@inproceedings{lei-etal-2022-codonmt,
title = "{C}o{D}o{NMT}: Modeling Cohesion Devices for Document-Level Neural Machine Translation",
author = "Lei, Yikun and
Ren, Yuqi and
Xiong, Deyi",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2022.coling-1.462/",
pages = "5205--5216",
abstract = "Cohesion devices, e.g., reiteration, coreference, are crucial for building cohesion links across sentences. In this paper, we propose a document-level neural machine translation framework, CoDoNMT, which models cohesion devices from two perspectives: Cohesion Device Masking (CoDM) and Cohesion Attention Focusing (CoAF). In CoDM, we mask cohesion devices in the current sentence and force NMT to predict them with inter-sentential context information. A prediction task is also introduced to be jointly trained with NMT. In CoAF, we attempt to guide the model to pay exclusive attention to relevant cohesion devices in the context when translating cohesion devices in the current sentence. Such a cohesion attention focusing strategy is softly applied to the self-attention layer. Experiments on three benchmark datasets demonstrate that our approach outperforms state-of-the-art document-level neural machine translation baselines. Further linguistic evaluation validates the effectiveness of the proposed model in producing cohesive translations."
}