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Abstract

Annotation conversion is an effective way to
construct datasets under new annotation guide-
lines based on existing datasets with little hu-
man labour. Previous work has been limited
in conversion between tree-structured datasets
and mainly focused on feature-based models
which are not easily applicable to new conver-
sions. In this paper, we propose two simple
and effective graph-to-graph annotation conver-
sion approaches, namely Label Switching and
Graph2Graph Linear Transformation, which
use pseudo data and inherit parameters to guide
graph conversions respectively. These methods
are able to deal with conversion between graph-
structured annotations and require no manually
designed features. To verify their effectiveness,
we manually construct a graph-structured par-
allel annotated dataset and evaluate the pro-
posed approaches on it as well as other exist-
ing parallel annotated datasets. Experimental
results show that the proposed approaches out-
perform strong baselines with higher conver-
sion score. To further validate the quality of
converted graphs, we utilize them to train the
target parser and find graphs generated by our
approaches lead to higher parsing score than
those generated by the baselines.1

1 Introduction

While tree-structured representations have domi-
nated parsing for the last decade, graph-structured
datasets are receiving growing interest in recent
years (Oepen et al., 2019, 2020). Over the last few
years, an increasing number of graph-structured
datasets have become available. Some of them,
such as DM corpora from the SemEval 2015 task
18 dataset (Oepen et al., 2015) and AMRBank (Ba-
narescu et al., 2013), are manually annotated. Some
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1Our code and dataset are available at https://
github.com/WangYuxuan93/G2GConversion.
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Figure 1: Example of annotation conversion from Uni-
versal Dependency Tree (bottom) to our Semantic De-
pendency Graph (top).

others, such as the Enhanced English Universal De-
pendencies dataset (Schuster and Manning, 2016),
are converted from existing dataset with manually
designed rules. As illustrated in Figure 1, the Se-
mantic Dependency Graph at the top is converted
from the Universal Dependecy Tree at the bottom.

Obviously, in the dataset construction process
under a new annotation guideline, it would be ex-
tremely expensive to annotate the whole dataset
manually. Although rule-based conversion needs
no human labour for annotation, it requires exper-
tise to design the rules, which could be difficult if
the new guideline is vastly different from the old
one. Therefore, it would be efficient and attractive
to exploit existing datasets and learn a transduc-
tion that converts them into a new guideline. The
converted dataset under the new guideline could be
used in model training or further refined by human
annotators to construct a high-quality dataset.

Such conversion has been studied in a line of
research that exploits heterogeneous treebanks to
boost parsing performance, where the approach
is typically referred to as treebank conversion (Li
et al., 2013; Jiang et al., 2018; Seddah et al., 2018).
In their cases, two existing heterogeneous tree-
banks (tree-structured datasets) on different texts
are available. The goal is to convert a source tree-
bank into annotation under a target guideline and
use the converted treebank as extra annotated data
for the training of the target model.

https://github.com/WangYuxuan93/G2GConversion
https://github.com/WangYuxuan93/G2GConversion
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Previous work for treebank conversion mainly
focused on rule-based and feature-based methods.
For the rule-based methods (Frank, 2001; Schuster
and Manning, 2016), treebank-specific rules are
designed by experts to convert one treebank to the
other one. For the feature-based methods, they first
construct parallel annotated data by manually anno-
tating part of the target treebank under the source
guideline (Jiang et al., 2015, 2018) or training a
parser on the source treebank and parsing the target
treebank with it (Zhu et al., 2011; Li et al., 2013).
Then they use the source annotation as extra guid-
ing features to train an augmented target parser that
parses the whole source treebank and generates the
expected target annotation. Such methods are not
easily applicable to new conversions, especially be-
tween graph-structured representations, since the
annotation guidelines are normally vastly differ-
ent from each other, and thus the rules or features
should be redesigned for every new guideline.

In this paper, we propose two pretrained model-
based graph-to-graph annotation conversion ap-
proaches, namely Label Switching (LS) and
Graph2Graph Linear Transformation (G2GLT),
which are able to deal with conversions between
graph-structured datasets and require no manually
designed features. Specifically, in the Label Switch-
ing approach, we first automatically construct large
scale pseudo target data by switching labels in
source data to target labels based on the alignment
information obtained from the parallel annotated
data. After that, a graph parser is first trained on
the pseudo data and then further fine-tuned on the
small set of gold target annotation. The parser
is eventually used to parse the source dataset to
generate the target annotation. While the G2GLT
approach directly inherits most of parameters from
the parser trained on the source annotation, then
linearly transform the biaffine attention matrix in a
biaffine graph parser (Dozat and Manning, 2018)
to adapt to the target annotation guideline.

