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Abstract

Knowledge graph embedding, which aims to
learn representations of entities and relations
in knowledge graphs, finds applications in var-
ious downstream tasks. The key to success
of knowledge graph embedding models are
the ability to model relation patterns including
symmetry/antisymmetry, inversion, commuta-
tive composition and non-commutative com-
position. Although existing methods fail in
modeling the non-commutative composition
patterns, several approaches support this pat-
tern by modeling beyond Euclidean space and
complex space. Nevertheless, expanding to
complicated spaces such as quaternion can eas-
ily lead to a substantial increase in the amount
of parameters, which greatly reduces the com-
putational efficiency. In this paper, we propose
a new knowledge graph embedding method
called RotateCT, which first transforms the co-
ordinates of each entity, and then represents
each relation as a rotation from head entity to
tail entity in complex space. By design , Ro-
tateCT can infer the non-commutative compo-
sition patterns and improve the computational
efficiency. Experiments on multiple datasets
empirically show that RotateCT outperforms
most state-of-the-art methods on link predic-
tion and path query answering.

1 Introduction

Knowledge graphs (KGs) contain structured facts
of the real world. Real-world large-scale KGs
such as WordNet (Miller, 1995), YAGO (Suchanek
et al., 2007), Freebase (Bollacker et al., 2008) and
Nell (Mitchell et al., 2018) have been applied to
strengthen the performance of several downstream
tasks including recommender systems (Zhang et al.,
2016), question answering (Hao et al., 2017), con-
versation generation (Zhou et al., 2018), relation
extraction (Vashishth et al., 2018) and machine
translation (Zhao et al., 2020). Generally, KGs
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Figure 1: An example in real world. Sam’s mother’s
spouse is John, i.e., Sam’s father; Sam’s spouse’s
mother is Rachel, i.e., Sam’s mother-in-law. "mother"
and "spouse" form a non-commutative composition
pattern.

have the following features: large-scale and incom-
plete. Therefore, to exploit the semantic informa-
tion in KGs, predicting missing links based on the
existing facts has gained growing interest in recent
years. This task can be divided into two categories
according to the length of the path: link prediction
and path query answering. Link prediction focuses
on single-hop reasoning (e.g., answering the path
s→ r → ?, where r is a relation), while path query
answering (PQA) focuses on multi-hop reasoning
(e.g., answering the path query s → path → ?,
where path contains multiple relations).

A popular approach for link prediction and PQA
is knowledge graph embedding (KGE), which en-
codes each element in KG into a continuous low-
dimensional vector space. The performance of
KGE methods greatly relys on the ability of model-
ing and inferring relation patterns including sym-
metry/antisymmetry, inversion and composition.
In particular, the composition patterns can be fur-
ther divided into the commutative composition
patterns and non-commutative composition pat-
terns. For example, "spouse" is a symmetric re-
lation and "mother" is an antisymmetric relation.
Relations such as "has_part" and "part_of" forms
an inversion pattern. The meaning of the com-
position of "mother" and "spouse" depends on
the relative order. By contrast, the composition
of "mother" and "mother" has a definite mean-
ing, i.e., "grandmother" (Fig. 1 provides an ex-
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ample of the non-commutative composition pat-
terns in real world). Existing methods can cap-
ture one or more relation patterns. TransE (Bor-
des et al., 2013) models antisymmetry, inversion
and commutative composition patterns by trans-
lating relations from head entities to tail entities.
RotatE (Sun et al., 2019), which regards rela-
tions as rotations from head entities to tail en-
tities in complex space, can model the symme-
try/antisymmetry, inversion and commutative com-
position patterns. However, most approaches fail
to model the non-commutative composition pat-
terns, which is essential for learning more mean-
ingful embeddings. Therefore, quaternion-valued
methods such as QuatE (Zhang et al., 2019), Ro-
tate3D (Gao et al., 2020) and DualE (Cao et al.,
2021) emerge in sight. By the non-commutativity
of quaternion, these methods successfully model
the non-commutative composition patterns. Nev-
ertheless, a quaternion has two more dimensions
than a complex number, which increases the space
cost. Seeking out a balanced solution that can
model the non-commutative composition patterns
and maintain a relatively low space cost is pressing.

To address this challenge, we revisit complex
space and notice an interesting case: the combina-
tion of rotation and coordinate transformation in
complex plane is non-commutative, which can em-
power a KGE method the ability of modeling the
non-commutative composition patterns. In addi-
tion, the complex number is two dimensions less
than the quaternion, which reduces the space cost.

