Experiments

We aim to predict a psycholinguistic category of
utterance from the gesture embeddings obtained
with the model described in Section 4. The mo-
tivation for this type of analysis is that humans
might be able to understand that the person is, for
instance, angry from the pose alone. We used Lin-
guistic Inquiry and Word Count (LIWC) lexicon
(Pennebaker et al., 2007) and General Inquirer cat-
egories (Stone et al., 1966) to map the utterances
to their categories. Namely, if the text contained
any word from LIWC or General Inquirer category,
we considered the whole utterance to belong to this
category, i.e. label y=1, and y=0 otherwise. Some
utterances can have more than one category. In
total, we run 146 binary classification problems
(65 LIWC categories and 81 General Inquirer cate-
gories).4 We compare our results with a majority
baseline, as well as a raw pose baseline, where we
fit the logistic classifier on the vector of joints (15
frames with a 16-dimensional vector on each, flat-
tened into the 240-dimensional vector). We use

4We discard all the categories that have less than 30 obser-
vations in the validation dataset.
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30-fold5 cross-validation on the validation dataset,
stratified by the language variable, and grouped by
the video id (i.e., several clips from the same video
should only be in either the training data or the
validation data, to exclude the possibility of data
contamination). At each training and test fold, we
additionally sub-sample English clips to make the
number of English and Spanish clips equal. There-
fore the accuracy of the majority baseline is always
50%. For the prediction, we use the same model as
Conneau and Kiela (2018), a logistic classifier with
the default parameters. To verify that the accuracy
of one model is larger, we performed a one-sided
Wilcoxon paired signed-rank test (Wilcoxon, 1945)
on the accuracy scores from cross-validation. We
decided to use this test based on the results from
Demšar (2006). The null hypothesis is that the ac-
curacies of two classifiers are the same, and the
alternative hypothesis is that the embeddings/raw
model is larger than the raw/majority.

We rerun our experiment with 30 different ran-
dom seeds. Table 2 shows the LIWC categories
where the embeddings model significantly outper-
forms the baseline (majority) model for a 90% of
the 30 runs. 6 Interestingly, the resulting categories
belong to function words. This finding indicates
that gestures accompanying function words may
have a more apparent visual appearance, compared
to the other words. This finding extends previous
work from psychology pointing to the importance
of function words in communication (Chung and
Pennebaker, 2007). Table 3 shows the same type
of analysis for Spanish language. There is only
one category overall, prepositions, also part of the
function words. Table 4 presents the results for
the General Inquirer categories. In addition to the
pronouns, active verbs show a strong connection
with gestures.

Another type of analysis we conducted is pre-
dicting the use of discourse markers in speech from
the gestures. We use a list of words from Disc-
sense (Sileo et al., 2020). Table 5 shows the results.
The embedding model is significantly better than
both the raw poses model and the majority model,
suggesting that joint language-vision learning is
beneficial for this task. We also attempt to predict
Valence-Arousal-Dominance states from (Moham-

5We use more folds than typical in the literature to have
more observations for significance testing.

6Since such a setting is rather restrictive, we also run
Fisher’s combined probability test to combine p-values from
all the 30 runs. We present these results in the Appendix.

mad, 2018), but neither raw poses nor embedding
model could predict better than the majority base-
line.

These results are in line with the findings re-
ported in Lücking et al. (2013), where authors con-
ducted the experiments using a dataset with man-
ually annotated alignments between gestures and
phrases, and found that prepositional phrases are
associated with gestures as well.

An important observation from these results is
that in many cases a classifier relying only on the
raw poses significantly outperforms the majority
baseline, suggesting that gestures by themselves
contain information about language. Addition-
ally, this finding is further supported by the im-
provements obtained with the gesture embeddings,
which show that the joint learning of gestures and
language is beneficial.

5.2 Experiments with English and Spanish

If gestures are indeed closely related to the corre-
sponding language, we hypothesize that we should
be able to predict the language of a speaker (e.g.,
English or Spanish) from the gestures alone. Table
7 shows the language prediction results using the
gesture embeddings. We use the identical cross-
validation with the sub-sampling scheme as de-
scribed in Section 5.1.