We manually construct a graph-structured
dataset under the refined semantic dependency
graph (SDG) guideline (Che et al., 2016) on part
of the text from the English Web Treebank (EWT)
(Silveira et al., 2014) in the Universal Dependen-
cies (UD) Treebanks (v2.5) (Zeman et al., 2019).2

To verify the effectiveness of the proposed ap-
proaches, we evaluate them on conversions be-
tween 6 datasets including SDG, UD-EWT, the

2Referred to as UD-EWT in the rest of the paper.

Enhanced Universal Dependencies (UD-Enhanced)
dataset (Schuster and Manning, 2016) and three
types of annotations (i.e., DM, PAS and PSD) in
the SemEval 2015 task 18 dataset (Oepen et al.,
2015). We further validate the quality of the con-
verted annotations by utilizing them in the training
of the target parser. Experimental results show
that our approaches outperform strong baselines on
both conversion score and parsing score.

In this paper, we focus on graph-structured an-
notation conversion based on an existing source-
annotated dataset and a small set of parallel anno-
tated data. Our contributions are summarized as
follows.

• We propose two graph-to-graph conversion
approaches that require no manually designed
features.

• We verify the effectiveness of our proposed
approaches on 5 existing datasets and a graph-
structured dataset manually constructed by
ourselves.

• We validate the quality of the annotations con-
verted by our approaches by utilizing them to
train the target parser.

2 Background

2.1 Semantic Dependency Graph
Chinese semantic dependency graph (SDG) (Che
et al., 2016) is a framework for representing the
meaning of different semantic units within a sen-
tence (e.g., event chains, events, arguments, and
concepts). It is in the form of directed acyclic
graphs and focuses on investigating deeper seman-
tic relations within sentences rather than morpho-
syntactic patterns compared with traditional syn-
tactic dependency trees. With the benefits of the
graph’s reentrancies and the easy-to-understand
semantic labels, the tokens are connected more
closely, making it easier to directly answer ques-
tions like who did what to whom when and where.

This framework is designed for Chinese exclu-
sively. To take advantages of its properties, we
modified the original annotation guidelines to make
them applicable to English. We manually anno-
tated 1,000 English sentences from UD-EWT to
build a parallel annotated dataset to evaluate our
annotation conversion approaches. Please refer to
Appendix A.2 for the modifications we made to the
Chinese SDG guidelines.
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2.2 Biaffine Graph Parser
In this paper, we build all the approaches over the
state-of-the-art biaffine graph parser (Dozat and
Manning, 2018), which is a graph-based depen-
dency parser that employs biaffine classifiers to
predict arcs and labels in a graph. Firstly, it encodes
the input sentence with a multi-layer bidirectional
LSTM. Conventionally, the static word embeddings
are used as the input vector. To exploit the capa-
bility of pretrained models in capturing structural
information, we instead employ RoBERTa (Liu
et al., 2019) to obtain the contextual representation
as input. Secondly, the output of the LSTM of the
i-th word, denoted as hi, is fed to four single-layer
feed-forward networks (FFN) to get head and de-
pendent representations for arcs (Eq. 1) and labels
(Eq. 2).

h
(arc-head)
i = FFN(arc-head)(hi)

h
(arc-dep)
i = FFN(arc-dep)(hi)

(1)

h
(rel-head)
i = FFN(rel-head)(hi)

h
(rel-dep)
i = FFN(rel-dep)(hi)

(2)

Eventually, the scores for arcs (Eq. 4) and labels
(Eq. 5) are computed with biaffine classifiers:

Biaf(xi,xj) = x⊤
i Uxj +W ([xi;xj ]) + b (3)

s
(arc)
i,j = Biaf(arc)(h

(arc-head)
i ,h

(arc-dep)
j ) (4)

s
(rel)
i,j = Biaf(rel)(h

(rel-head)
i ,h

(rel-dep)
j ) (5)

Where [xi;xj ] indicates the concatenation of the
two vectors. For the labeled parser, U ∈ Rd×c×d

and W ∈ Rc×2d where c is the number of rela-
tion labels and d is the dimension of hidden states.
While for the unlabeled parser, U ∈ Rd×1×d and
W ∈ R1×2d, so that s(arc)

i,j is a scalar. The predic-

tions of arcs and labels are y
′(arc)
i,j = {s(arc)

i,j ≥ 0}
and y

′(rel)
i,j = argmax s(rel)

i,j respectively. Where the
latter means that the label with the highest score is
the prediction.

3 Method

In this section, we first give a formal definition
of the task of supervised graph-to-graph annota-
tion conversion (Section 3.1). Then, we present
the proposed approaches, namely Label Switching
(Section 3.2) and Graph2Graph Linear Transforma-
tion (Section 3.3) for this task.