In this paper, we propose a novel method called
RotateCT for knowledge graph embedding. Our
method first translates the origin of complex plane
by a relation-specific displacement. Further, each
relation is regarded as a rotation about the new
origin of complex plane from head entity to tail
entity. By combining rotation and coordinate trans-
formation, RotateCT obtains non-commutativity,
which enables RotateCT to effectively model the
non-commutative composition patterns.

In summary, our contributions are listed as fol-
lows: (1) RotateCT provides an elegant way to
model the non-commutative composition patterns
and improve the parameter efficiency. To the best
of our knowledge, this paper is the first to intro-
duce coordinate transformation into the complex
plane for modeling non-commutative composition
patterns. (2) We provide comprehensive theoret-
ical analyses on the non-commutative property

of combining rotation and coordinate transforma-
tion, and discuss the inference patterns, parameter
efficiency of RotateCT. (3) Experimental results
demonstrate that RotateCT outperforms most base-
line approaches on link prediction and path query
answering.

2 Related Work

In this section, unlike most papers, we roughly
divide the existing KGE methods into three cat-
egories according to the non-commutativity and
discuss their connections to our approach.

2.1 Models without Non-commutativity

TransE (Bordes et al., 2013) is the most representa-
tive KGE model, which embeds both entities and
relations as vectors in the same embedding space
based on the principle h + r ≈ t, where h, r, t de-
note head entity, relation and tail entity, respec-
tively. Several variants (Wang et al., 2014; Lin
et al., 2015; Ji et al., 2015; Xiao et al., 2016) are
proposed to remedy the limitations of TransE when
modeling 1-N, N-1 and N-N relations. In addition,
TorusE (Ebisu and Ichise, 2018) models triplets on
a torus, which is a Non-Euclidean space. Inspired
by Euler’s identity eiθ = cosθ+isinθ, RotatE (Sun
et al., 2019) regards translations as rotations from
head entities to tail entities in complex space. More-
over, TransC (Lv et al., 2018) and BoxE (Abboud
et al., 2020) encode elements by explicitly defining
the regions such as hyperspheres or boxes.

RESCAL (Nickel et al., 2011) is the first bilin-
ear model that can perform collective learning via
matching the latent semantics between entities and
relations. DistMult (Yang et al., 2015) and Com-
plEx (Trouillon et al., 2016) are proposed to solve
the overfitting problem of RESCAL. In addition,
HolE (Nickel et al., 2016) absorbs the quintessence
from DistMult and ComplEx. Recently, approaches
such as SimplE (Kazemi and Poole, 2018) and
TuckER (Balazevic et al., 2019b) turn to different
forms of decomposition.

Although some of these methods claim to enable
the inference of composition patterns, in practice
they cannot infer the non-commutative composition
patterns, only support the inference of the commu-
tative composition patterns.

2.2 Models with Non-commutativity

Recently, several approaches explore the usage
of more sophisticated spaces to obtain the non-
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commutativity, which is important for multi-hop
reasoning. Specifically, Rotate3D (Gao et al., 2020)
and QuatE (Zhang et al., 2019) model relations as
rotations in quaternion space with different score
functions. DualE (Cao et al., 2021) makes the first
attempt to combine rotation and translation by ex-
panding the embedding space to dual quaternion
space. DihEdral (Xu and Li, 2019) limits relation
matrices to be block diagonal and represents each
block with an element in a dihedral group.

Although such approaches take into account the
non-commutative composition patterns, they are
parameter inefficient due to the complicated vector
spaces such as quaternion space.

Our method RotateCT models the non-
commutative composition patterns in complex
space by introducing the coordinate transformation.
Compared to the above three sophisticated spaces,
modeling in complex space can significantly im-
prove the parameter efficiency.

2.3 Other Models

Recently, a number of approaches focus on uti-
lizing neural networks. However, the neural net-
works lack interpretability, and it is difficult to
give theoretical analyses from the perspective of
inference patterns. Generally, such approaches
verify the performance by empirical experiments.
ConvE (Dettmers et al., 2018), ConvKB (Nguyen
et al., 2018) and InteractE (Vashishth et al., 2020)
model the interactions between entities and re-
lations by convolutional neural networks. Addi-
tionally, R-GCN (Schlichtkrull et al., 2018) and
KBGAT (Nathani et al., 2019) redesign a graph
convolutional network and a graph attention net-
work, respectively. Several works tried to exploit
more global graph structures like multi-hop paths.
Path-RNN (Das et al., 2017) and ROP (Yin et al.,
2018) employ RNNs to explicitly model paths.
CoKE (Wang et al., 2019) uses a stack of Trans-
former blocks to model paths.

