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Abstract

Knowledge transfer across languages is crucial
for multilingual neural machine translation. In
this paper, we propose language branch (LB)
gated multilingual neural machine translation
that encourages knowledge transfer within the
same language branch with a LB-gated mod-
ule that is integrated into both the encoder and
decoder. The LB-gated module distinguishes
LB-specific parameters from global parameters
shared by all languages and routes languages
from the same LB to the corresponding LB-
specific network. Comprehensive experiments
on the OPUS-100 dataset show that the pro-
posed approach substantially improves transla-
tion quality on both middle- and low-resource
languages over previous methods. Further anal-
ysis demonstrates its ability in learning similar-
ities between language branches.

1 Introduction

Recent years have witnessed a growing interest
in multilingual neural machine translation (NMT),
which supports translation among multiple lan-
guages with one single model (Dong et al., 2015;
Luong et al., 2016; Firat et al., 2016; Johnson et al.,
2017; Aharoni et al., 2019; Arivazhagan et al.,
2019; Xu et al., 2021). As the parameters of multi-
lingual NMT are fully or partially shared by multi-
ple languages, knowledge transfer across languages
improves translation quality of low-resource lan-
guages.

Despite these advantages, there still exist chal-
lenges in multilingual NMT. As previous studies
have found, multilingual NMT usually underper-
forms its bilingual counterparts on high-resource
languages (Johnson et al., 2017; Arivazhagan et al.,
2019). A way to alleviate this issue is to use
language-aware modules, which could be more
computationally efficient than simply enlarging
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model capacity with deeper/wider models (Zhang
et al., 2020, 2021; Lin et al., 2021). As for low-
resource languages, positive transfer is more pro-
nounced among related languages than distant lan-
guages (Sachan and Neubig, 2018). Additionally,
explicit language clustering benefits multilingual
NMT (Tan et al., 2019) although itself can learn
linguistic typology during training (Lu et al., 2018).

Inspired by these, we propose language branch
(subfamily) gated multilingual neural machine
translation, which fuses language branch informa-
tion into multilingual NMT by a Language Branch
Gated Module (LBGM). A language branch is a
subfamily of a language family. Take the Indo-
European language family as an example. It can
be further divided into subfamilies like Germanic,
Slavic, Celtic, etc. The reason why we use lan-
guage branches rather than language families is
that the latter are relatively coarse-grained. Lan-
guages within a language branch are more closely
related to each other than those in a language fam-
ily.

A token that indicates the language branch for
the current sentence is fed into LBGM, in addi-
tion to the input from other layers in multilingual
NMT. With the language branch token, LBGM
distinguishes language-branch-specific parameters
from global parameters shared by all languages
and uses a gate to aggregate these two parts as the
output of the module.

We conduct experiments on the OPUS-100
dataset (Zhang et al., 2020) with a large number
of different languages. Our main findings can be
summarized as follows:

• The proposed LBGM can significantly im-
prove translation quality, achieving more sub-
stantial gains for middle- and low-resource
languages than its counterparts.

• LBGM performs better for language branches
that contain plentiful languages, including
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not only high-resource languages, but also
middle/low-resource languages.

• LBGM is capable of capturing similarities be-
tween language branches.

2 Related Work

Research of multilingual NMT mainly focuses on
partial or full parameter sharing in NMT modules
(Dong et al., 2015; Luong et al., 2016; Firat et al.,
2016). Johnson et al. (2017) propose prefixing
sentences with a language token in a joint set of
parallel corpora, using a single NMT model to en-
able multilingual translation. There is a trade-off
between boosting the performance of low-resource
languages and sacrificing the performance of high-
resource languages (Arivazhagan et al., 2019).