3.1 Problem Definition

Given a set of texts T , a graph-structured dataset
annotated following guideline s on it is denoted
by Ds(T ). In this paper, s is called the source
guideline and Ds(T ) the source dataset. Assume
we have a target guideline t as well as a small
set of texts T ′ ⊆ T annotated under t. In other
words, we have the annotations of T ′ following
both s (i.e., Ds(T ′)) and t (i.e., Dt(T ′)), which
consist the parallel annotated data. The goal of
supervised graph-to-graph annotation conversion
is to learn a transformation f : Ds(T ) → Dt(T )
based on Ds(T ′) and Dt(T ′), which converts the
whole source dataset Ds(T ) into annotation under
the target guideline, and thus obtain the annotated
target dataset Dt(T ).

3.2 Label Switching

The lack of training data under the target guideline
is a great challenge in supervised annotation con-
version, especially for models based on deep neural
networks. Data augmentation has been commonly
used in the NLP community to alleviate the prob-
lem. Recently, Qin et al. (2020) proposed a code-
switching data augmentation method, which gen-
erates pseudo multilingual corpus for the training
of the multilingual BERT by randomly replacing
words in a monolingual corpus based on bilingual
dictionaries.

Inspired by this work, we propose the Label
Switching approach that constructs pseudo target
annotations to help the training of the conversion
model by switching labels in source annotations to
labels in the target guideline based on the alignment
information obtained from the parallel annotated
data. Our Label Switching approach consists of
two steps: (i) label-switching data augmentation
and (ii) two-step fine-tuning, which are introduced
as follows.

Label-Switching Data Augmentation: To con-
struct pseudo training data under the target guide-
line, we first compute the label alignment-based
switching probabilities on the parallel annotations
Ds(T ′) and Dt(T ′). Specifically, for a text X ∈
T ′, its source and target annotations are denoted
by Ds(X) and Dt(X) respectively. Let (i, j, r) de-
note the arc from word i to word j with label r, we
count the number of the quadruples (rt, ph, pd, rs)
for all the arcs that exist in both source and
target annotations (i.e., (i, j, rs) ∈ Ds(X) and
(i, j, rt) ∈ Dt(X)), where ph and pd are the Part-
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Figure 2: Schematic diagram of Graph2Graph Linear Transformation which scores each relation label between the
head and the dependent. Embed refers to embedding layer. The parameters of a biaffine parser trained on source
data is inherited by another parser with a linear transformation function applied to its biaffine attention matrix. All
the inherited parameters and the linear transformation function are fine-tuned on target data except for the biaffine
attention matrix inherited from the source parser.

of-Speech (POS) tags for the head and dependent
words respectively.3 The switching probability is
thus computed as:

P (rt|ph, pd, rs) =
N(rt,ph,pd,rs)∑

r′∈Rt
N(r′,ph,pd,rs)

, (6)

where N(rt,ph,pd,rs) is the number of the quadruples
in the parallel annotated data, and Rt is the set of
all the labels in the target guideline. Eventually,
each label rs in the source dataset, with POS tags
ph and pd for the head and dependent respectively,
is switched to rt in the target guideline with the
probability P (rt|ph, pd, rs).4

Two-Step Fine-Tuning: The pseudo target data
generated in the last step is firstly used to train a
biaffine graph parser as described in Section 2.2.
Secondly, the model is further fine-tuned on the
manually annotated target data Dt(T ′). Eventually,
this parser is used to generate the annotation of the
whole dataset under the target guideline with only
texts as input.

3.3 Graph2Graph Linear Transformation

Compared with the Label Switching approach
which converts the annotation through data aug-
mentation and two-step fine-tuning, our second

3We use gold POS tags from the source dataset in our
experiments.

4Due to the limited number of parallel annotated data,
the switching probabilities can not cover all the labels in the
source data. For those not covered, we leave them as they are.

approach directly learns a linear function that trans-
forms the parser trained on the source-annotated
data to a parser that fits the target annotation guide-
line. Since the biaffine attention matrix is the core
of the biaffine parser and contains knowledge that
is significant for the prediction of the dependency
graph. A natural way to exploit source graph infor-
mation is to inherit such knowledge from a parser
trained on large-scale source-annotated data.

As illustrated in Figure 2, to exploit the infor-
mation in the source data, we firstly train a source
parser on it. Then a linear transformation is applied
to the biaffine attention matrix for relation predic-
tion so that the relational information learned on
the source annotation can be transformed to the
target annotation. To maintain the source relational
information, the corresponding biaffine attention
matrix is fixed during the fine-tuning stage on the
target data.

Specifically, let Us,Ws and bs be the param-
eters of a biaffine parser trained on large-scale
source-annotated data with Eq. 3. Let cs and ct
be the number of relation labels in the source and
target annotations respectively. Two linear transfor-
mation functions Vu ∈ Rct×cs and Vw ∈ Rct×cs

are applied to Us ∈ Rd×cs×d and Ws ∈ Rcs×2d re-
spectively to obtain the parameters Ut ∈ Rd×ct×d

and Wt ∈ Rct×2d for the target parser.

