
Proceedings of the 29th International Conference on Computational Linguistics, pages 5021–5028
October 12–17, 2022.

5021

Multi-level Community-awareness Graph Neural Networks for Neural
Machine Translation

Binh Nguyen1,2, Long Nguyen1,2∗, Dien Dinh1,2

1Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam
2Vietnam National University, Ho Chi Minh City, Vietnam

nqbinh17@apcs.fitus.edu.vn, {nhblong,ddien}@fit.hcmus.edu.vn

Abstract

Neural Machine Translation (NMT) aims to
translate the source- to the target-language
while preserving the original meaning. Lin-
guistic information such as morphology, syn-
tactic, and semantics shall be grasped in token
embeddings to produce a high-quality transla-
tion. Recent works have leveraged the power-
ful Graph Neural Networks (GNNs) to encode
such language knowledge into token embed-
dings. Specifically, they use a trained parser
to construct semantic graphs given sentences
and then apply GNNs. However, most semantic
graphs are tree-shaped and too sparse for GNNs
which cause the over-smoothing problem. To
alleviate this problem, we propose a novel
Multi-level Community-awareness Graph Neu-
ral Network (MC-GNN) layer to jointly model
local and global relationships between words
and their linguistic roles in multiple communi-
ties. Intuitively, the MC-GNN layer substitutes
a self-attention layer at the encoder side of a
transformer-based machine translation model.
Extensive experiments on four language-pair
datasets with common evaluation metrics show
the remarkable improvements of our method
while reducing the time complexity in very long
sentences.

1 Introduction

Self-attention mechanisms, introduced by Trans-
formers (Vaswani et al., 2017), have been ubiq-
uitous in Neural Machine Translation (NMT). It
encodes the relative information of a position based
on other positions in the same sequence. Recent
works have seen the rising trend of improving the
self-attention module such as (Choromanski et al.,
2021; Katharopoulos et al., 2020).

One of the serious self-attention weaknesses is
its inefficiency at computing long sentences due to
quadratic complexity. Following this problem, Per-
former (Choromanski et al., 2021) estimates a full-

∗Corresponding author

rank-attention matrix with Fast Attention Via pos-
itive Orthogonal Random features approach (FA-
VOR+), that trade-offs the time complexity from
O(T 2d) to O(T d2logd). However, as they scale the
model larger such as GPT-3 (Brown et al., 2020),
the quadratic dimensional space d exponentially
scales much faster than that of the sequence length
T . In addition, Linear Transformer (Katharopoulos
et al., 2020) reported a comparable performance
with the Transformer, while speeding up on autore-
gressive inference time with a linear dot-product
of kernel feature maps. Several studies replace
self-attention with an attention-free module, which
significantly speeds up the training time. Atten-
tion Free Transformer (ATF) (Zhai et al., 2021)
eliminates the dot-product attention with weighted
element-wise multiplication, which linearizes the
time complexity to O(T d). FNet (Lee-Thorp et al.,
2021) is a pre-trained model with Discrete Fourier
Transform that speeds up 80% training time on
GPU but still achieves 92-97% of the accuracy of
BERT (Devlin et al., 2018). These works make
a trade-off between the accuracy and the perfor-
mance to reduce the computational cost.

Another line of work constructs a content-based
sparse graph to select keys that have high similarity
meanings to queries. Routing Transformer (Roy
et al., 2020) applies k-means clustering to cluster
both queries and keys. Meanwhile, Reformer (Ki-
taev et al., 2020) uses locality-sensitive hashing
(LSH) to select key-value pairs for each query.

Unlike previous work, in this paper, we follow
the intuition that self-attention is assumption-free
on the structural input, and thus it is hard to in-
duce task-based generalization on small-scale data.
As a result, we propose semantic-based sparse at-
tention that utilizes the semantic graph construc-
tion of the Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013) parser,
which is implemented based on Message Passing
Neural Networks (MPNN). The vital benefit of

5022

Figure 1: A UCCA graph (left) for sentence “John
kicked his ball” (Abend and Rappoport, 2013) and its
community-centric graph (right). The colored circles
are intermediate nodes.

