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Abstract
Dialogue Act tagging with the ISO 24617-2
standard is a difficult task that involves multi-
label text classification across a diverse set of la-
bels covering semantic, syntactic and pragmatic
aspects of dialogue. The lack of an adequately
sized training set annotated with this taxonomy
is a major problem when using the standard
in practice. In this work, we propose a neural
architecture to increase classification accuracy,
especially on low-frequency fine-grained tags,
on a subset of the ISO 24617-2 taxonomy. Our
model takes advantage of the hierarchical struc-
ture of the ISO taxonomy and utilises syntactic
information in the form of Part-Of-Speech and
dependency tags, in addition to contextual in-
formation from previous turns. We train our
architecture on an aggregated corpus of conver-
sations from different domains, which provides
a variety of dialogue interactions and linguistic
registers. Our approach achieves state-of-the-
art tagging results on the DialogBank bench-
mark data set, providing empirical evidence
that this architecture can successfully gener-
alise to different domains.

1 Introduction

Language understanding is a fundamental compo-
nent of any conversational system, as it impacts its
abilities to correctly recognise a user’s communica-
tive functions and act accordingly. Dialogue Act
(DA) tagging is a crucial step of this understanding
process, particularly in an open-ended conversa-
tional setting, as it informs the system on the users’
beliefs, desires, intentions and actions.

Table 1 shows an excerpt of a conversation from
the Mastodon corpus annotated with Dialogue Act
tags. Note that some tags (e.g. Task:Answer or
Task:Agreement) are contextual and depend on the
tagging of previous utterances. The annotation also
reflects the multi-dimensional nature of the DA
tags, categorised as Task, Social or Feedback. In
general, an utterance may have multiple tags, even
of the same dimension.

Utterance DA Tags
A: ask anything you’d like Task:Directive
B: thanks for the interest Social:Thanking
B: when a girl keeps blinding
you with the reflection of the sun
is she signalling that she wants
to hold hands ?

Task:InfoQuestion

A: only if the flash pattern is .. -
. or maybe ... -

Task:Answer

A: Deleted my Facebook ac-
count a few days ago and I never
felt so free in my entire life.

Task:Inform

A: Now I just have to encour-
age my closest friends to do the
same

Task:Commissive

B: It shouldn’t be that hard.
They are as tired of social me-
dia as I am .

Task:Inform

A: Yes ! I don’t get it . Every-
one I talk to about Facebook–
EVERYONE - - hates it , but
none of them will take action .

Task:Agreement

Table 1: An example dialogue from the Mastodon cor-
pus annotated with the ISO 24617-2 taxonomy.

Early dialogue applications usually adopted a
list of mutually exclusive and task-specific DA tags
which represented the different functions that the
system performed, acting essentially as intent la-
bels. These taxonomies were also one-dimensional,
featuring mutually-exclusive tags which did not
account for the complexity of the dialogues. The
following example from Bunt (2006) clarifies the
importance of multi-dimensionality in DA tagging:

S: Can you tell me what time is the first train to
the airport on Sunday morning?

A: On Sunday morning the first train to the air-
port is at 5.32.

S: Thank you!
According to Bunt (2006), the third utterance

has two separate communicative functions, as the
speaker S is expressing gratitude towards the ad-
dressee A (Social dimension), while at the same
time informing them on their understanding of the
train schedule (Feedback dimension).
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In addition to this, DA taxonomies have also
typically lacked a hierarchical organisation of tags,
which makes it difficult for a classifier to capture
the high-level mutual relationships between dia-
logue tags (Soria and Pirrelli, 2003).