Ut = (VuU
⊤(1,2)
s )⊤(1,2) (7)
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Wt = VwWs (8)

Biaft(xi,xj) = x⊤
i Utxj +Wt([xi;xj ]) + bs

(9)
where U⊤(1,2) means transposing the first and the
second dimensions of tensor U.

Briefly, our Graph2Graph Linear Transforma-
tion approach consists of two steps: (i) training a
source biaffine parser on the source-annotated data;
(ii) applying the linear transformation function on
the source parser and fine-tuning it on the target-
annotated data while freezing the parameters in the
biaffine attention matrix inherited from the source
parser.

4 Experimental Setup

4.1 Datasets and Experimental Settings

Dataset #Sent #Token #Arc (avg) #Label
UD-EWT 16,622 254,829 1.00 49
SDG 1,000 15,991 1.07 61
UD-En 16,622 254,829 1.05 398
DM 37,066 834,665 0.78 60
PAS 37,066 834,665 1.02 43
PSD 37,066 834,665 0.70 92

Table 1: Data statistics. #Sent and #Token denote the
number of sentences and tokens respectively for all the
annotated data in the dataset (including training, valid
and test sets). #Arc (avg) denotes the average number
of arcs per token, while #Label the number of label
types. UD-En denotes the UD-Enhanced dataset. For
DM/PAS/PSD, the out-of-domain test sets are excluded.

Dataset Source-Train Train Valid Test
UD2UD-En 10,508 1000 500 5,000
UD2SDG 16,369 800 - 200
D2D∗ 26,206 1,000 500 10,000

Table 2: Data split statistics. UD denotes UD-EWT.
D2D∗ denotes the 6 conversion tasks between DM, PAS
and PSD.

For the evaluation of the proposed approaches,
we manually construct the SDG dataset (on part
of texts from UD-EWT) and employ two groups
of existing parallel annotated datasets, namely
{UD-EWT, UD-Enhanced} and {DM, PAS, PSD},
whose statistics are shown in Table 1.

UD-EWT is a tree-structured syntactic dataset
under the Universal Dependencies (UD) guideline.
UD (Zeman et al., 2019) is a framework for consis-
tent annotation of grammar across languages. The

UD Treebanks (v2.5) consist of 157 treebanks in
90 languages,5 which could be a good source to ob-
tain source datasets for dataset construction under
a new guideline. Therefore, we use UD-EWT as
the source dataset in our experiments.

UD-Enhanced is a graph-structured syntactic
dataset converted from UD-EWT by adding rela-
tions and augmenting relation names (Schuster and
Manning, 2016).6

SDG is a graph-structured semantic dataset with
1,000 sentences annotated under the refined seman-
tic dependency graph guideline (Che et al., 2016).

DM, PAS and PSD are three types of graph-
structured semantic annotations in the SemEval
2015 task 18 dataset (Oepen et al., 2015).7

The approaches are evaluated on eight anno-
tation conversion tasks including UD-EWT to
UD-Enhanced (UD2UD-En), UD-EWT to SDG
(UD2SDG) as well as six conversion tasks be-
tween DM, PAS and PSD (PAS2DM, PSD2DM,
PAS2PSD, DM2PSD, DM2PAS, PSD2PAS). Re-
call that the goal of this paper is graph-structured
annotation conversion based on an existing source-
annotated dataset and a small set of parallel anno-
tated data. To fit the goal, we re-split the datasets
so that only a limited number of parallel anno-
tated examples are available while training. The
data split statistics are shown in Table 2, where
Train/Valid/Test are parallel annotated data and
Source-Train contains only the source-side annota-
tion that will be used in the experiment of utilizing
converted data in Section 5.2. We perform 5-fold
cross-validation on the 1,000 parallel annotated
sentences in the conversion task from UD-EWT to
SDG.

For all the approaches, we employ the biaffine
graph parser as described in Section 2.2 to pre-
dict the target graph, and use RoBERTa (Liu et al.,
2019) to obtain contextual representations as its
input. We set the learning rate of RoBERTa to 2e-5
and that of other parameters to 2e-2. Other hyper-
parameters are adopted from the paper of Dozat
and Manning (2018).

Existing graph banks can be broadly categorized
into two types, namely the bilexical graphs (where
dependencies are directly linked between surface
lexical units) and the conceptual graphs (where

5http://hdl.handle.net/11234/1-3105
6https://github.com/

UniversalDependencies/UD_English-EWT
7https://catalog.ldc.upenn.edu/

LDC2016T10

http://hdl.handle.net/11234/1-3105
https://github.com/UniversalDependencies/UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT
https://catalog.ldc.upenn.edu/LDC2016T10
https://catalog.ldc.upenn.edu/LDC2016T10
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Methods
UD2UD-En UD2SDG PAS2DM PSD2DM DM2PAS PSD2PAS DM2PSD PAS2PSD AVG.
UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF

DFT 89.92 82.04 86.47 74.07 90.07 87.53 90.07 87.53 93.76 91.56 93.76 91.56 90.87 75.32 90.87 75.32 90.72 83.12
TSFT 91.74 83.32 87.49 74.87 90.51 88.01 90.48 88.10 94.11 91.96 94.46 92.37 91.26 75.32 91.66 75.57 91.46 83.69
PE 99.41 95.82 87.68 74.93 89.79 87.33 90.11 87.68 93.93 91.75 94.20 91.90 89.69 74.03 91.81 76.54 92.08 85.00
G2GTr 96.63 89.16 87.85 74.91 90.11 87.62 90.58 88.20 93.81 91.63 94.42 92.28 90.53 74.21 91.88 75.73 91.98 84.22
LS 97.13 89.27 89.15 76.65 91.12 88.71 91.05 88.71 94.72 92.90 95.23 93.29 92.08 76.90 93.14 77.65 92.95 85.51
G2GLT 96.51 90.97 89.30 77.05 90.86 88.46 91.27 89.31 94.37 92.31 94.88 92.92 90.81 75.12 92.63 76.81 92.58 85.37
LS+G2GLT 97.27 91.47 89.81 77.81 91.33 89.05 91.87 90.05 94.86 93.01 95.80 94.10 92.77 79.36 93.29 78.42 93.38 86.66

Table 3: Conversion scores on test data.

dependencies are between virtual nodes that do
not need be explicitly mapped to surface linguistic
forms). DM, PAS and PSD fall into the former cat-
egory, while another popular graph bank Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013) belongs to the latter. We choose to conduct
experiments on DM, PAS and PSD because they
are annotated on the same corpus, which guaran-
tees the availability of parallel annotated data re-
quired by our approaches. While currently we have
no access to parallel annotated data for AMR and
any other graph bank. More importantly, since our
Label Switching approach exploits the overlapped
dependencies in source and target annotation for
label switching, it is not straightforwardly applica-
ble to conversion between conceptual graphs since
virtual nodes make it hard to identify overlapped
dependencies. Therefore, we leave as future work
to extend our approaches to conversion between
conceptual graphs.

4.2 Baselines and Evaluation Metrics
Our approaches, namely Label Switching (LS)
and Graph2Graph Linear Transformation
(G2GLT), are compared with four baselines in-
troduced as follows.

Direct Fine-Tuning (DFT) A RoBERTa-based
biaffine graph parser is directly trained on the small
set of target annotations Dt(T ′).

Two-Step Fine-Tuning (TSFT) A RoBERTa-
based biaffine graph parser is firstly trained on
the whole source dataset Ds(T ), and then further
fine-tuned on the small set of target annotations
Dt(T ′).8 It is only trained for 5 epochs in the first
step to avoid over-fitting to the source data.

Pattern Embedding (PE) This is a feature-
based method closely following the work of Jiang
et al. (2018) which takes advantage of source guid-
ing features. To adopt it in graph-to-graph an-
notation conversion, we average the label embed-

8In the second step, non-RoBERTa parameters are reinitial-
ized since the source and target guidelines have different label
sets, and thus only the RoBERTa parameters can be shared.

dings for structural information representation in
the reentrancy structure and add reverse sibling
pattern for the reentrancy structure in graphs.9 A
RoBERTa-based biaffine graph parser is employed
in the method.

Graph2Graph Transformer (G2GTr)
Graph2Graph Transformer is proposed by Moham-
madshahi and Henderson (2021) for dependency
parsing with iterative refinement, which encodes
dependency trees produced by the last step to
obtain structural enhanced representation that is
utilized to predict refined trees. In this method,
we employ Graph2Graph Transformer to obtain
each token’s representation infused with source
annotation information and feed them to a
RoBERTa-based biaffine graph parser that predicts
the target annotation.

Moreover, it is straightforward to combine the
two approaches we proposed (LS+G2GLT) by av-
eraging the scores they predicted for arcs (Eq. 4)
and labels (Eq. 5) respectively. This is also evalu-
ated in the experiments.

All the results are reported in terms of unlabelled
F1 score (UF) and labelled F1 score (LF) on the
target test set.

5 Results

5.1 Conversion Results

Table 3 shows the results of the eight conversion
tasks, which are the average over three runs.10 With
the help of the pretrained model, DFT achieves fair
results with limited data annotated under the target
guideline used for training. While TSFT improves
the results by training on the large-scale source-
annotated dataset firstly to capture the structural
information implicitly. The other two baselines,
which adopt previous methods for graph-to-graph
annotation conversion, yield better results. Specif-

9Reentrancy structure represent the structure of a word
with multiple heads, which only occurs in graphs but not in
trees.