Language-Specific Parameters Previous works
have been trying to use language-specific parame-
ters to alleviate the trade-off issue in multilingual
NMT, such as adding adaptation layers into pre-
trained models for each language (Bapna and Firat,
2019; Philip et al., 2020; Zhu et al., 2021). Zhang
et al. (2020) propose language-aware layer normal-
ization to relax normalization constraint for target
languages. Lin et al. (2021) produce masks for
different language pairs and use them to select sub-
networks for language pairs, in order to counter
parameter interference. The closest work to ours is
done by Zhang et al. (2021), who introduce a mod-
ule called CLSR into the Transformer model. The
CLSR module adopts a gating function, which is
trained with injected zero-mean Gaussian noise and
discretized at inference time, to choose whether
to share the parameters for all languages or not.
However, the CLSR does not take the relationship
between languages into account, since it uses lan-
guage identity as the router.

Language Clustering Sachan and Neubig (2018)
have found that full parameter sharing improves
translation quality mainly for related languages
that are from the same language group. Tan et al.
(2019) attempt to cluster languages into different
groups using two methods: prior knowledge and
language embedding. They build a multilingual
NMT model for each group and observe that both
clustering approaches are able to improve model
performance. Fan et al. (2021) propose adding a
language-specific layer for each language group.
They cluster languages according to the amount
of training data and vocabulary. Different from
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Figure 1: Illustration of the proposed LBGM model.

them, we use a linguistically-motivated and fine-
grained method to group languages (i.e., language
subfamily).

3 Methodology

We adopt the Transformer model as the backbone
network (Vaswani et al., 2017). Following Johnson
et al. (2017), we extend the Transformer to multi-
lingual Transformer by prefixing a language token
to the source and target side respectively.

We cluster languages into their language
branches. More specifically, for Indo-European
languages, we cluster them into 10 branches, in-
cluding Baltic, Celtic, East Slavic, Germanic, Hel-
lenic, Indo-Aryan, Iranian, Romance, South Slavic
and West Slavic. But for Afro-Asiatic languages,
as there are only five languages in the dataset we
use, we just group them into one language branch.
For isolated languages, e.g., Esperanto, Japanese,
we keep them in the isolated language group, ex-
pecting them to benefit from the positive transfer
from all languages.

We adapt the multilingual Transformer to inte-
grate language branch information with the pro-
posed LBGM, which is illustrated in Figure 1. Par-
ticularly, we use an additional token, i.e., LB to-
ken, to indicate the language branch for each corre-
sponding sentence. LBGM contains a gating func-
tion and two feedforward networks, namely, LB-
specific FFN and global FFN. The LB-specific FFN
is exclusively used for sentences from the corre-
sponding language branch while the global FFN
is fully shared across all languages. The purpose
of the fully-shared global FFN is to capture global
linguistic information from all language pairs, so as
to enable knowledge transfer across all languages,
especially for the isolated language branch which
only contains one or a few languages. The LB-
specific FFN is to capture linguistic features for lan-
guages from the same language branch and hence
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enabling intra-language-branch knowledge transfer.
LBGM can be formulated as follows:

Gate(al) = ReLU(alW + b) (1)

gl = σ(Gate(al)) (2)

LBGM(al) = gl · FFNLB-specific(al)

+ (1− gl) · FFNglobal(al) (3)

where W and b are trainable parameters, al is the
output from the preceding layer l. FFNs are calcu-
lated as follows:

FFNLB-specific = alW LB-specific + bLB-specific (4)

FFNglobal = alW global + bglobal (5)

The LB token is used to route information from
previous layer into the corresponding LB-specific
FFN, which is acting as an “expert” for that lan-
guage branch.

In contrast to the previous CLSR method Zhang
et al. (2021), we do not use the discrete gating
function and additional loss component. In our pre-
liminary experiments, we have found that these two
components could not bring improvements to our
LBGM module and the discretized gating function
is even harmful to the LBGM. Instead, we use an
individual gating function per LBGM sub-module
(not shared by the whole model like CLSR). This
is because, at different positions, the importance
of the two types of FFN may be different, which
is to be determined by the corresponding gating
function in our model.

4 Experiments

We conducted experiments with a massive number
of languages to examine the effectiveness of the
proposed LBGM.