In an attempt to address these problems, an
official ISO standard taxonomy, ISO 246170-2,
was introduced in Bunt et al. (2012): this taxon-
omy is domain-independent, hierarchical and multi-
dimensional, and well-suited for open-ended Nat-
ural Language Understanding. However, much
work in dialogue systems still uses other tax-
onomies, in part we believe because of the lack
of an adequately-sized data set annotated with the
standard, which makes it difficult to train a classi-
fier for the taxonomy. Some authors have proposed
automated mappings of old resources to the new
ISO standard; however, these works are still limited
in scope, focusing either on heavily imbalanced
data sets (Bunt et al., 2017) or subsets of the ISO
24617-2 taxonomy that are insufficient for real-life
conversational scenarios (Mezza et al., 2018). DA
tagging with the ISO taxonomy is also an intrinsi-
cally difficult task, as it requires handling multiple
different dimensions and a collection of different
fine-grained tags which differ in semantic, syntac-
tic and contextual aspects. The open-ended nature
of the taxonomy provides an additional challenge,
as most existing DA-annotated resources tend to
have a bias towards specific topics or discussion
styles, which hinders the model’s capabilities to
generalise to unseen conversations.

In this work, we introduce a neural architecture
optimised for DA tagging with a subset of the ISO
standard taxonomy. Our model combines syntac-
tic, semantic and contextual information and lever-
ages the hierarchical dependencies across labels
to improve the classification accuracy, especially
on low-frequency fine-grained tags. We combine
existing DA-annotated data sets and map them to
a subset of the ISO 24617-2 taxonomy to obtain
an adequately-sized training set, taking advantage
of existing mappings in the literature (Mezza et al.,
2018) and novel conversational resources such as
Mastodon (Cerisara et al., 2018) and DailyDialog
(Li et al., 2017), whose taxonomies easily map to
the ISO standard. We also experiment with the ad-
dition of online discussions and debates data from
the Internet Argument Corpus v2.0 (Abbott et al.,
2016; Walker et al., 2012), in order to increase
the system’s understanding of opinionated and con-

textual tags. Experimental results show that our
approach achieves state-of-the-art classification ac-
curacy on the DialogBank (Bunt et al., 2016) test
set. We also provide additional experiments that
delve into the details of the training process, includ-
ing ablation studies and an analysis of the extent
to which the different corpora that we utilised con-
tribute to the network’s performance. Finally, we
share our code and our mapped data set 1, in order
to share these resources with the research commu-
nity and hopefully encourage further research on
Dialogue Act classification.

2 Related Work

The concept of Dialogue Act (DA) has its roots
in the seminal works by Austin (1975) and Searle
(1965), who established the theoretical foundations
of the Speech Act theory. A speech act captures
an utterance at the level of its illocutionary force.
Many subsequent works started referring to speech
acts in a conversational setting as Dialogue Acts,
and investigated possible taxonomies of Dialogue
Acts. These early taxonomies were flat (there was
no distinction between coarse-grained and fine-
grained tags), mono-dimensional (each and every
utterance had only one Dialogue Act tag) and usu-
ally task-specific rather than domain-independent.
Examples of these early taxonomies include the
DAMSL taxonomy (Allen and Core, 1997), which
was used for the annotation of the Switchboard and
MRDA conversational corpora, the HCRC coding
manual (Anderson et al., 1991), which was used to
annotate the Maptask corpus, and the VerbMobil
annotation scheme (Jekat et al., 1995), which was
used for the annotation of the homonymous corpus.

An interest in formalising these taxonomies into
a more rigid theoretical framework arose in the
early 2000s, with Traum (2000) analysing existing
DA taxonomies and investigating a rigorous defini-
tion of Dialogue Acts. Bunt (2005) provided one
of the first formal definitions of Dialogue Act as "a
unit in the semantic description of communicative
behaviour, produced by a sender and directed at
an addressee, specifying how the behaviour is in-
tended to influence the context through understand-
ing of the behaviour". The authors combined ex-
isting taxonomies such as DAMSL and DIT (Bunt,
1989) into a new taxonomy called DIT++ (Bunt,
2009), which aimed at being a truly open-ended,
domain-independent and theoretically sound tax-