10Please refer to Appendix A.3 for the standard deviation.
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Methods
UD2UD-En UD2SDG PAS2DM PSD2DM DM2PAS PSD2PAS DM2PSD PAS2PSD AVG.
UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF

Single 89.92 82.04 86.47 74.07 90.07 87.53 90.07 87.53 93.76 91.56 93.76 91.56 90.87 75.32 90.87 75.32 90.72 83.12
DFT 90.56 82.86 87.22 75.11 90.51 88.09 90.51 88.09 94.14 92.01 94.14 92.01 91.57 76.49 91.57 76.49 91.28 83.89
TSFT 91.63 83.60 87.98 75.74 91.02 88.66 90.78 88.49 94.51 92.52 94.88 92.83 91.79 76.44 91.89 76.57 91.81 84.36
PE 93.39 88.41 88.48 76.13 90.97 88.77 91.04 89.07 94.63 92.64 95.08 93.16 91.62 77.09 92.24 77.63 92.18 85.36
G2GTr 92.56 84.89 87.57 75.45 90.61 88.40 90.87 88.73 94.23 92.18 94.77 92.82 91.94 77.33 91.90 76.35 91.81 84.52
LS 93.52 85.77 88.86 76.82 91.27 88.86 91.19 88.96 94.92 93.04 95.17 93.32 92.51 77.92 92.90 78.02 92.54 85.34
G2GLT 93.23 87.36 88.92 76.92 91.28 88.92 91.63 89.81 94.85 92.90 95.40 93.56 92.42 78.34 92.69 77.58 92.55 85.67
LS+G2GLT 93.64 87.47 89.32 77.48 91.50 89.20 91.70 89.87 95.02 93.20 95.67 93.96 93.07 79.73 92.91 78.41 92.85 86.16

Table 4: Parsing scores on test data.

ically, G2GTr improves the performance by em-
ploying the Graph2Graph Transformer to encode
source-annotated information. As the only feature-
based method, PE achieves the best average results
in all the baselines.

As for our approaches, they achieve comparable
conversion scores, and both of them outperform
the baselines on average. Besides, they signifi-
cantly outperform all the baselines in almost all
the conversion tasks, except in the conversion from
UD-EWT to UD-Enhanced where PE yields the
best result. We assume that this is because UD-
Enhanced is converted from UD-EWT by adding
relations and augmenting relation names to make
implicit relations between content words more ex-
plicit. Therefore, UD-Enhanced shares some labels
with UD-EWT and they have the highest annotation
overlap among all the conversion tasks.11 While
in all the other conversion tasks, the two datasets
have completely different label sets, and thus their
overlap rate is much lower. Obviously, the feature-
based PE approach performs extremely good in
the case where the annotation overlap rate is high.
However, it is outperformed by our approaches in
all the other more complicated conversion tasks
where the annotation overlap rate is lower.

Furthermore, since our proposed approaches im-
prove the conversion score in two facets, namely
data augmentation and parameter transformation,
we assume that the improvements they brought are
orthogonal to each other. Therefore, we combine
them by simply averaging the arc and label scores
they predicted and find that the combined model
further significantly improves the performance on
all the conversion tasks.

5.2 Utilizing Converted Data

In order to evaluate the quality of the converted
data, we utilize them to train a target parser and
measure the quality with the parsing score. Specif-

11Please refer to Appendix A.1 for the annotation overlap
information in detail.

ically, following the data split in Table 2, we first
convert Source-Train into target-annotated data
with different conversion approaches, then train tar-
get parsers with the converted data. Eventually, the
target parsers are evaluated on the Test set.

Table 4 shows the empirical results. Besides
the methods in Table 3, we also include a Single
baseline without the annotation conversion process,
which is a target parser trained only on the target
annotation in the Train set in Table 2. Obviously,
utilizing the target data converted from the large-
scale source data during training can significantly
improve the performance. Moreover, both of our
approaches outperform all the baselines in almost
all parsing tasks. The result of PE is much higher
than that of our approaches for the UD-EWT to UD-
Enhanced task. We assume that this is due to the
high conversion score of PE on the conversion task
from UD-EWT to UD-Enhanced, whose reason
has been discussed in Section 5.1. Similar to the
case in conversion tasks, the combined model can
further improve the parsing performance.

5.3 Effect of Parallel Annotated Data Size

Recall that this paper aims at graph-structured an-
notation conversion based on an existing source-
annotated dataset and little human labour. There-
fore, the parallel annotated data size is of great
importance since the smaller it is, the less human
labour will be required. This section investigates
the effect of the parallel annotated data size on the
proposed conversion approaches. Specifically, we
evaluate the approaches on 200/500/1,000/2,000
randomly selected training sets respectively with
the same valid/test sets introduced in Section 4.1.12

Figure 3 shows the results with different parallel
annotated data sizes, where it is obvious that the
performances of all methods increase as the data
size increases in almost all the conversion tasks.

12We conduct experiments on all conversion tasks except
the conversion from UD-EWT to SDG since there are only
1,000 parallel annotated sentences. The results for conversion
from PAS to PSD is shown in Appendix A.4.
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Figure 3: Results for conversions with different parallel annotated data sizes (best viewed in color).