To further investigate which gestures lead to
better-than-random accuracy on the language pre-
diction task, we use the LIWC lexicon to identify
the word categories that have the highest improve-
ment with respect to the majority baseline. This
analysis can be interpreted as follows: “While a
person is using word category X, the gestures of an
English speaker can be more easily distinguished
from those of a Spanish speaker.” Table 6 shows
the accuracy of the language prediction task split by
the LIWC categories. We select the poses that have
the highest probability to be predicted correctly,
and extract their corresponding utterances. From
these utterances, we extract the LIWC category for
the words, and calculate the accuracy separately for
each word category. There are eleven categories
where the embedding model outperforms the raw
poses model and the raw poses model is better than
the majority.

Additionally, we identify the words with the
highest mutual information between the occurrence
of the word in the utterance and the probability to
be predicted correctly. Table 8 shows the top 10
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Class Embeddings Raw poses # Observations Description and Examples
PRONOUN 52.6 (±2.50) 52.2 (±2.54) 10034.0 Pronouns: you, nobody, us
ACTIVE 51.3 (±2.66) 50.0 (±2.76) 9533.2 Active verbs: do, develop, learn

Table 4: Accuracy on the General Inquirer category prediction task, where the accuracy of the embeddings model
is significantly larger than the majority model at a 0.05 significance level, using a Wilcoxon signed-rank test for
significance testing.

Accuracy
Majority 50.0 (± 0.0)
Raw Poses 51.7 (± 3.04)
Embeddings 52.7 (± 3.01)

Table 5: Accuracy on the discourse marker prediction
task for raw poses and gesture embeddings. Some ex-
amples of discourse markers include: actually, anyway,
so.

unigrams (top row) and bigrams (bottom row) with
the highest mutual information. These words can
be interpreted as the most expressive, as the corre-
sponding gestures are more clearly distinctive from
the other gestures. Once again, it appears that the
majority of the expressive unigrams and bigrams
represent function words, which further supports
the strength of the connection between these groups
of words and gestures.

Figure 4: Results from fitting Logistic Classifier on sin-
gle joint only on language prediction task.

One potential concern is to confirm that there
is not any unseen bias (e.g., channel information)
that is helping the system to recognize the language
of the speaker. We manually inspected a random
sample of 100 poses and could not see any differ-
ences, such as data artifacts from pose extraction,
or any other data processing issues. In addition, we
conducted several analyses:

• We analyzed the distribution of the joints’ co-
ordinates for the poses that were matched cor-
rectly versus incorrect ones. Similarly, we
also analyzed the distribution of the joints’ co-
ordinates between English and Spanish videos.
Maybe some joints are at the very specific po-
sition for English/Spanish videos that it makes
very easy for the model to distinguish? We
could not see any direct difference.

• We analyzed the coefficients of the logistic
classifier for the embeddings model. We
looked at the magnitude of the coefficients,
i.e., whether some features drive the predic-
tion. The motivation for this analysis is the
following: if the logistic classifier relies on
only a small number of features, instead of the
learned representation as a whole, the gesture
representation might be suboptimal.

• We fit the model on a single joint only. The
motivation is the following: can we predict
the language of the speaker from the neck
(e.g., nose, shoulder) alone. Figure 4 shows
the performance with the standard error bars
(using 10 fold cross-validation). While the re-
sults are still worse than our proposed model,
sometimes even one simple joint can lead to
very strong performance.