4.1 Settings

We used the OPUS-100 dataset (Zhang et al., 2020)
for our experiments. OPUS-1001 is an English-
centric dataset covering 99 language pairs. As 5
language pairs do not have their test and dev sets,
we conducted experiments using the rest 94 lan-
guage pairs. We roughly divided the languages into
three categories according to the training data size:
high-resource languages (more than 1M training
samples, 44 languages), low-resource languages
(fewer than 0.1M training samples, 21 languages)

1http://opus.nlpl.eu/opus-100.php

and middle-resource languages (others, 29 lan-
guages) following Zhang et al. (2020). This di-
vision is only for experiments while in our model,
we linguistically grouped these languages into 26
language branches, shown in Table 5 in Appendix
A.

We applied Byte Pair Encoding (BPE) (Sennrich
et al., 2016) to preprocess the data with a joint
vocabulary size of 64K, using the SentencePiece
Toolkit (Kudo and Richardson, 2018)2. We adopted
the temperature-based oversampling method with
a temperature of T = 5.

Translation quality was evaluated by BLEU (Pa-
pineni et al., 2002) using SacreBleu (Post, 2018)3.

We adopted the Transformer-base model
(Vaswani et al., 2017) as our baseline. The dimen-
sions of our LB-specific FFNs and global FFN are
512. As we have 26 language branches, so the total
number of LB-specific FFNs is 26. We also com-
pared with CLSR (Zhang et al., 2021), which uses
a language-specific module and conditional routing
function to learn the representation of each lan-
guage. All models were implemented with fairseq
(Ott et al., 2019)4.

Other details about experiments and model set-
tings are in Appendix A.

4.2 Main Results of One-to-Many and
Many-to-One Translation

We first conducted experiments for one-to-many
and many-to-one translation (i.e., English→X and
X→English). Although there is only one language
on the source side for one-to-many translation and
on the target side for many-to-one translation, we
use the proposed LBGM in both the encoder and
decoder, as shown in Figure 1, to keep both LB-
informed.

As shown in Table 1, our LBGM outperforms
the baseline and CLSR on the OPUS-100 dataset.
Particularly, we achieve an overall improvement of
1.32/0.70 BLEU points on English→X, 1.31/0.30
BLEU points on X→English over the base-
line/CLSR. In terms of the amount of training data
available, we observe that the proposed LBGM
gains larger improvements on low-resource lan-
guages than those on high/middle-resource lan-
guages over the baseline and CLSR.

2https://github.com/google/sentencepiece
3https://github.com/mjpost/sacrebleu
4https://github.com/facebookresearch/fairseq
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Model #Params English→X

High Mid Low All

Baseline 99M 15.01 22.26 25.99 19.70
Baseline-592dim 117M 15.44 22.72 26.41 20.14

CLSR 154M 15.81 22.73 26.43 20.32

LBGM-LS 154M 16.01 23.13 26.87 20.63
LBGM 117M 15.95 23.77 27.85 21.02

Model #Params X→English

High Mid Low All

Baseline 99M 20.71 23.15 25.33 22.49
Baseline-592dim 117M 21.68 23.69 25.80 23.22

CLSR 154M 21.82 24.22 26.07 23.50

LBGM-LS 154M 22.09 23.77 26.10 23.51
LBGM 117M 22.04 24.58 26.42 23.80

Table 1: Results on the OPUS-100 dataset. We report
the average BLEU of English→X and X→English trans-
lation on 94 language pairs.

4.3 Ablation Study

In order to eliminate the difference in the number of
parameters of the LBGM and baseline, we scaled
the hidden size of the baseline from 512 to 592 di-
mensions, denoted in Table 1 as Baseline-592dim.
The results still demonstrate that our LBGM is
more efficient than the vanilla Transformer. This
ablation study confirms that the improvement ob-
tained by the LBGM is not due to the capacity
advantage.