1https://github.com/coling22tagger/DialogueActTagger
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onomy. The fifth version of the DIT++ taxonomy
became the official ISO standard for Dialogue Act
classification (Bunt et al., 2012). A potential advan-
tage of using the standard is that multiple corpora
can be used to construct a larger training set, or
cross-domain training sets suitable to cover a wide
rage of dialogue tasks; nonetheless, the ISO 24617-
2 taxonomy has yet to be fully adopted, with many
works still using DAMSL as their target taxonomy
(Raheja and Tetreault, 2019; Cervone et al., 2018),
or introducing entirely novel taxonomies custom-
tailored for specific tasks (Paul et al., 2019; Yu and
Yu, 2019). While this is partly due to the complex-
ity of the standard, we believe a significant obstacle
is the lack of adequately-sized data sets to train a
classifier. Some efforts have been made to convert
existing resources to the new taxonomy: Fang et al.
(2012) proposed an automated, albeit partial, map-
ping of the DAMSL taxonomy to the ISO standard,
Mezza et al. (2018) extended their work providing
partial mappings for the AMI, MapTask, Oasis and
VerbMobil taxonomies, and Ribeiro et al. (2020)
provides a mapping from the LEGO annotation
scheme to the ISO one. There are some planned
corpora entirely annotated with the ISO standard,
such as ADELE (Gilmartin et al., 2018) or DBOX
(Petukhova et al., 2014), which may become valu-
able tools to work with the taxonomy. However,
these resources are still not publicly available at
the time of writing. Some interesting corpora were
released in recent years which, while not being
entirely ISO compliant, adopted DA taxonomies
which can be easily mapped to the standard. These
include DailyDialog (Li et al., 2017), Mastodon
(Cerisara et al., 2018) and MIDAS (Yu and Yu,
2019) among others.

Automatic DA tagging was initially formalised
as a text classification task by Stolcke et al. (2000),
who presented a Hidden Markov Model for the
classification of the Switchboard data set. Since
then, many different approaches have been pro-
posed to tackle the task, including rule-based sys-
tems (Lendvai et al., 2003), Conditional Random
Fields (Quarteroni et al., 2011; Zhou et al., 2014)
and Support Vector Machines (Mezza et al., 2018).
More recent works shifted their focus to Artificial
Neural Networks, which have been proved to be
very effective for text classification tasks; many of
these models are built around Bi-LSTM/GRU cells
with CRF as a top layer, due to this architecture’s
ability to capture long-term contextual dependen-

cies in dialogue (Kumar et al., 2018; Chen et al.,
2018). Many architectures also rely on transform-
ers, usually combined with pre-trained sentence
embeddings (Yu and Yu, 2019) or some form of
attention mechanism (Raheja and Tetreault, 2019).
The vast majority of these models are designed for
flat hierarchies of tags, with little to no emphasis
on the multi-dimensional nature of Dialogue Acts.
Anikina and Kruijff-Korbayova (2019) annotated
a subset of the TRADR corpus of robot-assisted
disaster response team communications with three
dimensions of the ISO standard (General (Task),
Social and Turn Management) and trained vari-
ous neural classifiers for the task, including CNN,
LSTM and FFN; while their work does take ad-
vantage of the multi-dimensional aspect of the ISO
taxonomy, the scope of their research is limited by
the size of the resource and the emphasis on the
disaster response domain.

A number of recent works started taking advan-
tage of the hierarchical structure of ISO commu-
nicative functions: Wang et al. (2021) introduced a
hierarchical neural model for one-dimensional DA
tagging (they only consider the Social and Task di-
mensions of the standard and combine them into a
single core dimension), while Ribeiro et al. (2019)
proposes a hierarchical and multi-dimensional ap-
proach for the Spanish corpus DIHANA. Blache
et al. (2020) apply a number of statistical machine
learning algorithms, such as XGBoost and Random
Forests, to annotate French medical data with a
subset of the ISO standard; their approach sepa-
rates the classification into two hierarchical steps
to increase the accuracy of the model. Mezza
et al. (2018) proposed a multi-dimensional and
domain-independent approach to DA tagging, and
also investigated hierarchical DA tagging through
a tree-like structure of SVM classifiers; however,
the model was limited in scope and accuracy and
did not take into account contextual tags such as
Answer, Agree/Disagree, etc. Ribeiro et al. (2022)
utilised an end-to-end hierarchical network with
cascading outputs and maximum a posteriori path
estimation to classify all the layers of the General
(Task) semantic dimension; while their architec-
ture handles the whole taxonomy of Task commu-
nicative functions, it lacks support for additional
dimensions of the standard such as Social, Turn
Management, etc. Their model also fails to capture
the domain-independent nature of the taxonomy,
as its performance degrades with the addition of
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out-of-domain data such as the conversations from
the LEGO-ISO corpus.