6 Conclusions and Lessons Learned

In this paper, we explored the relation between
gestures and language. Using a CLIP-style joint
embedding model for gestures and language, ap-
plied on a bilingual multimodal dataset consisting
of TED talks in English and Spanish, we report
several findings:

First, we found that gestures can be used to in-
fer the corresponding language and conversely that
language can be used to infer the corresponding
gesture. Our proposed model can predict the match-
ing between language and gesture with 65.4% ac-
curacy, compared to the random 50.0% baseline.
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Class Embeddings Raw poses Majority # Observations Description and Examples
SENSES 65.5 (13.66) 60.6 (16.90) 58.9 (6.62) 47.2 Sensory processes: see, touch, listen
PRESENT 64.6 (11.1) 59.6 (14.63) 54.5 (3.40) 176.0 Present focus: today, now
ARTICLE 64.0 (11.99) 59.3 (14.86) 58.2 (4.59) 161.9 Articles: a, an, the
COGMECH 63.8 (10.84) 59.7 (15.78) 58.1 (4.01) 152.6 Cognitive Processes: cause, know, ought
OTHREF 63.2 (11.86) 59.2 (15.16) 55.6 (4.40) 112.5 Other references: anyone, everyone
SOCIAL 63.6 (11.86) 59.6 (15.40) 58.1 (5.37) 148.6 Social Processes: talk, us, friend
PREPS 63.6 (11.36) 59.6 (14.61) 54.2 (3.57) 231.9 Prepositions: to, with, above
PRONOUN 63.5 (11.56) 59.7 (15.34) 56.4 (4.61) 177.6 Pronouns: you, nobody, us
AFFECT 65.3 (12.94) 62.0 (16.46) 61.0 (7.49) 49.5 Affective Processes: happy, ugly, bitter
INCL 62.9 (11.14) 60.2 (14.97) 58.5 (5.89) 124.9 Inclusive words: and, with, include
COMM 62.8 (14.44) 60.3 (17.42) 59.9 (6.57) 29.8 Common verbs: walk, went, see

Table 6: LIWC categories that drive better-than-random accuracy on the language prediction task.

Accuracy
Majority 50.0 (± 0.0)
Raw Poses 60.1 (± 14.28)
Embeddings 63.8 (± 11.00)

Table 7: Accuracy on the language prediction task for
raw poses and gesture embeddings

Unigrams si, ade, y, asking, mas, here, life, po,
medicine, ti

Bigrams ade mas, from the, so that, and it, is to,
y con, if your, we just, we can, we ’ve

Table 8: Top 10 unigrams and bigrams in English and
Spanish, with the highest mutual information between
the occurrence of the ngram in the utterance and the
probability to be predicted correct.

Second, we showed that it is possible to predict
several social or psycholinguistic word categories
from the gestures with better than random proba-
bility. Through extensive probing of gesture em-
beddings for LIWC and General Inquirer linguistic
categories, we were able to identify the categories
where gesture embeddings significantly outperform
random baselines: the majority of these categories
consist of function words, which is a finding that
aligns with previous social science findings. We re-
port the results separately for English and Spanish.

In a similar vein, we showed that gestures can be
also predictive of discourse markers. Our results
indicate that gesture embeddings contain useful in-
formation about discourse structure, outperforming
both majority and joint-only baselines.

Finally, we reported that gestures by themselves
are predictive of the native language of the speaker,
and that gesture embeddings further improve this
result. Through several analyses, we found that
function words are most strongly associated with

gestures, which aligns with theories of language
evolution that posit that function words are closely
connected to the body.

There are several limitations of this work. First,
this work focuses on hands and head gestures only,
ignoring whole body movements and facial expres-
sions. We also assume that two active hands/arms
perform a single gesture, while it is also possible
to have two separate gestures for two hands. The
gestures are also specific for public presentations.

For future work, we plan to include hand ges-
tures in our dataset. We also consider compiling an
’in-the-wild’ gestures dataset, to extend our find-
ings to more forms of communication, and expand
beyond the gestures and language for TED talks.
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A Appendix

Here we present the results for LIWC/General In-
quirer category prediction task, but instead of se-
lecting categories that were significant at least 90%
out of 30 runs with different random seeds, we
run Fisher’s combined probability test to merge
p-values from all the 30 runs into single p-value.