We conducted another group of experiments to
investigate whether language branches are helpful
in comparison to the original CLSR architecture,
which could tell us whether the modified LBGM
architecture would be better adapted to the use of
language branches. We used the same settings as
the previous experiments. Differently, language
identities, instead of language branches, were used
as the router. The results are shown in Table 1 de-
noted as LBGM-LS. From the comparison between
the LBGM-LS and LBGM, we can find that lan-
guage branches are indeed important. Although the
LBGM-LS obtains a slightly higher improvement
than the LBGM on high-resource languages (0.06
BLEU), it’s acceptable for our LBGM approach.
That is because the LBGM-LS allocates an indi-
vidual FFN module for each language, rather than
one for each language branch, and it alleviates the
capacity constraints of the model on high-resource
languages. LBGM-LS still outperforms the CLSR
approach, suggesting that our modifications to the
original CLSR module are not harmful to the model
but more appropriate in the context of using lan-
guage branches.

Lang Data Size Baseline CLSR LBGM ∆-B ∆-C

da 1000000 20.74 22.45 22.64 1.90 0.19
de 1000000 16.90 17.79 18.03 1.13 0.24
is 1000000 10.83 11.86 12.01 1.18 0.15
nl 1000000 16.58 17.34 17.86 1.28 0.52
no 1000000 17.81 18.92 19.34 1.53 0.42
sv 1000000 18.37 19.27 19.82 1.45 0.55
nn 486055 23.55 24.88 25.40 1.85 0.52
af 275512 30.02 31.14 32.15 2.13 1.01
nb 142906 23.16 24.39 25.48 2.32 1.09
fy 54342 25.03 27.02 27.63 2.60 0.61
li 25535 27.42 29.27 30.59 3.17 1.32
yi 15010 25.29 27.31 30.73 5.44 3.42

Table 2: Results on the English→X translation
for the Germanic language branch, which includes
high/middle/low-resource language pairs. ∆-B and ∆-
C denote the improvements over Baseline and CLSR
respectively.

LB Lang Data Size Bilingual Baseline CLSR LBGM

WS
cs 1000000 18.03 14.92 15.46 16.11
pl 1000000 15.37 11.57 11.83 12.35
sk 1000000 18.66 15.89 16.71 17.44

BA lt 1000000 17.63 18.55 19.82 19.61
lv 1000000 21.10 20.83 22.57 22.09

Table 3: Results on the West Slavic (WS) language
branch and Baltic (BA) language branch on English→X
translation. Bilingual is the bilingual model trained with
the same architecture.

4.4 Effect on the Different Types of Language
Branches

To further investigate how the proposed LBGM
improves translation quality, we categorize lan-
guage branches into three types: (I) language
branch containing high/middle/low-resource lan-
guages. (II) language branch with only high-
resource languages. (III) language branch with
one or two languages, which are usually isolated
languages. We analyzed the effects of our LBGM
on these three types of language branches.

Table 2 shows the results of the Germanic lan-
guage branch, a Type-I language branch as men-
tioned above. We list the languages (denoted by
their ISO-639-1 codes) in descending order of the
amount of training data. On this language branch
type, LBGM outperforms both the baseline and
CLSR on all languages with different levels of re-
source. Particularly, as the amount of training data
decreases, the improvements over the baseline and
CLSR increase.

For the Type-II language branch (i.e., including
only high-resource languages), we show the results
of both West Slavic and Baltic language branches
on English→X translation in Table 3. As these
language branches include only high-resource lan-
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Lang Data Size Baseline CLSR LBGM

ja 1000000 4.73 5.27 4.46

ko 1000000 3.03 2.91 2.84

ka 377306 14.39 14.91 14.57

Table 4: Results on the isolated language branch of
English→X translation.

guages, negative transfer usually happens (com-
pared to bilingual models). Fortunately, on this
type of language branches, our LBGM still sub-
stantially outperforms the baseline and is better
than or comparable with CLSR.

Finally, Table 4 shows results on the isolated lan-
guage branch. It can be seen that LBGM achieves
results comparable to CLSR. And the effect on iso-
lated languages depends more on the characteristics
of the language itself.