Multi-label Hierarchical Text Classification has
been successfully addressed for other text classifi-
cation tasks in the literature, such as fine-grained
Sentiment Analysis (Tai et al., 2015) or Topic Clas-
sification (Zhou et al., 2020). The latter work pro-
posed two different models to solve hierarchical,
multi-dimensional topic classification on news arti-
cles; we adapt a similar approach to include prior
information on the hierarchical correlation among
labels in our model.

3 Methodology

3.1 Task Definition

A dialogue D is defined as a sequence of dialogue
turns T1, . . . , Tn, with each turn performed by an
individual speaker. Each turn consists of a se-
quence of utterances u1, . . . , um performed by one
of the speakers, with each utterance representing
one of the functional segments of the turn (i.e. "a
minimal stretch of functionally relevant commu-
nicative behaviour" (Bunt et al., 2010)). We have
a taxonomy of tags t1, . . . , tn arranged in a set of
tree-like structures. Each tree corresponds to a
core dimension (an aspect of utterance function),
and groups together tags that correspond to commu-
nicative functions within the same dimension. Fine-
grained DA tags are the leaves of the trees, while
coarse-grained tags are the intermediate nodes. Di-
alogue Act (DA) tagging is the task of assigning
one or more fine-grained tags t1, . . . , tk to each
utterance in the dialogue. Similarly to Mezza et al.
(2018), we have decided to adopt a subset of the
ISO 24617-2 standard taxonomy (Bunt et al., 2012)
for our classifier, since some of the fine-grained
tags of the standard do not appear in any of our
corpora. We consider three core dimensions of the
standard, namely Task, Social and Feedback, and
a total of 16 fine-grained DA tags. Figure 1 shows
our complete taxonomy.

3.2 Data

There is a widely recognised shortage of conversa-
tional data annotated with the ISO 24617-2 stan-
dard. Researchers have worked around this issue by
designing their own taxonomies (Paul et al., 2019),
using older more widely supported taxonomies (Ra-
heja and Tetreault, 2019) or converting existing
resources via rule-based mappings (Mezza et al.,
2018; Ribeiro et al., 2020). We followed the latter

approach and converted a number of resources to
our subset of the ISO standard. The resulting aggre-
gated corpus, General Dialogue Corpus (GDC),
is a combination of the following corpora:

• The Switchboard Dialog Act Corpus
(SWDA) (Jurafsky and Shriberg, 1997), a col-
lection of 5-minute telephone conversations
on provided topics such as child care, recy-
cling, and news media, annotated with the
DAMSL taxonomy. Conversations in the cor-
pus focus on information exchange, with an
abundance of Info Providing and Info Seek-
ing dialogue acts. They also feature a high
number of Feedback tags due to the nature
of telephone conversations, which often need
explicit feedback to signal understanding.

• The ICSI Meeting Recorder Dialog Act
(MRDA) corpus (Shriberg et al., 2004), a col-
lection of transcribed research meetings an-
notated with a slightly edited version of the
DAMSL taxonomy. Similarly to SWDA, this
corpus contains a majority of information ex-
change tags; however, as the conversations
involve multiple participants in an academic
environment, there is also a significant amount
of conversational structuring tags (including
Feedback) and a more formal linguistic regis-
ter.