Accuracy on the General Inquirer category pre-
diction task, where the accuracy of the embeddings
model is significantly larger at a 0.05 significance
level than the majority model.
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Class Embeddings Raw poses # Observations Description and examples
AFFECT 51.6 (5.22) 51.9 (4.93) 3014.1 Affective Processes: happy, ugly, bitter
ANX 51.3 (24.35) 52.7 (24.95) 146.9 Anxiety: nervous, afraid, tense
ARTICLE 50.8 (3.07) 50.5 (2.95) 7197.8 Articles: a, an, the
BODY 51.2 (11.73) 50.1 (11.84) 572.3 ache, heart, cough 1
CAUSE 51.3 (8.04) 50.4 (7.42) 1281.8 Causation: because, effect, hence
CERTAIN 51.4 (7.72) 49.1 (7.82) 1279.9 Certainty always, never
COGMECH 51.6 (3.64) 51.3 (3.23) 6801.5 Cognitive Processes: cause, know, ought
COMM 50.7 (6.82) 49.9 (6.92) 1616.3 Common verbs: walk, went see
DISCREP 52.9 (6.17) 51.7 (5.8) 2343.2 Discrepancy: should, would, could
EXCL 51.5 (3.99) 50.0 (3.84) 4510.5 Exclusive: but, except, without
FAMILY 53.5 (22.04) 53.1 (22.45) 261.0 mom, brother, cousin
FEEL 50.6 (15.66) 49.4 (15.04) 319.0 Feeling: touch, hold, felt
HEAR 50.9 (8.25) 50.7 (7.93) 1098.1 Hearing: heard, listen, sound
HUMANS 51.6 (7.4) 51.5 (7.12) 1451.9 boy, woman, group
I 52.5 (6.19) 51.1 (6.19) 2679.6 I, me, mine
INCL 51.1 (3.08) 50.4 (2.95) 7574.8 Inclusive: with, and, include
INHIB 52.5 (17.33) 50.1 (17.93) 247.5 Inhibition: block, constrain
INSIGHT 50.6 (5.87) 50.2 (5.79) 2339.3 Insight: think, know, consider
JOB 52.2 (9.81) 50.7 (10.06) 784.9 benefits, work, board
METAPH 51.4 (19.83) 51.7 (19.39) 253.3 Metaphysical issues: God, heaven, coffin
MOTION 51.0 (7.58) 49.9 (7.65) 1318.5 Motion: walk, move, go
NEGATE 51.9 (8.67) 51.0 (8.27) 1053.7 Negations: no, never, not
NEGEMO 51.3 (8.95) 50.2 (9.15) 914.5 Negative Emotions: hate, worthless, enemy
NUMBER 51.2 (8.36) 50.7 (8.08) 1150.3 Numbers: one, thirty, million
OCCUP 50.7 (6.29) 49.4 (5.95) 2062.9 Occupation: work, class, boss
OPTIM 50.7 (14.0) 49.1 (13.7) 421.5 Optimism and energy: certainty, pride, win
OTHER 50.8 (6.32) 49.7 (6.37) 1946.9 Total third person: she, their, them
OTHREF 51.4 (3.37) 51.3 (3.31) 6134.5 Other references: anyone, everyone
PAST 51.0 (4.66) 51.8 (4.57) 4272.7 Past tense verb: walked, were, had
POSEMO 50.8 (6.16) 51.1 (5.97) 2115.1 Positive Emotions: happy, pretty, good
POSFEEL 50.8 (11.37) 52.6 (10.97) 624.5 Positive feelings: happy, joy, love
PREPS 51.9 (2.32) 51.2 (2.19) 12978.5 Prepositions: on, to, from
PRESENT 51.1 (2.62) 50.2 (2.6) 9455.9 Present tense verb: walk, is, be
PRONOUN 52.5 (2.95) 52.3 (2.83) 10235.1 Total pronouns: I, our, they, you’re
SCHOOL 52.4 (14.34) 49.1 (14.07) 409.9 School: class, student, college
SEE 51.0 (10.1) 49.4 (9.45) 769.5 Seeing: view, saw, look
SELF 52.0 (3.99) 52.5 (3.96) 5223.9 Total first person: I, we, me
SIMILES 51.7 (13.45) 51.0 (14.01) 407.9 like
SOCIAL 50.7 (3.21) 51.0 (2.83) 8872.1 Social Processes: talk, us, friend
SPACE 51.8 (5.53) 51.5 (5.17) 2571.3 Space: around, over, up
TENTAT 51.7 (5.95) 50.8 (5.69) 2318.1 Tentative: maybe, perhaps, guess
UP 52.2 (8.31) 51.4 (7.76) 1131.0 up, above, over
WE 52.5 (5.3) 52.8 (5.56) 2567.5 1st person plural: we, our, us
YOU 53.4 (6.47) 50.5 (6.79) 1591.1 Total second person: you, you’ll