UCCA is that it is not relatively defined to a spe-
cific language, or in another word, it provides a uni-
versal structure across languages. We hypothesize
that the translation task will benefit from this char-
acteristic. According to (Abend and Rappoport,
2013), because UCCA is a connected acyclic graph
(or tree) whose in-degree node usually is one or
two, the attention-based computation will smooth
the token embeddings to a high similarity score.
This problem is referred to as the over-smoothing
problem, leading to the bad convergence when the
MPNN model is trained deeper.

To alleviate the issue, we introduce a set of trans-
formation rules to convert the tree-based UCCA
into a Community-Centric Graph (CCG). As illus-
trated in Figure 1, the CCG (on the right) presents
two different communities that somehow discover
local relationships between words and word roles
in a community. Moreover, we can theoretically
prove that the CCG structure is stronger than the
tree-based UCCA (see Section 3.2). To capture the
global relationships across communities, we pro-
pose Multi-level Explorations (ME) to probe multi-
level structures in a graph. Henceforth, we com-
bine CCG and ME into Multi-level Community-
awareness Graph Neural Networks (MC-GNN).
This MC-GNN layer will substitute a self-attention
layer in the Transformer encoder.

MC-GNN is theoretically faster than the Trans-
former, thanks to the sparse attention. Table 1 show
the time complexities for the Trasformer variants.
Experimental results showed that MC-GNN outper-
forms the Transformer-based MT (Vaswani et al.,
2017) in three over four NMT benchmarks across
four evaluation metrics (Section 4.2). Moreover,
we observe that Performer, Linear Transformer,
ATF, and FNet are underperformed in translation
tasks. We also report that the time complexity is
equal to at most 60% and 10% of the self-attention

Table 1: Complexity comparision. Here T, d, and k
denote the sequence length, hidden embedding, and
the average node degree, respectively. k << T for the
sparse attention.

Model Time
Transformer O(T 2d)
FNET O(1)
Performer O(T d2logd)
AFT O(T 2d)
Linear Attention O(T d2)
MC-GNN O(T kd)

in short and long sentences, respectively (Section
4.3). The contributions of this work are as follows:

• We propose a Community-Centric Graph to
provide community awareness and alleviate
the over-smoothing problem in GNN.

• We propose Multi-level Explorations (ME) to
probe multi-level structures in a graph.

• We prove the robustness and effectiveness of
MC-GNN by extensive analyses.

2 Background and Related Work

2.1 Graph-based Approach in NMT
The explicit incorporation of linguistic informa-
tion into traditional statistical machine translation
has yielded many positive results (Bazrafshan and
Gildea, 2013), and therefore it is intuitive to in-
corporate additional knowledge into NMT. Yet,
governing restrictive constraints on the interaction
between external information and the translation
task will hamper MT performance. Bastings et al.
(2020) introduced a graph-based encoder to ef-
fectively blend the syntactic structure into NMT.
Meanwhile, Marcheggiani et al. (2018) embedded
semantic bias into word representations by GNN,
and thus provided semantic awareness to NMT.
Xu et al. (2021) incorporated contextual aware-
ness to document-level NMT by GNN, where a
document is transformed into a graph that links
relevant contexts (i.e., named entity) regardless of
their distances. These methods, however, require a
larger computational cost than the Transformer in
the same settings.

2.2 Graph Attention Networks
Graph Attention Networks (Veličković et al., 2017)
compute the representation of each node by the

5023

weighted sum over its neighbors, following the
graph-structured data. They introduce a set of node
features as h = {h1,h2, ...,hN}, hi ∈ RD where N
is the number of nodes, and D is the dimensional
embeddings. To learn the higher-order information
from the graph, they compute attention coefficients
from two adjacent nodes as follows:

ei j = LeakyReLU(aT [Whi||Wh j]) (1)

ei j is considered as the significance of node j to
node i. Moreover, a ∈ R2D and W ∈ RD are train-
able parameters, the LeakyReLU nonlinearity uses
the negative slope α = 0.2. They normalize the
attention coefficients by using the softmax function
as follows:

αi j =
exp(ei j)

∑k∈N(i) exp(eik)
(2)

where k ∈ N(i) means for every neighbor of node i.
Finally, the aggregated information of node i will
be updated as follows:

ĥi = ∑
k∈N(i)

αikWhk (3)

The multi-head attention is employed to improve
inductive learning, which is similar to Transformer
(Vaswani et al., 2017).