All these results suggest that our LBGM can sig-
nificantly improve performance on both middle-
and low-resource languages and achieve compara-
ble results to CLSR on high-resource languages but
with fewer parameters. The gains on middle- and
low-resource languages are more substantial when
the language branch contains mixed languages in
terms of the amount of available training data.

5 Analysis

Ideally, the closer two language branches are to
each other, the more similar the parameters of the
corresponding LB-specific FFNs are to each other
in LBGM, especially for language branches which
are from the same language family. Motivated by
this, we calculated the pairwise cosine similarities
of LB-specific FFNs of any two different language
branches learned in LBGM, trying to use these sim-
ilarities to measure the relationship between lan-
guage branches. Specifically, the cosine similarity
is computed with the weight matrix of LB-specific
FFN (reshaped into a vector via row-wise concate-
nation) as follows:

Cosine Similar(V1,V2) =
V1 · V2

∥V1∥∥V2∥
(6)

where ∥ · ∥ denotes the L2 norm, V1 and V2 are
vectors reshaped from weight matrices.

Figure 2 shows the cosine similarity matrix of
different language branches (26 in total contained
in the OPUS-100 dataset) learned by our LBGM.
The deeper the color is, the more similar the two
language branches are. It is clear to see that
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Figure 2: Pairwise language branch similarities learned
by LBGM with one-to-many translation. Better view
with color.

GE (Germanic) is more similar to BA (Baltic),
WS (West Slavic), CE (Celtic), etc., which are
from the same language family, than other lan-
guage branches, indicated by deeper color in Fig-
ure 2. Similar results can be observed among JA
(Japonic), KO (Koreanic) and ST (Sino-Tibetan)
language branches, among OG (Oghuz), KAL (Kar-
luk) and KI (Kipchak) language branches, etc. This
suggests that the proposed LBGM is able to learn
similarities between different language branches.

6 Conclusions

In this paper, we have presented LBGM that uses a
LB-specific FFN and a global FFN shared across
all languages to enhance knowledge transfer within
the same language branch for multilingual neural
machine translation. Experiments on the OPUS-
100 dataset have shown that LBGM can signifi-
cantly improve translation quality on both middle-
and low-resource languages, over the baseline and
CLSR (Zhang et al., 2021). Further analysis on LB-
specific FFN discloses that the proposed LBGM is
able to capture language branch relations.
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ISO Name Family Branch Code ISO Name Family Branch Code
am Amharic Afro-Asiatic Semitic SE fa Persian Indo-European Iranian IR
ar Arabic Afro-Asiatic Semitic SE ku Kurdish Indo-European Iranian IR
ha Hausa Afro-Asiatic Chadic SE ps Pashto Indo-European Iranian IR
he Hebrew Afro-Asiatic Semitic SE tg Tajik Indo-European Iranian IR
mt Maltese Afro-Asiatic Semitic SE ca Catalan Indo-European Romance RO
km Khmer Austroasiatic Austroasiatic AU es Spanish Indo-European Romance RO
vi Vietnamese Austroasiatic Austroasiatic AU fr French Indo-European Romance RO
id Indonesian Austronesian Malayo-Polynesian MP gl Galician Indo-European Romance RO