Compared to the other models, RotateCT is more
interpretable, since we can provide comprehensive
theoretical analyses of it.

3 Methodology

3.1 RotateCT

Formally, let E denote the set of entities and R
denote the set of relations. Then a knowledge graph
G is a collection of factual triplets {(h, r, t)}, where
h, t ∈ E and r ∈ R. Lowercase letters h, r and
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Figure 2: Illustrations of RotatE and RotateCT in 1 di-
mension of embeddings. RotatE models r as a rotation.
RotateCT models r as a rotation and a displacement,
i.e., rotating around the new origin obtained by the dis-
placement.

t denote the head entity, relation and tail entity,
respectively; the corresponding boldface letters h, r
and t denote the embeddings of them. Note that the
i-th element of h is hi. Let k denote the dimension
of entity and relation embeddings.

In this paper, we propose RotateCT to model
non-commutative composition patterns in complex
space. Inspired by Euler’s identity eiθ = cosθ +
isinθ and coordinate transformation, our model
first projects entities to the complex space, i.e.,
h, t ∈ Ck. Then we translate the origin of complex
planes O to O′ by a relation-specific displacement
b, where b ∈ Ck. Further, we define each relation
as an element-wise rotation about O′ from head
entity h to tail entity t. In other words, given a
golden triplet (h, r, t), we expect that:

t− b = (h− b) ◦ r

where ◦ is the Hadmard (or element-wise) product.
Specifically, we have ti− bi = (hi− bi)ri for each
element of h, r, t and b. Here, we constrain the
modulus of each element of r ∈ Ck, i.e., ri ∈
C, to be |ri| = 1. Then ri is of the form eiθi ,
which corresponds a counterclockwise rotation by
θi radians about the new origin of the complex
plane. We define the distance-based score function
as follows:

dr(h, t) =
k∑
i=1

‖(hi − bi)ri − (ti − bi)‖

Optimization. Following Sun et al. (2019), we
use a loss function similar to the negative sampling
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loss (Mikolov et al., 2013) for optimizing:

L =−
m∑
i=1

1

m
logσ(dr(h

′
i, t
′
i)− γ)

− logσ(γ − dr(h, t))

where γ is a fixed margin, σ is the sigmoid func-
tion, m is the negative sampling size, and dr(h′i, t

′
i)

represents the score of i-th negative triplet. We
also use the self-adversarial negative sampling (Sun
et al., 2019) for drawing negative samples. Specifi-
cally, the negative triplets are generated from the
following distribution:

p(h′j , r, t
′
j |{(hi, r, ti)}) =

expαfr(h′j , t
′
j)∑

i expαfr(h′i, t
′
i)

where fr(h′i, t
′
i) = −dr(h′i, t′i), α is the temper-

ature of sampling, and (h′i, r, t
′
i) denotes the i-th

negative triplet. The modified loss function with
self-adversarial negative sampling is as follows:

L =−
m∑
i=1

p(h′i, r, t
′
i) logσ(dr(h

′
i, t
′
i)− γ)

− logσ(γ − dr(h, t))

In addition, we perform regularization on h and
t to avoid overfitting. Therefore, the final loss func-
tion takes the following form:

L =−
m∑
i=1

p(h′i, r, t
′
i) logσ(dr(h

′
i, t
′
i)− γ)

− logσ(γ − dr(h, t)) + λ(‖h‖2 + ‖t‖2)

where λ is the regularization rate. We utilize
Adam (Kingma and Ba, 2014) as the optimizer.

3.2 Discussion

In this part, we first introduce the inference patterns
and provide some theoretical analyses of RotateCT.
Then we discuss the connections between Rota-
teCT and RotatE.

Inference Patterns. Most knowledge graphs
mainly consist of three important relation pat-
terns: symmetry/antisymmetry, inversion and
composition (commutative composition and non-
commutative composition). See formal definitions
of inference patterns in Appendix A.