However, the performance of LS, G2GLT and the
combined approach is not apparently influenced by
the change of data size in the annotation conver-
sion from UD-EWT to UD-Enhanced. It can be ex-
plained by the high annotation overlap rate between
them. With the highly overlapped annotation, our
proposed approaches can easily obtain promising
results with only 200 parallel annotated sentences.
While since the PE method extracts features from
the source graph to predict the target graph, it also
benefits from the high annotation overlap rate. An-
other finding from Figure 3 is that the difference of
LF between our proposed approaches and the base-
lines shrinks as the data size increases, which may
indicates that our proposed approaches are most
suitable for cases where only limited parallel an-
notated data is available. And this exactly satisfies
the aim of this paper.

6 Conclusion

This paper aims at graph-structured annotation
conversion based on an existing source-annotated
dataset with little human labour. We propose two
graph-to-graph annotation conversion approaches,

namely Label Switching and Graph2Graph Linear
Transformation, and show their effectiveness on
eight annotation conversion tasks and converted
data utilizing tasks. Results show that 1) the two
approaches achieve comparable conversion scores;
2) our proposed approaches are most suitable for
cases where only limited parallel annotated data is
available; 3) the two approaches can be combined
to further improve the performance.

7 Ethical Considerations

The sentences in the Semantic Dependency Graph
(SDG) dataset we construct are collected from the
English Web Treebank (EWT) in the Universal De-
pendencies (UD) Treebanks (v2.5) (Zeman et al.,
2019) which is a publicly available dataset. The
detailed statistics of the SDG dataset are shown in
Table 1. All the annotators are voluntary partici-
pants who have given informed consent and been
fairly compensated during the annotation process.

Acknowledgments

This work was supported by the National Key R&D
Program of China via grant 2020AAA0106501 and



5458

the National Natural Science Foundation of China
(NSFC) via grant 61976072 and 62176078.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Wanxiang Che, Yanqiu Shao, Ting Liu, and Yu Ding.
2016. SemEval-2016 task 9: Chinese semantic de-
pendency parsing. In Proc. of SemEval.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency pars-
ing. In Proc. of ACL.

Anette Frank. 2001. Treebank conversion - converting
the negra treebank to an ltag grammar. In Proceed-
ings of the Workshop on Multi-layer Corpus-based
Analysis.

Wenbin Jiang, Yajuan Lü, Liang Huang, and Qun Liu.
2015. Automatic adaptation of annotations. Compu-
tational Linguistics.

Xinzhou Jiang, Zhenghua Li, Bo Zhang, Min Zhang,
Sheng Li, and Luo Si. 2018. Supervised treebank
conversion: Data and approaches. In Proc. of ACL.

Xiang Li, Wenbin Jiang, Yajuan Lü, and Qun Liu. 2013.
Iterative transformation of annotation guidelines for
constituency parsing. In Proc. of ACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Alireza Mohammadshahi and James Henderson.
2021. Recursive Non-Autoregressive Graph-to-
Graph Transformer for Dependency Parsing with It-
erative Refinement. Transactions of the Association
for Computational Linguistics.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The second shared task on cross-
framework and cross-lingual meaning representation
parsing. In Proceedings of the CoNLL 2020 Shared
Task: Cross-Framework Meaning Representation
Parsing.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdenka
Uresova. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the

Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
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A Appendix

A.1 Annotation Overlap

In this section, we evaluate the annotation over-
lap between the datasets in our conversion tasks.
Specifically, for each of the eight conversion tasks
used in this paper, we directly evaluate the origi-
nal source dataset on the gold target dataset and
use the scores to measure the annotation overlap
between the two datasets. A higher score between
two datasets represents a higher annotation overlap
rate between them.

Source Target UF LF
UD-EWT UD-Enhanced 96.95 83.87
UD-EWT SDG 87.98 -
PAS DM 63.78 -
PSD DM 27.21 -
DM PAS 63.78 -
PSD PAS 30.24 -
DM PSD 27.21 -
PAS PSD 30.24 -

Table 5: Annotation overlap in terms of UF and LF.

Results are shown in Table 5, we only report
the LF for the dataset pair of {UD-EWT, UD-
Enhanced}. This is because UD-Enhanced is con-
verted from UD-EWT by adding relations and aug-
menting relation names to make implicit relations
between content words more explicit. Therefore,
UD-Enhanced shares some labels with UD-EWT.
While in all the other pairs, the two datasets have
completely different label sets. Thus we can not
compute the LF for them.