2.3 Improvement of self-attention
Self-attention is the heart of many NLP-related
deep learning tasks (Guo et al., 2019; Zhang et al.,
2021; Peng et al., 2021; Lee-Thorp et al., 2021).
Three profound elements matter in self-attention
are: (1) computation complexity, (2) memory foot-
print, and (3) performance. Fundamentally, no
research outperforms the Transformer in all three
criteria in NMT because the trade-off between them
always exists. For example, FNet (Lee-Thorp et al.,
2021) replaces self-attention with an unparameter-
ized Fourier Transform that reduces the training
time by seven times on GPU and achieves 97% of
the BERT-Base accuracy on GLUE. However, we
find that FNet significantly underperforms against
the Transformer in MT tasks. Random Feature At-
tention (Peng et al., 2021) linearizes the softmax
function with random feature methods based on the
Gaussian kernel (Rahimi and Recht, 2007). Espe-
cially they speed up the decoding time by two times
and slightly improve the BLEU score by 0.1 BLEU
in WMT14 En-De. Guo et al. (2019) substituted
the fully-connected structure with a star-shaped

topology, and thus time complexity is reduced from
quadratic to linear. We, instead, replace the self-
attention layer with MC-GNN and can gain better
performance while reducing the complexity.

2.4 Universal Conceptual Cognitive
Annotation

UCCA is a bi-lexical dependency graph whose goal
is to abstract semantics away from syntactic inter-
pretations in a typological and cross-linguistic fash-
ion (Abend and Rappoport, 2013). To that aim,
a multi-layer formalism is defined in UCCA, in
which each layer specifies the relations it encodes.
For example, the left graph of Figure 1 includes a
single process scene (P), which describes an action
or a movement that evolves in time. The process
“kicked” contains two participants (A), “John” and
“his ball”. The participant “his ball” is further an-
notated with a center (C) and an elaborator (E).

3 Method

In this section, we firstly provide notations and
theory of Community-awareness Graph (CCG). We
then provide the proof that CCG is stronger than
tree graph. We next present details of MC-GNN,
and finally explain how MC-GNN is incorporated
into a NMT model.

3.1 Graph Notations & Community-Centric
Graph

Notation. Let G be a directed graph with N nodes
and M edges. A non-symmetric adjacency matrix
is defined as A ∈ {0,1}NxN and the embeddings
of nodes are X ∈ RNxD where D is the length of
embeddings. A node i points to a node j if and
only if Ai j = 1. We denote Â = A+ IN with IN is an
identity matrix, and D̂ = diag(Â1) a degree matrix
where diag(·) creates a diagonal matrix and 1 is
the all ones vector. A normalized Laplacian matrix
is computed by L̂ = D̂−1/2ÂD̂−1/2.

Community-Centric Graph. Let S: AU → AC

be a set of transformation rules to convert a UCCA
graph GU = (AU ,X) to a community-centric graph
GC = (AC,X). We propose three following rules
that only apply to the UCCA graph.

• Same direction: (AC)i j = 1 if and only if (iff)
(AU)ik = (AU)k j = 1 (Figure 2a).

• Opposite direction: (AC)i j = (AC) ji = 1 iff
(AU)ui = (AU)u j = 1 (Figure 2b).

5024

(a) Same direction

(b) Opposite direction

(c) Community link

Figure 2: Transformation rules

Figure 3: The left graph is indistinguishable after 1
layer, while the community centric graph (right) can be
distinguished.

• Community link: (AC)i j = (AC) ji = 1 if (AU)i j

or (AU) ji = 1 and two nodes i, j are the inter-
mediate nodes (Figure 2c).

In fact, the community-centric graph is inspired
by a line graph (Gross and Yellen, 2005) that has
been recently applied in (Zhao et al., 2020; Cao
et al., 2021).