Properties of RotateCT. RotateCT has the non-
commutativity and can infer the most common pat-
terns in KG, as stated next.

Theorem 1 (Non-commutativity) The combina-
tion of the operations (rotation and coordinate
transformation) in RotateCT is non-commutative.
(See proof in Appendix B)

Theorem 2 (Inference ability) RotateCT can in-
fer the symmetry/antisymmetry, inversion and
composition patterns. (See proof in Appendix C.
We provide illustrations of RocateCT modeling sym-
metry and non-commutative composition patterns
in Appendix D.)

Connections to RotatE. Combining rotation
and coordinate transformation enables RotateCT to
model the non-commutative composition patterns,
which RotatE cannot. Fig. 2 provides illustrations
of RotatE and RotateCT with only 1- dimensional
embedding. RotatE can be viewed as a special case
of RotateCT. Specifically, RotateCT will degener-
ate into RotatE when the displacement b = 0.

4 Experiments

We evaluate RotateCT on two common tasks: link
prediction (Bordes et al., 2013) and path query an-
swering (Guu et al., 2015). In addition, we give
analyses about the computational efficiency be-
tween RotatCT and Rotate3D.

4.1 Link Prediction
Link prediction aims to predict the missing h or t
for a triplet (h, r, t), i.e., predicting the head query
? → r → t or the tail query h → r → ?. Thus,
link prediction is a single-hop reasoning task.

Datasets. We evaluate RotateCT on four
well-established benchmarks: WN18 (Bordes
et al., 2013), FB15k (Bordes et al., 2013),
WN18RR (Dettmers et al., 2018) and FB15k-
237 (Toutanova and Chen, 2015). Please refer to
Appendix F for the details of the four benchmarks.

Evaluation Protocol. Similar to most previous
models, the link prediction performance of Rota-
teCT is reported on three standard evaluation met-
rics: Mean Rank (MR), Mean Reciprocal Rank
(MRR) and Hits@N, where N = 1, 3, 10. MR
is the average rank of all correct entites. MRR
is the mean reciprocal rank of all correct entities.
Hits@N represents the proportion of correct enti-
ties whose rank is not larger than N. A lower MR,
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WN18 FB15k

Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

Models without non-commutativity
TransE (2013) - 0.495 0.113 0.888 0.943 - 0.463 0.297 0.578 0.749
DistMult (2015) 655 0.797 - - 0.946 42 0.798 - - 0.893
ComplEx (2016) - 0.941 0.936 0.945 0.947 - 0.692 0.599 0.759 0.840
SimplE (2018) - 0.942 0.939 0.944 0.947 - 0.727 0.660 0.773 0.838
TorusE (2018) - 0.947 0.943 0.950 0.954 - 0.733 0.674 0.771 0.832
RotatE (2019) 309 0.949 0.944 0.952 0.959 40 0.797 0.746 0.830 0.884

Other models
ConvE (2018) 374 0.943 0.935 0.946 0.956 51 0.657 0.558 0.723 0.831
R-GCN+ (2018) - 0.819 0.697 0.929 0.964 - 0.696 0.601 0.760 0.842
NKGE (2018) 336 0.947 0.942 - 0.957 56 0.730 0.650 0.790 0.871

Models with non-commutativity
DihEdral (2019) - 0.946 0.942 0.949 0.954 - 0.733 0.641 0.803 0.877
QuatE (2019) 338 0.949 0.941 0.954 0.960 41 0.770 0.700 0.821 0.878
Rotate3D (2020) 214 0.951 0.945 0.953 0.961 39 0.789 0.728 0.832 0.887
DualE (2021) - 0.951 0.945 0.956 0.961 - 0.790 0.734 0.829 0.881
RotateCT (ours) 201 0.951 0.944 0.956 0.963 34 0.794 0.737 0.834 0.888

Table 1: Link prediction results on WN18 and FB15k.

a higher MRR and a higher Hits@N indicate the
better performance. Filtered results are reported to
avoid possibly flawed evaluation.

Implementation Details. We use PyTorch to im-
plement our model and test it on a Tesla V100 GPU.
Hyperparameters of RotateCT are determined via
grid search according to the MRR on the valida-
tion set. In general, the embedding dimension k is
selected in {500, 1000}; batch size n is searched
in {512, 1024}; the negative sampling size m is
picked from {256, 512}; the fixed margin γ is tuned
among {6, 9, 12, 24}; self-adversarial temperature
α is selected from {0.5, 1.0}. The regularization
rate λ is adjusted in {0, 0.1}. Entity embeddings
are uniformly initialized, and the phases of relation
embeddings are uniformly initialized between −π
and π. Both the real and imaginary parts of each
dimension in displacement b are initialized to zero.
The best hyperparameters settings and are provided
in the Appendix E.