As for the UF which reflects the structural an-
notation overlap between datasets, we find that
UD-EWT is most similar to UD-Enhanced, which
can also be explained by the construction of UD-
Enhanced introduced above. The overlap between
UD-EWT and SDG is lower, indicating that the
conversion from UD-EWT to SDG is harder than
that from UD-EWT to UD-Enhanced. Moreover,
the overlap rate between DM, PAS and PSD are
much lower, with only 27.21% UF for PAS and
PSD, which suggests that the shared information
between them is much less than that for the other
pairs and conversion between them are even more
challenging.

A.2 Semantic Dependency Graph Annotation
Guidelines

We modified Chinese Semantic Dependency Graph
guidelines13 to make it applicable to English in two
ways: adding more semantic edges and reducing
more semantic labels.

We added more edges between predicates and
arguments. In the Chinese Semantic Dependency
Graph, it only considers omitted object and subject
which has been referred in previous clauses. We
also take omitted predicates into account, thus, en-
suring the semantic integrity of semantic units. An
example is shown in Figure 4. Here, the predicate
"cried" has been omitted and we added an extra
edge to connect "I" with "cried" which makes the
second clause more explicit.

She cried , and so did I .

ROOT

AGT mPUNC

eCOO

mDEPD
mDEPD AGT

mPUNC
AGT

Figure 4: Example of annotation for omitted predicates

Semantic Class Labels

Semantic roles AGT(Agent), EXP(Experiencer),
PAT(Patient), CONT(Content),
PROD(Product), BEL-
GONG(Belongings), PART,
MATL(Material), TOOL,
REAS(Reason), LOC(location),
TIME, SCO(Scope), FEAT,
QUAN(Quantity), STAT(State)

Reverse relations r+semantic roles

Nested relations d+semantic roles

Event relations eCOO(Coordination),
eRECT(Recount),
eSELT(Select),
ePROG(Progression),
eSUCC(Successor),
eRESU(Result),
eCOND(Condition),
eSUPP(Supposition),
eEFTT(Effect), eEQU(Equal),
eADVT(adversative)

Semantic markers mNEG(Negation),
mRELA(relation),
mPUNC(Punctuation), mDEPD,
mFIXED

Table 6: Label set of the semantic relation of EN-SDG

13https://csdp-doc.readthedocs.io/zh_
CN/latest/

https://csdp-doc.readthedocs.io/zh_CN/latest/
https://csdp-doc.readthedocs.io/zh_CN/latest/
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Methods
UD2UD-En UD2SDG PAS2DM PSD2DM DM2PAS PSD2PAS DM2PSD PAS2PSD AVG.
UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF UF LF

DFT 0.08 0.23 0.06 0.04 0.08 0.10 0.08 0.10 0.10 0.09 0.10 0.09 0.12 0.21 0.12 0.21 0.03 0.08
TSFT 0.13 0.06 0.12 0.17 0.10 0.13 0.15 0.21 0.11 0.16 0.10 0.06 0.1 0.30 0.18 0.32 0.06 0.11
PE 0.08 0.28 0.14 0.17 0.05 0.08 0.10 0.16 0.02 0.07 0.17 0.27 0.15 0.35 0.14 0.25 0.01 0.05
G2GTr 0.24 0.15 0.09 0.20 0.09 0.06 0.08 0.05 0.07 0.05 0.17 0.26 0.09 0.06 0.14 0.18 0.06 0.05
LS 0.35 0.39 0.04 0.05 0.09 0.17 0.16 0.21 0.06 0.10 0.10 0.09 0.03 0.18 0.07 0.05 0.07 0.05
G2GLT 0.13 0.10 0.12 0.17 0.08 0.06 0.07 0.08 0.26 0.32 0.10 0.09 0.28 0.25 0.09 0.36 0.11 0.10
LS+G2GLT 0.16 0.11 0.05 0.13 0.03 0.08 0.07 0.09 0.01 0.01 0.01 0.01 0.08 0.10 0.02 0.22 0.02 0.02

Table 7: Standard Deviation for conversion scores on test data.

As for semantic labels, we merged labels for
simplification. Specifically, in semantic roles, we
merged Aft into EXP, Orig and Comp into DATV,
Reas, Int into REAS, Host, Nmod, Tmod into
FEAT, Qp, Freq, Seq into QUAN. In event rela-
tions, we merged eInf, eCau into eRESU, eConc
and eAban into eSELT, eSUM into eRECT. In se-
mantic markers, we just kept mNEG, mRELA and
mPUNC and abandoned other markers because
they most designed for Chinese specifically. We
also create some new labels for unique usage in En-
glish: mFIXED for multi-word expressions(mwe)
and mDEPD for function words like articles. The
list of the semantic labels in our SDG guideline is
shown in Table 6.

A.3 Standard Deviation
Table 7 shows the standard deviation for the exper-
iments in Table 3.

A.4 Effect of Parallel Annotated Data Size
In this section, we report the result for conversion
from PAS to PSD with different parallel annotated
data sizes. The results are shown in Figure 5.
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Figure 5: Results for conversions from PAS to PSD with
different parallel annotated data sizes.