• The DailyDialog corpus, a human-written and
manually labelled set of DA annotated con-
versations about the daily life of the partic-
ipants. The corpus focuses on social inter-
actions among human speakers, with a good
balance of Information-Transfer and Action-
Discussion tags.

• The Mastodon corpus (Cerisara et al., 2018),
a Twitter-like corpus of conversation threads
on an open-source social platform called
Mastodon. It features a combination of in-
formation exchange and persuasive dialogue
and is annotated with sentiment information
and coarse-grained DA tags.

• The Internet Argument Corpus v2 (IAC)
(Abbott et al., 2016; Walker et al., 2012) is
a collection of corpora for research on polit-
ical debate on Internet forums. We focus on
the 4Forums subset of the resource, which
contains argumentative dialogue and features
agreement/disagreement stance annotations.
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Figure 1: Our subset of the ISO 24617-2 standard for DA tagging.

We chose this particular collection of corpora
to have a reasonably balanced distribution of tags
across different core dimensions: SWDA and
MRDA focus on information exchange and con-
versational structuring tags, DailyDialog has a high
proportion of Action-Discussion tags (about 20%
of the overall corpus), and Mastodon and IAC have
an emphasis on opinionated, argumentative and
persuasive dialogue. These corpora also offer a
variety of linguistic registers: Switchboard and
DailyDialog focus on everyday conversations with
colloquial language, MRDA and IAC contain more
formal conversations with a richer vocabulary and
lexicon, and Mastodon features an abundance of
Internet and chat slang.

We followed the mapping introduced in Fang
et al. (2012) for the conversion of SWDA and
MRDA taxonomies. The Mastodon corpus utilises
a subset of the ISO standard, therefore we adopted
the mapping suggested by the authors of the corpus
(Cerisara et al., 2018). DailyDialog features
coarse-grained DAs which directly map to coarse-
grained tags in the General (Task) dimension of the
ISO standard. Finally, we converted the 4Forums
subset of IAC by utilising the agreement and
disagreement stance annotation to map responses
to the Agreement and Disagreement tags of the
standard. More specifically, we labelled responses
with an agreement stance lower than -2.0 to
Disagreement, responses with a stance higher than
2.0 to Agreement and all other responses to Answer.
The train, test and validation splits of the GDC
is a combination of all the splits of the included
corpora. We utilised the default train, test and
validation splits for the MRDA, DailyDialog and
SWDA corpora, with the only variation being the
removal of the SWDA conversations that appear in

the DialogBank from the training and validation
splits of the corpus. Given the large size of the
Mastodon test split, we have elected to only use the
first 500 utterances of the corpus for testing; we
reserved 436 utterances as additional training data
and 205 utterances for our validation split. Since
the 4Forums corpus of IAC does not have a default
train-test split, we just divided the corpus manually
and reserved 7847 responses for training, 638
responses for testing and the remaining 1497 for
validation. We ensured that utterances belonging
to the same conversation would be in the same
split when dividing the corpora.

In addition to the test split of GDC, we also
tested our model on the DialogBank corpus (Bunt
et al., 2016), a collection of conversations from
different corpora annotated with the ISO taxonomy
by the authors of the standard; this is one of the
few resources available that are manually annotated
with the ISO taxonomy, and therefore constitutes a
popular testing benchmark for the task.

3.3 Model

This section describes our model, Dialogue Act
Syntax and Hierarchy-aware Network (DASH-
Net). Figure 2 provides an overview of the main
components of the network. DASHNet uses a triple
input encoding mechanism: the lexical encoder en-
codes input tokens, the syntax encoder encodes syn-
tactical information such as Part-of-speech (POS)
tags and Dependency (DEP) tags, and the context
encoder encodes contextual information from the
previous speaker’s last utterance. We have lim-
ited the context to a single previous utterance to
test the hypothesis that some of the tags of the
ISO 24617-2 taxonomy are contextual and directly
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depend on the tagging of the previous utterance
in the dialogue; moreover, some of our resources
(such as the IAC) do not provide a context longer
than one utterance. Given an input utterance as a
sequence of tokens Uj = t1, . . . , tn, the lexical
encoder passes it through a pre-trained embedding
layer and a bidirectional GRU layer to obtain the
lexical encoding:

E⃗t = Embedding(t1, . . . , tn) = e⃗t1, . . . , e⃗
t
n (1)

H⃗L = BiGRU(e⃗t1, . . . , e⃗
t
n) (2)

Similarly, grammatical features are encoded in
the syntax encoder module with a linear layer re-
placing the pre-trained embeddings:

⃗Epos = Linear(p1, . . . , pn) = e⃗p1, . . . , e⃗
p
n (3)

⃗Edep = Linear(d1, . . . , dn) = e⃗d1, . . . , e⃗
d
n (4)

H⃗G =

(
BiGRU(e⃗p1, . . . , e⃗

p
n)

BiGRU(e⃗d1, . . . , e⃗
d
n)

)
(5)

Figure 2: DASHNet architecture.

The context encoder input is just the input en-
coding from the previous sentence Uj−1. The input

encoding for utterance Uj will thus be

I⃗j =

H(L,j)

H(G,j)

I(j−1)

 (6)

Multiple convolutional layers with different ker-
nel sizes, followed by max-pooling, are used to
extract relevant features from the input encoding
IJ obtaining a feature matrix FJ . An encoding of
the list of DA labels from the previous speaker’s
last utterance is also concatenated to FJ .

Prior knowledge about the hierarchical correla-
tion among labels is then embedded into the feature
matrix. More specifically, we estimate the prior
probabilities for each tag from the training data
distribution as follows:

P (Lj |Li) =
Nj∑

k∈child(i)Nk
(7)

P (Li|Lj) = 1.0 (8)

where P (Lj |Li) denotes the probability of the fine-
grained DA tag j given the parent coarse-grained
node i, P (Li|Lj) denotes the probability of the par-
ent node i given the child node j, child(i) denotes
the set of children nodes for tag i and Nk denotes
the number of occurrences of tag k in the training
set. Since tags in the ISO 24617-2 taxonomy are
arranged in a tree structure, the probability of a
coarse-grained tag given the occurrence of any of
its fine-grained children tags is always equal to 1.
We compute these prior probabilities before train-
ing, and then encode them in the network through
a Bidirectional Tree-LSTM. We use the implemen-
tation of BiTree-LSTM introduced in Zhou et al.
(2020), which is itself based on the structure en-
coder presented in Li et al. (2018). Namely, the
output from the CNN layers is then transformed
through a linear layer to obtain a hidden label rep-
resentation li for each label in the taxonomy (in-
cluding coarse-grained DA tags). The hidden state
hk for DA tag tk is then computed as:

hk = hk↓ ⊕ hk↑ (9)

where hk↓ =
∑

i∈child(k)

P (Li|Lk)hi (10)

and hk↑ = P (Lp|Lk)hp (11)

and p represents the parent node for node k.
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3.4 Experimental Setting

We trained our models on Google Colab Pro with
CUDA GPU and High Memory settings for 100
epochs, with learning rate α = 1× 10−5, and use
Adam optimiser with weight decay w = 1× 10−4.
We used pre-trained 300-dimensional GloVe em-
beddings and Kaiming uniform initialisation for
weight initialisation (GloVe embeddings are used
to facilitate comparison with previous work). The
BiGRU layers for input representation have a hid-
den size of 128 nodes, and the node representation
for DA labels in the Tree-LSTM structure is 300-
dimensional. We use three CNN layers with kernel
size 3, 4 and 5 respectively, with 100 filters each.
Finally, we apply Dropout with probability p = 0.3
after each BiGRU layer, with probability p = 0.5
after the CNN layers and with probability p = 0.1
after the Tree-LSTM structure encoder. The values
for the hyper-parameters of the network were cho-
sen according to the average Macro-F1 score of the
network on the validation split of the GDC corpus.