3.2 Community-Centric Graph is stronger
than Tree Graph

Given an adjacency matrix A and node embeddings
X , we define an attention-based GNN to compute
graph-level embeddings as follows:

X̂ = GNN(A,X) (4)

In the left-hand side of Figure 3, since the node
his and node ball have the same set of neighbors,
the weighted sum GNN of this set produces the
equivalent embedding. As a result, the embeddings
are undistinguished or over-smoothed after t layer
GNNs. However, we have two different sets of
neighbors in the community-centric graph, and thus
the final embeddings are different.

3.3 Multi-level Explorations of Graph
Structures

Motivated by rich closed-path sub-structures in the
community-centric graph GC, we propose a novel
method that creates an adjacency matrix AM to ex-
plore a multi-level structure in GC. The profound
idea is to utilize the adjacency matrix AC as fol-
lows:

A(L)
M = AT

C ⊙A(L)
C (5)

where L is the power of a matrix, ⊙ is the element-
wise multiplication. Intuitively, Equation 5 indi-
cates that (A(L)

M)i j = 1 if and only if there exists a
path length L from node i to node j in A(L)

C and
exists a path from node j to node i. To explore
multi-level structures, we add matrix A(t)

M at each
tth encoder layer; if the standard Transformer has
six layers then it probes six different levels.

Intuitively, the community-centric graph reveals
the role of words in a local community, while the
multi-level structure bright-to-lights the hidden role
of words in global.

3.4 Multi-level Community-awareness GNN
(MC-GNN)

Motivated by the multi-head self-attention that has
been widely used in various NLP tasks, we intro-
duce multi-head attention-based message propaga-
tion. Given a graph G = (X (t),A) at a time step t,
we update each node features x(t)i as follows:

x(t+1)
i = GNN(x(t)i ,A)

GNN(x(t)i ,A) = σ(W1x(t)i +F(x(t)i ,A))
(6)

where σ is a PReLU activation function, and W1
is trainable parameters. F is a scaled multi-head
attention function defined in Equation 7.

F(x(t)i ,A) = ∑
Ai, j=1

αi, jW2x(t)j

αi, j = so f tmax(
(W2x(t)i)T (W2x(t)j)

√
d

)

(7)

where W2 is a matrix with trainable parameters, d
is the dimensional embedding, and a multi-head
annotation is abandoned for sake of simplicity. To
apply MC-GNN, we first combine the multi-level
graph A(t) and community-centric graph AC, and
then replace it in Equation 6 as follows:

A(t−1)
MC = A(t−1)

M +AC

x(t+1)
i = GNN(x(t)i , L̂(t−1)

MC)
(8)

5025

Figure 4: The Transformer-based NMT with the MC-
GNN layer. Graph Construction is pre-processed and
saved to files to speed up. Positional Embedding is
added to token embeddings at the end of a layer yield-
ing the better performance than added outside the Trans-
former block.

where L̂(t−1)
MC is the Laplacian graph introduced in

Section 3.1. Consequently, UCCA- and Commu-
nity Centric- GNN replace the UCCA AU and com-
munity centric AC graphs in Equation 6. The com-
putational complexity of the Transformer and the
above methods will be examined in Section 4.3.

3.5 Model Architecture

Figure 4 illustrates the complete process and the
model architecture when we incorporate MC-GNN
into a NMT system. A source sentence is firstly
passed through a graph construction process to con-
vert the sentence to a graph structure. In this pro-
cess, we can consider three different options: (1)
to use the original UCCA, (2) to produce CCG us-
ing the transformation rules in Section 3.1, and (3)
to aggregate multi-level structures as explained in
Section 3.3. Next, based on the output from the
graph construction process, graph information is
produced by the MC-GNN layer and fed into Feed-
Forward Neural Networks (FFNN). The positional
information of token embeddings is mixed up with
their neighbors during the message propagation,
so positional embedding is added after the FFNN.
The graph readout is necessary for removing irrel-
evant nodes and keeping token orders. Lastly, the
decoder side is the same as the Transformer.