Main Results. We select competitive baselines
from the most recent publications with good re-
sults reported. Our baselines are categorized into
three groups: models without non-commutativity,
models with non-commutativity and other models,
which is consistent with the Section 2.

The empirical results on four benchmarks are
reported in Table 1 and Table 2. The best results
are in bold and second best results are underlined.
We can see that RotateCT outperforms all the base-
lines on WN18 and WN18RR, and achieves ex-

tremely competitive performance on FB15k and
FB15k-237. On WN18RR and FB15k-237, the
main relation patterns are symmetry/antisymmetry
and composition, which validates the effectiveness
of combining rotation and coordinate transforma-
tion for inferring the non-commutative composition
patterns. On WN18 and FB15k, the main relation
patterns are symmetry/antisymmetry and inversion.
Since RotateCT has no obvious superiority over
other state-of-the-art baselines in modeling symme-
try/antisymmetry and inversion patterns, the per-
formance improvement is not significant on WN18
and FB15k. Although DihEdral, QuatE, Rotate3D
and DualE can model the non-commutative com-
position patterns, the link prediction performance
of these models is still inferior to RotateCT, which
indicates that parameter efficiency is crucial. Note
that RotateCT, as a complex-valued method, out-
performs the quaternion-valued method Rotate3D
on all datasets across most metrics, which fully
demonstrates that the combination of rotation and
coordinate transformation can effectively model
the non-commutative composition patterns.

4.2 Path Query Answering

This task is to answer path queries on KGs (Guu
et al., 2015). Given a path query q consisting of a
start entity s and a path p, the answer of q is the
entities that can be reached from s via p. A path p is
a sequence of relations, i.e., r1 → ...→ rj , where
j is the length of p. Link prediction can be viewed
as a special case of path query answering when the
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WN18RR FB15k-237

Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

Models without non-commutativity
TransE (2013) 3384 0.226 - - 0.501 357 0.294 - - 0.465
DistMult (2015) 5100 0.430 0.390 0.440 0.490 254 0.241 0.155 0.263 0.419
ComplEx (2016) 5261 0.440 0.410 0.460 0.510 339 0.247 0.158 0.275 0.428
MuRP (2019a) - 0.475 0.436 0.487 0.554 - 0.336 0.245 0.370 0.521
RotatE (2019) 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
BoxE (2020) 3207 0.451 0.400 0.472 0.541 163 0.337 0.238 0.374 0.538

Other models
ConvE (2018) 4187 0.430 0.400 0.440 0.520 244 0.325 0.237 0.356 0.501
R-GCN+ (2018) - - - - - - 0.249 0.151 0.264 0.417
NKGE (2018) 4170 0.450 0.421 0.465 0.526 237 0.330 0.241 0.365 0.510

Models with non-commutativity
DihEdral (2019) - 0.486 0.442 0.505 0.557 - 0.320 0.230 0.353 0.502
QuatE (2019) 3472 0.481 0.436 0.500 0.564 176 0.311 0.221 0.342 0.495
Rotate3D (2020) 3328 0.489 0.442 0.505 0.579 165 0.347 0.250 0.385 0.543
DualE (2021) - 0.482 0.440 0.500 0.561 - 0.330 0.237 0.363 0.518
RotateCT (ours) 3285 0.492 0.448 0.507 0.579 171 0.347 0.251 0.382 0.537

Table 2: Link prediction results on WN18RR and FB15k-237.

path length is 1. By contrast, path query answering
requires more ability of muti-hop reasoning, in
which inferring the composition patterns is crucial.

Datasets. We conduct experiments on two
datasets released by Guu et al. (2015), which are
extracted from WordNet (Miller, 1995) and Free-
base (Bollacker et al., 2008). Both datasets contain
triplets and paths. Paths are generated from triplets
by random walks. The maximum of path length is
5. Paths used for training are only generated from
training triplets, while paths used for test are gen-
erated from both training triplets and test triplets.
Test paths which appear in training paths are re-
moved. Note that paths of length 1 are not sampled,
but created by directly adding triplets. Details of
generating paths can be found in (Guu et al., 2015).
See details of these two datasets in Appendix G.