mg Malagasy Austronesian Malayo-Polynesian MP it Italian Indo-European Romance RO
ms Malay Austronesian Malayo-Polynesian MP oc Occitan Indo-European Romance RO
eo Esperanto Constructed Constructed CON pt Portuguese Indo-European Romance RO
kn Kannada Dravidian Dravidian DR ro Romanian Indo-European Romance RO
ml Malayalam Dravidian Dravidian DR wa Walloon Indo-European Romance RO
ta Tamil Dravidian Dravidian DR bg Bulgarian Indo-European South Slavic SS
te Tegulu Dravidian Dravidian DR bs bosanski Indo-European South Slavic SS
lt Lithuanian Indo-European Baltic BA hr Croatian Indo-European South Slavic SS
lv Latvian Indo-European Baltic BA mk Macedonian Indo-European South Slavic SS
br Breton Indo-European Celtic CE sh Serbo-Croatian Indo-European South Slavic SS
cy Welch Indo-European Celtic CE sl Slovenian Indo-European South Slavic SS
ga Irish Indo-European Celtic CE sr Serbian Indo-European South Slavic SS
gd Scots Gaelic Indo-European Celtic CE cs Czech Indo-European West Slavic WS
be Byelorussian Indo-European East Slavic ES pl Polish Indo-European West Slavic WS
ru Russian Indo-European East Slavic ES sk Slovak Indo-European West Slavic WS
uk Ukrainian Indo-European East Slavic ES ja Japanese Japonic Japonic JA
af Afrikaans Indo-European Germanic GE ka Georgian Kartvelian Kartvelian KA
da Danish Indo-European Germanic GE ko Korean Koreanic Koreanic KO
de German Indo-European Germanic GE eu Basque Language isolate Language isolate LI
fy Frisian Indo-European Germanic GE ig Igbo Niger–Congo Niger–Congo NC
is Icelandic Indo-European Germanic GE rw Kinyarwanda Niger–Congo Niger–Congo NC
li Limburgan Indo-European Germanic GE xh Xhosa Niger–Congo Niger–Congo NC
nb Bokmål Indo-European Germanic GE zu Zulu Niger–Congo Niger–Congo NC
nl Dutch Indo-European Germanic GE my Burmese Sino-Tibetan Sino-Tibetan ST
nn Nynorsk Indo-European Germanic GE zh Chinese Sino-Tibetan Sino-Tibetan ST
no Norwegian Indo-European Germanic GE th Thai Tai–Kadai Tai–Kadai TK
sv Swedish Indo-European Germanic GE ug Uigur Turkic Karluk KAL
yi Yiddish Indo-European Germanic GE uz Uzbek Turkic Karluk KAL
as Assamese Indo-European Indo-Aryan IA kk Kazakh Turkic Kipchak KI
bn Bengali Indo-European Indo-Aryan IA ky Kirghiz Turkic Kipchak KI
gu Gujarati Indo-European Indo-Aryan IA tt Tatar Turkic Kipchak KI
hi Hindi Indo-European Indo-Aryan IA az Azerbaijani Turkic Oghuz OG
mr Marathi Indo-European Indo-Aryan IA tk Turkmen Turkic Oghuz OG
ne Nepali Indo-European Indo-Aryan IA tr Turkish Turkic Oghuz OG
or Oriya Indo-European Indo-Aryan IA et Estonian Uralic Uralic UR
pa Punjabi Indo-European Indo-Aryan IA fi Finnish Uralic Uralic UR
si Singhalese Indo-European Indo-Aryan IA hu Hungarian Uralic Uralic UR
ur Urdu Indo-European Indo-Aryan IA se Northern Sami Uralic Uralic UR
el Greek Indo-European Hellenic HE
sq Albanian Indo-European Albanian HE

Table 5: ISO-639-1 language code, language name, language family, language branch and language branch code in
the OPUS-100 dataset.

A Appendix

A.1 Languages in the OPUS-100 Dataset

We list the languages used in our experiments in
Table 5. The language branches are most based
on linguistic characteristics, but some of them are
based on geopolitical locations, e.g., Greek and
Albanian.

A.2 Experiment Settings

The Transformer-base model has 6 layers for both
encoder and decode, 8 attention heads and 512 di-
mensions for embeddings, 2048 dimensions for
FFN layer. We set the dropout rate to 0.1 for all
modules. The hyperparameters of our LBGM were
the same as the Transformer-base model. The gate
function is implemented by FFN which input di-
mension is 512 and output dimension is 1.

We optimized parameters using Adam optimizer
(Kingma and Ba, 2015) with a label smoothing rate
of 0.1. The learning rate was scheduled according
to the inverse square root of running steps with a
warmup step of 4K and the weight decay rate was
set to 0.0001. We set the maximum number of
steps to 500K. For inference, we used beam search
with a beam size of 4 and a length penalty of 0.6.
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