4 Experiments

We provide hyper-parameter settings, datasets,
parser settings, and our code at https://
github.com/nqbinh17/mc-gnn.

4.1 Settings

We experiment on four IWSLT language-pair
datasets: English-French (En-Fr), English-Vietnam
(En-Vi), English-Czech (En-Cz), and English-
German (En-De). Moreover, we use a standard
hyper-parameter for every model. The number of
the encoder, and decoder layers is set to 6, the
model embedding is 512, the intermediate size
is 2048, the number of multi-head is 8, and the
dropout is 0.3. For En-Cz, however, the numbers
of the encoder and multi-head are set to 5 and 2,
respectively.

4.2 Ablation Study

In this study, the performances of UCCA-,
Community-Centric-, and MC-GNN are compared
against the Transformer on the En-Fr dataset. Fi-
nally, we carry out the evaluations on the other
three datasets to reveal the robustness of the MC-
GNN.

• Transformers is the vanilla Transformer with
the self-attention mechanism.

• UCCA-GNN is the Transformer-based model
but replace self-attention with UCCA-GNN.

• CC-GNN and MC-GNN use the same model
as UCCA-GNN but different graph construc-
tions.

We first validate the argument in Section 3.2
on the tree-based (UCCA-GNN) graph and the
community-centric (CC-GNN, MC-GNN) graph.
Table 2 shows that CC- and MC- GNN improve
UCCA-GNN by -0.71 and -0.76 BLEU in the 2014
testset. The outcome is impressive, because there
is no change in the GNN architecture but with a
simple graph pre-process.

On four language-pair datasets, we observe the
consistent performances of MC-GNN as compared
to the Transformer across four evaluation matri-
ces. The improvements are substantial on En-Fr,
En-Vi, and En-Cz, while the number of parame-
ters are slightly lower. Nevertheless, MC-GNN
consistently under-performed in the En-De dataset.

At first, we assumed that UCCA will be bene-
fited from similar language pairs such as English,
Vietnamese, and French, yet this argument fails
in English-German that share similarities in gram-
mar. Overall, MC-GNN is competitive to the Trans-
former in terms of performance and model size.

https://github.com/nqbinh17/mc-gnn
https://github.com/nqbinh17/mc-gnn

5026

Table 2: The ablation study is carried out to show the effectiveness of the proposed method. The bold text is to
highlight the least parameters or the highest performance of the model in a dataset.

Model Dataset Para. (M) Test GLEU NIST METEOR BLEU

Transformer IWSLT En-Fr 128.0 tst2014 37.77 7.51 56.75 35.76
tst2015 38.32 7.48 56.64 36.16

UCCA-GNN IWSLT En-Fr 124.9
tst2014 37.47 7.58 57.12 35.74
tst2015 37.42 7.40 56.06 35.20

CC-GNN IWSLT En-Fr 124.9
tst2014 38.17 7.65 57.5 36.45
tst2015 38.47 7.53 56.92 36.23

MC-GNN IWSLT En-Fr 124.9
tst2014 38.22 7.65 57.50 36.50
tst2015 38.51 7.55 57.10 36.35

Transformer IWSLT En-Vi 82.4 tst2013 31.74 6.91 N/A 28.23
tst2015 29.05 6.39 N/A 26.31

MC-GNN IWSLT En-Vi 79.2
tst2013 31.97 6.98 N/A 28.33
tst2015 29.22 6.44 N/A 26.37

Transformer IWSLT En-Cz 126.0 tst2011 21.88 4.71 23.71 16.48
tst2013 22.70 5.03 24.18 17.51

MC-GNN IWSLT En-Cz 123.3
tst2011 22.25 4.95 24.81 16.95
tst2013 22.99 5.23 25.14 18.10

Transformer IWSLT En-De 148.4 tst2014 28.17 6.05 43.63 24.11
tst2015 30.10 6.24 44.69 26.05

MC-GNN IWSLT En-De 145.8
tst2014 28.15 6.08 43.50 23.98
tst2015 29.42 6.13 45.35 25.46

Figure 5: The computational complexity exponentially
scales down as sentence length grows.