Table 9: Accuracy on the LIWC category prediction task for English. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We highlight in bold the categories where the embeddings model is significantly
larger than raw poses model. ± denotes standard deviation
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Class Embeddings Raw poses # Observations Description and examples
ANX 53.4 (25.29) 55.0 (25.38) 94.4 Anxiety: turba, miserable, temer
ARTICLE 51.1 (3.5) 50.4 (3.83) 5442.3 Article: los, la, una
ASSENT 52.3 (26.08) 49.0 (26.52) 156.6 bien, assent, ok
CAUSE 51.3 (10.79) 48.8 (10.84) 740.5 Causation: porque, dependo, recuperaron
COGMECH 50.9 (4.06) 49.9 (3.48) 5119.5 Cognitive Processes: conceder, asombra, pone
EXCL 51.2 (8.76) 50.7 (8.98) 1073.0 Exclusive: sacar, sin, menos
FRIENDS 52.8 (26.9) 48.0 (25.86) 63.5 examiga, comadre*, macho*
FUTURE 52.3 (17.37) 48.5 (17.88) 320.9 empezare*, frotare*, seremos
I 51.0 (8.36) 50.4 (8.36) 1243.1 mi, tuve, yo
INCL 50.6 (4.75) 49.4 (4.86) 3058.5 Inclusive: con, y, junto
LEISURE 52.8 (19.15) 50.9 (20.1) 262.9 trotar, compac, vives
NUMBER 52.7 (14.89) 52.9 (14.59) 365.4 mitad, once, nueve
PHYSCAL 51.0 (10.42) 50.9 (10.51) 736.6 Physical states: cruda, violar, patas
PREPS 52.2 (3.52) 51.1 (3.29) 6308.5 con, para, sobre
PRESENT 51.0 (4.18) 50.8 (3.89) 5028.6 Present tense: coge, entrego, desean
SOCIAL 50.8 (4.61) 49.3 (4.47) 3692.7 entrego, primo, oyes
YOU 51.3 (14.73) 50.8 (13.76) 475.6 estas, vos, tu