Evaluation Protocol. We use the same evalua-
tion protocol as in (Guu et al., 2015). Specifically,
for each test path pt = s → r1 → ... → rj → o,
the corresponding query q is s → r1 → ... →
rj → ?. Details of evaluation protocol for PQA
can be found in Appendix H. We report the mean
quantile (MQ) and Hits@10. MQ is the average
quantile of all test paths. Hits@10 is the percentage
of target answers whose rank is not larger than 10.
An excellent model should achieve a higher MQ
and a higher Hits@10.

Implementation Details. We train RotateCT
with all paths in the training set, which is denoted
as “Comp” in (Guu et al., 2015). Note that triplets

WordNet Freebase
Model MQ Hits@10 MQ Hits@10

Implicitly model paths
Bilinear] 0.894 0.543 0.835 0.421
DistMult] 0.904 0.311 0.848 0.386
TransE] 0.933 0.435 0.880 0.505
RotatE] 0.947 0.653 0.901 0.601
Rotate3D] 0.949 0.671 0.905 0.621
RotateCT] (ours) 0.949 0.673 0.907 0.630

Explicitly model paths
ROP† - - 0.907 0.567
CoKE‡ 0.942 0.674 0.948 0.764

Table 3: Path query answering results on WordNet and
Freebase. []]: Models do not use extra structures to
model paths; [†]: Model uses RNN to model paths; [‡]:
Model uses Transformer to model paths. Best results
are in bold and second best results are underlined.

are the paths of length 1. To make the results di-
rectly comparable, we follow Gao et al. (2020) to
train RotateCT on paths of length 1 to 5 in turn,
i.e., we train our model on paths of length i un-
til convergence before training on paths of length
i + 1. Hyperparameters are determined via grid
search according to the MQ on the validation set.
In general, the embedding dimension k is selected
in {500, 1000}; batch size n is searched in {512,
1024}; the negative sampling sizem is picked from
{256, 512}; the fixed margin γ is tuned among {6, 9,
12, 24}; self-adversarial temperature α is selected
from {1.0, 2.0, 3.0}. The regularization rate λ is
adjusted in {0, 0.1}. The initialization methods and
experimental environment are the same as in link



4924

Model Rotate3D RotateCT

Space Hk Ck

Dimension 1000 1000
FB15k 48.89M 33.94M(↓ 30.6%)
FB15k-237 44.33M 29.79M(↓ 32.8%)
WN18 122.89M 81.94M(↓ 33.3%)
WN18RR 122.86M 81.92M(↓ 33.3%)
Freebase 225.17M 150.13M(↓ 33.3%)
WordNet 115.69M 77.14M(↓ 33.3%)

Table 4: Number of free parameters.

prediction. The best hyperparameters settings of
RotateCT are provided in the Appendix E.

Main Results. Baselines are divided into two cat-
egories according to whether they use extra struc-
tures to model paths. The first category including
Bilinear (Nickel et al., 2011), DistMult (Yang et al.,
2015), TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019) and Rotate3D (Gao et al., 2020) has
no extra structure to model paths; another category
including ROP (Yin et al., 2018) and CoKE (Wang
et al., 2019) uses RNN or Transformer to model
paths.

Table 3 shows experimental results on the two
datasets. Compared with methods that implic-
itly model paths, RotateCT achieves better per-
formance on both WordNet and Freebase, which
demonstrates the ability of RotateCT to model the
composition patterns. Overall, RotateCT signif-
icantly outperforms Bilinear, DistMult, TransE
and RotatE. The reason why RotateCT slightly
surpasses Rotate3D is that both RotateCT and
Rotate3D have the ability of inferring the non-
commutative composition patterns. Compared with
methods that explicitly model paths, RotateCT out-
performs ROP and still obtains results comparable
to CoKE on WordNet. Notably, CoKE uses Trans-
former as an extra structure to model paths, which
is a remarkable architecture for natural language
process tasks.

In addition to the overall MQ and Hits@10, we
further report the results for different path lengths
in Appendix K.