4.3 Computational Complexity -
Experimental Analysis

Since understanding the computational complexity
of a model is critical in NLP, we analyze this aspect
of the proposed models and the self-attention layer
based on sentence length.

The self-attention function connects all tokens
in a sentence with themselves, so its complexity
is O(n2), where n is the sentence length. Mean-
while, the attention-based GNN attends each node
to their neighbor producing O(k ·n) complexity. k

is the average degree, and n is the number of nodes
or the sentence length. For UCCA graphs, k is
significantly smaller than n, and hence O(k ·n) is
substantially lesser than O(n2). To give a better
illustration, we compare the proportion of k over n
in the IWSLT English-to-French datasets to see the
decline in real data.

The y-axis of Figure 5 shows the proportion
of O(k · n) over O(n2). We can see that the time
complexity of UCCA-GNN is 32% of the Trans-
former at most and exponentially shrinks to 3%.
Meanwhile, the time complexity of CC- and MC-
GNN is nearly 60% of the Transformer with a sen-
tence length of 15, and significantly dropped to
10% when the sentence length is longer than 100.
Empirically, k is exponentially smaller than n as
the sentence length grows, and hence diminishing
O(n2) to O(k ·n) enables tasks involving very long
sentences.

4.4 Compared with other methods

In this section, we compare our method with FNet
(Lee-Thorp et al., 2021), Performer (Choromanski
et al., 2021), AFT (Zhai et al., 2021), and Linear
Attention (Katharopoulos et al., 2020) in translation
tasks. We substitute them with the self-attention

5027

module in the encoder layer, and the experimental
results are shown in Table 3.

FNet: is parameter-free with the O(1) time com-
plexity, and thus we double the number of encoder
layers for fairness. We find that FNet extremely
underfits in translation tasks, while it showed the
comparative results against BERT in the encoder-
only tasks. We believe that generative tasks are too
rigid for Discrete Fourier Transform.

Performer1: We set the number of random fea-
tures to 4 times the head dimension. Although we
manually finetune the hyper-parameter settings, the
performance is poor on all language-pair datasets.

AFT: We use AFT-full with the O(T 2d) time
and O(T d) space complexities. We observe that
AFT-full has a better convergence and is more sta-
ble when training. The performances are compara-
tive where the drops fluctuate from -0.76 to -2.07
BLEU.

Linear Attention: has the O(T d2) time com-
plexity, however, the official implementation 2 pro-
duced the four-dimensional computation. This
makes space complexity spike during the training
process, and thus we must use a much smaller batch
size - only 16 sentences per batch. Due to the small
batch size, Linear Attention is hard to converge and
unable to converge in the En-Cz dataset.

Overall, FNet has the fastest training time but
the poorest performance among the methods. The
AFT method is much more reliable than FNet, Per-
former, and Linear Attention in translation tasks
with stable convergence. Moreover, the results con-
vince us that MC-GNN is more consistent than
these works and even outperforms the Transformer
in some datasets.

5 Conclusion

MC-GNN gains significant improvements across
many translation tasks without changing the archi-
tecture, while parameters and the time complexity
are reduced. However, there are several limitations
in the proposed methods. First, the accuracy of
the UCCA parser is below 80%, which can cause
some unexpected behaviors and hamper the NMT
performance. Second, MC-GNN does not support
every language as self-attention, since the UCCA
parser is unavailable in every language. Third, we
experimented with the graph decoder where a tar-

1We use the implementation from https://github.
com/lucidrains/performer-pytorch.

2https://github.com/idiap/fast-transformers

get sentence is treated as a dense graph and built
incrementally during the decoding phase (Xu et al.,
2021). Although the time complexity of dense
graphs and self-attention are O(T 2d), dense graphs
are sparse tensor computations, which is extremely
memory inefficient and unparallelable. Thus, we
dropped this approach due to limited resources.

Acknowledgements

The authors would like to thank Computational
Linguistics Center (University of Sciences, HCMC-
VNU) for a great support.

We would like to thank the reviewers for their
helpful comments.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238, Sofia, Bulgaria. Association
for Computational Linguistics.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2020. Graph con-
volutional encoders for syntax-aware neural machine
translation.