Table 10: Accuracy on the LIWC category prediction task for Spanish. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We highlight in bold the categories where the embeddings model is significantly
larger than raw poses model. ± denotes standard deviation
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Class Embeddings Raw poses # Observations Description and Examples
ACADEMIC 50.8 (8.68) 50.6 (8.39) 1015.0 academy, dean, coach
ACTIVE 51.3 (2.66) 50.1 (2.76) 9533.3 accost, actor, alarm
BEGIN 50.7 (9.67) 50.3 (9.73) 781.1 bloom, dawn, first
CAUSAL 52.2 (5.17) 52.1 (5.39) 2646.7 order, premise, odds
COLLECTIVITIES 52.1 (6.37) 49.5 (6.04) 2049.3 crowd, cult, family
COMMUNICATION FORM 50.8 (4.27) 50.5 (3.95) 4096.7 ask, assign, discuss
DESCRIPTIVE VERBS 50.7 (3.07) 50.5 (3.49) 6793.7 moan, mumble, pinch
FALL 53.5 (33.31) 57.9 (30.73) 61.4 sunk, drop, collapse
FINISH 51.4 (11.24) 50.2 (10.48) 665.1 cease, expire, lost
FREQUENCY 52.1 (9.4) 49.5 (9.06) 802.3 repeat, weekly, rare
HUMAN’S ROLES 50.5 (4.4) 50.8 (4.42) 3893.7 antagonist, cook, genius
INCREASE 51.0 (8.79) 50.2 (8.94) 1022.7 quicken, run, elaborate
INTERJECTION 51.9 (5.67) 50.0 (5.59) 2339.3 okay, damn, well
INTERPERSONAL 50.5 (4.28) 50.8 (4.2) 4234.0 adversary, hug, recruit
INTERPRETATIVE VERBS 51.0 (2.58) 50.3 (2.77) 10376.2 control, define, educate
KIN 53.3 (18.12) 48.8 (17.87) 297.7 mother, uncle, ma
LEGAL 51.2 (7.46) 50.4 (7.21) 1308.9 convict, crime, unjust
MALE ROLES 52.6 (12.74) 50.5 (12.52) 587.7 salesman, pope, husband
MEANS 50.9 (4.68) 50.0 (4.56) 3393.0 wage, utility, consideration
NEGATION 51.5 (7.09) 50.7 (7.23) 1357.2 aint́, disapprove, no
NEGATIVE 50.8 (4.81) 50.7 (4.93) 2927.1 break, deviation, furious
NUMBER CARDINAL 52.6 (9.21) 51.3 (8.84) 957.0 seven, zero, two
PLACE AQUATIC 54.8 (29.82) 51.3 (31.38) 125.4 bay, swamp, water
PLACE LAND 53.9 (15.02) 53.9 (15.03) 328.7 hilly, desert, cave
PRONOUN 52.7 (2.5) 52.2 (2.55) 10034.0 you, us, those
QUALITY ASSESSMENT 51.3 (6.43) 48.8 (6.18) 1828.9 modesty, hilarious, curve
QUANTITY ASSESSMENT 51.1 (3.46) 49.6 (3.05) 8094.9 considerable, all, another
RELATIONSHIPS 50.8 (5.41) 49.2 (5.37) 2594.5 tie, coherent, unlike
RISE 52.5 (14.33) 48.3 (14.2) 367.3 raise, jump, peak
ROLE 50.9 (6.07) 49.7 (6.39) 2066.7 alcoholic, buddy, mentor
SELF 52.7 (6.66) 51.2 (6.32) 2679.6 me, mine, I
SELF EXPRESSION 50.9 (8.59) 52.8 (8.69) 1121.3 vacation, paint, actor
SPACE 51.9 (4.57) 51.4 (4.8) 3060.5 way, on, nearby
STATE VERBS 50.6 (3.58) 50.9 (3.39) 5919.9 feel, seem, am
STAY 52.2 (17.24) 49.6 (16.45) 282.3 await, locate, set
STRONG 51.0 (2.5) 50.1 (3.03) 10066.9 aptitude, autocratic, defense
SUBMISSION 51.1 (7.55) 51.0 (7.44) 1374.6 respect, kneel, honor
TOOL 52.4 (7.2) 49.8 (7.19) 1341.7 Fork, stove, wheel
TRAVEL 51.1 (6.13) 50.8 (6.15) 1902.4 walk, leave, away
TRY 51.1 (7.92) 51.4 (7.15) 1293.4 bring, attempt, seek
UNDERSTATED 51.2 (3.78) 50.3 (3.93) 4877.8 caution, gamble, rare
VARY 52.1 (9.05) 51.1 (9.1) 887.4 turn, divert, amenable
VICE 51.6 (6.74) 50.9 (6.3) 1784.5 bore, damage, loss
VIRTUE 50.9 (3.92) 50.3 (3.71) 4568.5 invulnerable, free, admirable
WE 53.0 (5.36) 53.0 (5.18) 2488.2 ours, ourselves, we
WEAK 51.7 (5.0) 50.3 (4.76) 3271.2 addict, cheap, sunken
YES 51.9 (10.89) 51.2 (11.04) 665.1 yeah, okay, definitely
YOU 52.9 (6.9) 50.1 (6.5) 1610.5 your, thy, thou

Table 11: Accuracy on the General Inquirer category prediction task. The accuracy of the majority baseline is
50%. We show the categories where the accuracy of the embeddings model is significantly larger than the majority
model at a 0.05 significance level. We highlight in bold the categories where the embeddings model is significantly
larger than raw poses model. ± denotes standard deviation