4.3 Analyses

Space Efficiency. To compare the space cost of
Rotate3D and RotateCT, we caculate out the num-
ber of free parameters over different datasets. Re-
sults are shown in Table 4, from which we observe
that RotateCT with same dimension reduces up to
30% parameters on all datasets. Intuitively, Ro-

Rotate3D RotateCT

WN18 158s 65s
WN18RR 159s 65s
FB15k 147s 56s
FB15k-237 153s 53s
WordNet 85s 57s
Freebase 103s 68s

Table 5: Training time per 1000 steps of Rotat3D and
RotateCT on all datasets.

tate3D utilizes quaternions to model relations as ro-
tations in 3D space. However, a quaternion has two
more dimensions than a complex number, which
sharply increases the space cost of Rotate3D.

Time Efficiency. To further compare the train-
ing cost of Rotate3D and RotateCT, we report the
training time per 1000 steps on all datasets with
embedding dimension k = 1000. From Table 5,
we can find that RotateCT takes much less training
time than Rotate3D on all datasets, which confirms
the time efficiency superiority of RotateCT. Experi-
ments of training time are performed on an Intel(R)
Xeon(R) Silver 4114 CPU at 2.20GHz and a single
NVIDIA Tesla V100 32GB GPU.

5 Case Studies

To verify that RotateCT can effectively model all
the three types of relation patterns, we provide case
studies via histograms on symmetry/antisymmetry
and inversion patterns, and some intuitive examples
on composition patterns.

5.1 Symmetry/Antisymmetry

Corollary 1 Based on Theorem 2, if r is a symmet-
ric relation, then θi = 0 ∨ ±π; if r is an antisym-
metric relation, then θi 6= 0,±π. (See proof in
Appendix I)

According to the Corollary 1, the phase of each
element in the embeddings of a symmetric rela-
tion r should be 0 or ±π. Otherwise, the phases
should not be 0 and ±π. We investigate the phases
of elements in relation embeddings from a Rota-
teCT trained on WN18 and a RotateCT trained
on FB15k-237 with their best hyperparameters
in link prediction. The two models are trained
with the setting k = 1000. Results are shown in
Fig. 3. Specifically, Fig. 3(a)-3(b) give the his-
tograms of the two symmetric relations in WN18:
derivationally_related_form and verb_group, in
which most phases of the two relations are either
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(a) (b) (c) (d) (e) (f)

Figure 3: Histograms of relation embeddings phases {θri}(ri = eiθri) of two symmetric re-
lations: derivationally_related_form (a) and verb_group (b). Histograms of relation embeddings
phases {θri}(ri = eiθri) of two antisymmetric relations: film/actor/dubbing_performances./fi-
lm/dubbing_performance/language (c) and /people/profession/specialization_of (d). Histograms of the ad-
dition of relation embeddings phases {θ1i + θ2i} of two pairs of inversion relations: has_part ◦ part_of (e) and
hyponym ◦ hypernym (f), where ◦ is the Hadmard (or element-wise) product.

0 or ±π. The above observation confirms that Ro-
tateCT can effectively model the symmetry pat-
terns. The histograms of two antisymmetric rela-
tions in FB15k-237 are shown in Fig. 3(c)-3(d),
from which we can find that the phases of the two
antisymmetric relations are scattered. Most phases
of the two antisymmetric relations are neither 0 nor
±π, which confirms that RotateCT can effectively
model the antisymmetry patterns.

5.2 Inversion
Corollary 2 Based on Theorem 2, if r1 is the in-
verse of r2, then θ1i + θ2i = 0 ∨ ±2π. (See proof
in Appendix J)

According to the Corollary 2, if r1 is inverse to
r2, the additive embedding phases, i.e., θ1i + θ2i,
should be 0 or±2π. Same RotateCT model trained
on WN18 in Section 5.1 is used for investigating.
Fig. 3(e)-3(f) show the element-wise addition of the
embedding phases of two pairs of inverse relations:
has_part and part_of , hyponym and hypernym.
We can find that most additive embedding phases
are either 0 or ±2π, which confirms that RotateCT
can effectively model the inversion patterns.

5.3 Composition
To illustrate the superiority of RotateCT in model-
ing the composition patterns, we use a RotateCT
and a RotatE, both trained with their best hyper-
parameters on the Freebase dataset in path query
answering. Fig. 4 shows a subgraph extracted from
the Freebase dataset. This subgraph includes two
non-commutative composition patterns: "parents’
spouse" and "spouse’s parents", and one commuta-
tive composition pattern: "parents’ parents".