We extract Part-Of-Speech tags and dependency
tags with the spaCy 3.1 Python library, which we
also use to tokenise the input utterances. Since
our mappings are partial, some of the utterances
in the corpora could not be accurately annotated
with any ISO communicative functions; these data
points were annotated with coarse-grained DA tags
and used as contextual features where appropriate
(for example, tags Inform and Question from Dai-
lyDialog can be mapped to Task:InfoProviding and
Task:InfoSeeking respectively). Utterances with
no direct mapping to either coarse-grained or fine-
grained tags were labeled as Unknown and dis-
carded during training and testing.

4 Results and Discussion

In this section we present the results of our experi-
mental study. We evaluate the performance of our
model on two test sets, namely the test split of
GDC and the DialogBank corpus. We provide aver-
age Micro-F1 and Macro-F1 scores for our model,
with the former providing a measure of its raw ac-
curacy and the latter providing a better metric for
how well low-frequency tags are correctly classi-
fied. The DASHNet model was able to correctly
annotate a large portion of the test split of the GDC
data set. Moreover, it also shows promising results
on the DialogBank test set, highlighting good gen-
eralisation when classifying out-of-domain data.

Table 2 shows the main results of our study. We

compared our model DASHNet with HiAGM-TP
(Zhou et al., 2020) and with the suite of SVM clas-
sifiers proposed by (Mezza et al., 2018). As the
code for both systems is openly available2 3, we
trained both on our GDC training data and tested on
both the GDC test split and the entire DialogBank
corpus. The DASHNet architecture outperforms
both approaches on our two test sets.

DialogBank GDC
Model Micro-

F1
Macro-
F1

Micro-
F1

Macro-
F1

SVM
(Mezza
et al., 2018)

55.8 49.2 78.3 58.9

HiAGM-TP
(Zhou et al.,
2020)

77.3 49.6 88.1 71.2

DASHNet
(our model)

83.7 57.1 90.6 76.9

Table 2: Comparative study between our model and
other models in the literature. All models were trained
on the train split of GDC. The DASHNet architecture
outperforms other models on all of our test sets.

Model Micro-F1
(DBank)

Precision
(DBank)

Recall
(DBank)

CRF-ASN
(Chen et al.,
2018)

64.8 64.0 65.6

HEC (Kumar
et al., 2018)

64.0 63.7 64.3

CASA (Raheja
and Tetreault,
2019)

65.3 68.6 62.4

HSLT (Wang
et al., 2021)

70.2 70.1 70.4

DASHNet
(our model)

83.7* 85.7* 81.9*

Table 3: Comparative study between our model and
the results reported by (Wang et al., 2021). Since the
authors did not specify their train-test split or their target
taxonomy, it is not possible to draw a direct comparison.

Table 3 shows a comparison between our model
and the results presented by (Wang et al., 2021),
who published classification results on the Dialog-
Bank corpus for their neural architecture and a num-
ber of state-of-the-art models for DA tagging that

2https://github.com/ColingPaper2018/DialogueAct-Tagger
3https://github.com/Alibaba-NLP/HiAGM
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they replicated. While our model outperforms all
their proposed architectures, it is worth mentioning
that the authors did not specify their taxonomy of
fine-grained DA tags, making it impossible to draw
a direct comparison. Moreover, their test set only
included an unspecified subset of four dialogues
of the DialogBank, while our test set includes the
entire corpus. Finally, their experiments were on
in-domain test data, meaning that they trained and
tested their model on different splits of the Dialog-
Bank data set, whereas our focus was on out-of-
domain data and how to create a model that could
generalise to an unseen conversational corpus.

4.1 Ablation Study

Table 4 shows the results of various ablation ex-
periments to gain a better understanding of the
extent to which each component of the DASHNet
architecture impacts in-domain and out-of-domain
classification accuracy.