Marzieh Bazrafshan and Daniel Gildea. 2013. Seman-
tic roles for string to tree machine translation. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 419–423, Sofia, Bulgaria. Asso-
ciation for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. Lgesql: Line graph en-
hanced text-to-sql model with mixed local and non-
local relations.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2021. Rethinking attention with per-
formers.

https://github.com/lucidrains/performer-pytorch
https://github.com/lucidrains/performer-pytorch
https://aclanthology.org/P13-1023
https://aclanthology.org/P13-1023
http://arxiv.org/abs/1704.04675
http://arxiv.org/abs/1704.04675
http://arxiv.org/abs/1704.04675
https://aclanthology.org/P13-2074
https://aclanthology.org/P13-2074
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2106.01093
http://arxiv.org/abs/2106.01093
http://arxiv.org/abs/2106.01093
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794

5028

Table 3: Experimented on four language-pair datasets.

Model En-Fr En-Vi En-Cz En-De
Transformer 35.76 28.23 16.48 24.11
FNET 28.35 ↓ 7.41 12.69 ↓ 15.54 11.92 ↓ 4.56 16.90 ↓ 7.21

Performer 28.70 ↓ 7.01 23.26 ↓ 4.97 12.87 ↓ 3.61 20.63 ↓ 3.48

AFT 35.00 ↓ 0.76 27.09 ↓ 1.14 15.14 ↓ 1.34 22.04 ↓ 2.07

Linear Attention 27.64 ↓ 8.12 26.42 ↓ 1.81 N/A 16.15 ↓ 7.96

MC-GNN 36.50 ↑ 0.74 28.33 ↑ 0.10 16.95 ↑ 0.47 23.99 ↓ 0.13

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jonathan L. Gross and Jay Yellen. 2005. Graph Theory
and Its Applications, Second Edition (Discrete Mathe-
matics and Its Applications). Chapman & Hall/CRC.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao,
Xiangyang Xue, and Zheng Zhang. 2019. Star-
transformer.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. CoRR, abs/2006.16236.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. CoRR,
abs/2001.04451.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontañón. 2021. Fnet: Mixing tokens with
fourier transforms. CoRR, abs/2105.03824.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2021. Fnet: Mixing tokens with
fourier transforms.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 486–492, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention.

Ali Rahimi and Benjamin Recht. 2007. Random fea-
tures for large-scale kernel machines. In Proceed-
ings of the 20th International Conference on Neu-
ral Information Processing Systems, NIPS’07, page
1177–1184, Red Hook, NY, USA. Curran Associates
Inc.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2020. Efficient content-based

sparse attention with routing transformers. CoRR,
abs/2003.05997.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2017. Graph attention networks. 6th International
Conference on Learning Representations.

Mingzhou Xu, Liangyou Li, Derek. F. Wong, Qun Liu,
and Lidia S. Chao. 2021. Document graph for neural
machine translation.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen
Huang, Hanlin Goh, Ruixiang Zhang, and Josh M.
Susskind. 2021. An attention free transformer.
CoRR, abs/2105.14103.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2021.
Sparse attention with linear units.

Yanbin Zhao, Lu Chen, Zhi Chen, Ruisheng Cao,
Su Zhu, and Kai Yu. 2020. Line graph enhanced
AMR-to-text generation with mix-order graph at-
tention networks. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 732–741, Online. Association for
Computational Linguistics.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1902.09113
http://arxiv.org/abs/1902.09113
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/2105.03824
http://arxiv.org/abs/2105.03824
http://arxiv.org/abs/2105.03824
http://arxiv.org/abs/2105.03824
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.18653/v1/N18-2078
http://arxiv.org/abs/2103.02143
http://arxiv.org/abs/2003.05997
http://arxiv.org/abs/2003.05997
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2012.03477
http://arxiv.org/abs/2012.03477
http://arxiv.org/abs/2105.14103
http://arxiv.org/abs/2104.07012
https://doi.org/10.18653/v1/2020.acl-main.67
https://doi.org/10.18653/v1/2020.acl-main.67
https://doi.org/10.18653/v1/2020.acl-main.67