DialogBank GDC
FEATURES Micro-

F1
Macro-
F1

Micro-
F1

Macro-
F1

Without
contextual
features

80.0 50.4 87.3 72.9

Without
Tree-LSTM
prior

81.8 51.2 90.3 74.8

Without
POS tags

83.5 54.3 90.5 76.0

Without
DEP tags

83.6 52.1 90.6 72.8

All features 83.7 57.1 90.6 76.9

Table 4: Ablation study results on the DialogBank and
GDC test sets.

Contextual features appear to give the biggest
overall boost to the performance of the model, both
on in-domain and out-of-domain data. This re-
sult is in line with other works in the field which
highlight the importance of contextual information
when classifying Dialogue Act tags (Mezza et al.,
2018; Raheja and Tetreault, 2019). Grammatical
features, namely POS and dependency tags, have
a marginal impact on the Micro-F1 score on both
our test sets; on the contrary, they appear to have a
much higher impact on the Macro-F1 score, indi-
cating that these features are beneficial for the clas-
sification of low-frequency DA tags. Prior infor-

mation about the hierarchical relationship among
DA labels appears to have a significant effect on
out-of-domain DA tagging, while its influence on
in-domain classification appears to be more limited.
This result is compatible with our assumption that
taking the hierarchical nature of the taxonomy into
account helps with the generalisation of the model.

4.2 Training Set Variations

Table 5 shows the results of our experiments with
various combinations of our dialogue corpora, in
order to gain a better understanding of how each re-
source contributed to our final results, demonstrat-
ing the benefit of a general, cross-domain corpus.
We trained the network on various subsets of GDC
and tested the results on the DialogBank test set.

Training set Micro-F1
(DialogBank)

Macro-F1
(DialogBank)

Without SWDA 77.3 48.9

Without MRDA 82.7 50.5

Without
DailyDialog

83.6 53.0

Without
Mastodon

79.6 52.8

Without IAC 83.4 54.9

Full GDC 83.7 57.1

Table 5: Data set variation experiments.

Our empirical results confirmed that each and
every corpus in our collection contributed to some
degree to the final accuracy of the model. SWDA
and MRDA, being by far the largest resources in
our aggregated training corpus, appear to have a
significant impact on the model’s Micro-F1 and
Macro-F1 scores. The Mastodon corpus proved
surprisingly impactful on the testing results given
its small size; a possible explanation is that its an-
notation scheme was designed by taking the ISO
standard into account (Cerisara et al., 2018), which
makes the mapping less noisy and the resulting
data points more similar to those in the Dialog-
Bank. The DailyDialog corpus and IAC appear
to have a lesser effect on the classification accu-
racy, especially on the Micro-F1 score. However,
when looking at accuracy on individual tags, their
impact becomes more evident: the model trained
without DailyDialog performed poorly on Action-
Discussion tags when compared to the one trained
on the full GDC, with a 34% increase in accuracy
on the Directive label (from 8% to 42%) and a 15%
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increase in accuracy on the Commissive label (from
10% to 25%). Similarly, IAC had an impact on the
classification of DAs that are abundant in opinion-
ated dialogue, with a 10% increase in the accuracy
of the Agree label (from 25% to 35%). This is
partially reflected in the Macro-F1 score decrease
when training without these resources.

5 Conclusion

We have presented a multi-dimensional, cross-
domain neural architecture for ISO-Standard Dia-
logue Act tagging, which leverages the hierarchical
nature of the standard as well as grammatical, lex-
ical and contextual information of the input utter-
ances. We trained the model on a General Dialogue
Corpus composed of different resources mapped
to the ISO 24617-2 taxonomy, and showed how
our model achieves state-of-the-art performance on
out-of-domain data, which highlights its generalisa-
tion capabilities. The code and GDC data set have
been released so as to help advance research on this
topic. In the future, we plan to expand our work
by covering more ISO-annotated corpora once they
become available, as well as extending the con-
text encoder module of our architecture to cover
a wider context of dialogue and DA history. We
also plan to experiment with different embedding
mechanisms, such as BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019).
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