Non-commutative Composition. From Fig. 5,
we find that RotateCT predicts the query
Maria → parents → spouse ? and the query

Maria

Miguel

Adelaide

Karl

Adelaide

John

Charlotte

Miguel

Joseph

Ludovika

parents spouse

parents

Figure 4: A subgraph about Maria’s family. Maria’s
parents’ spouse are Adelaide and Miguel; Maria’s
spouse’s parents are Joseph and Ludovika; Maria’s par-
ents’s parents are John and Charlotte. Dashed orange
arrows represent the parents relation; solid blue arrows
represent the spouse relation.

Maria→ spouse→ parents ? correctly, which
indicates that RotateCT can effectively model the
non-commutative composition patterns. How-
ever, we observe that RotatE gives unsatisfac-
tory answers in predicting the query Maria →
parents→ ? and the query Maria→ spouse→
parents→ ?, which verifies that RotatE lacks the
ability of inferring the non-commutative composi-
tion patterns.

Commutative Composition. We further inves-
tigate the ability of inferring the commutative
composition patterns of RotateCT and RotatE. As
shown in Fig. 5, RotateCT predicts the query
Maria → parents → parents → ? correctly,
which confirms that RotateCT can effectively
model the commutative composition patterns. By
comparision, RotatE fails in predicting the correct
answers, i.e., first item in results is not Maria’s par-
ents’ parents. We argue that this is related to the
inability of RotatE to model the non-commutative
composition patterns, which has a negative impact
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Figure 5: Top 5 answers of RotateCT and RotatE for three queries: "Who are Maria’s parents’ spouse?", "Who are
Maria’s spouse’s parents?" and "Who are Maria’s parents’ parents?". Correct answers are in bold.

on embeddings’ learning. If RotatE encodes "par-
ents’ spouse" and "spouse’s parents" in the same
way, some semantic information will be lost. This
flaw is harmful for RotatE effectively learning the
semantics of parents and spouse, which reduces
RotatE’s performance on modeling the commuta-
tive composition pattern "parents’ parents".

6 Conclusion

In this paper, we propose a novel knowledge graph
embedding method called RotateCT to model the
non-commutative composition patterns while im-
prove the parameter efficiency against quaternion-
valued methods. RotateCT transforms the coor-
dinates of each entity by translating the origin of
coordinates. Further, relations are represented as ro-
tations from head entities to tail entities in complex
space. Combining rotation and coordinate trans-
formation empowers RotateCT to model not only
commutative composition patterns but also non-
commutative composition patterns. As a complex-
valued method, the space cost of RotateCT is lower
than quaternion-valued methods. Experimental re-
sults on link prediction and path query answering
show that RotateCT achieves significant perfor-
mance and demonstrate the superiority of RotateCT
for inferring composition patterns. The parameter
efficiency analysis proves that RotateCT can reduce
the space cost.

In future work, we will explore different ways to
model the non-commutative composition patterns
and plan to study the combination of quaternion
and coordinate transformation.
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A Definitions of Inference Patterns

We give the formal definitions of inference patterns
as follows:

Definition 1 A relation r is symmetric (antisym-
metric) if

∀x, y ∈ E , r(x, y)⇒ r(y, x) ( r(x, y)⇒ ¬r(y, x) )

A relation with such form is a symmetry (antisym-
metry) pattern.

Definition 2 Relation r1 is inverse to r2 if

∀x, y ∈ E , r2(x, y)⇒ r1(y, x)

Relations with such form is an inversion pattern.

Definition 3 Realtion r1 is composed of relation
r2 and relation r3 if

∀x, y, z ∈ E , r2(x, y) ∧ r3(y, z)⇒ r1(x, z)

r2 and r3 are commutative if

∀x, y ∈ E , r2 � r3(x, y)⇒ r3 � r2(x, y)

r2 and r3 are non-commutative if

∀x, y ∈ E , r2 � r3(x, y) ; r3 � r2(x, y)

where � is the composition operator.
Relations with such form is a composition pat-

tern.

B Proof of Theorem 1

Proof 1 Given r1, r2 ∈ R and x ∈ E , we have

r1i � r2i(xi) =((xi − b1i)r1i + b1i − b2i)r2i
=xir1ir2i − b1ir1ir2i+
b1ir2i − b2ir2i, (1)

r2i � r1i(xi) =((xi − b2i)r2i + b2i − b1i)r1i
=xir1ir2i − b2ir1ir2i+
b2ir1i − b1ir1i. (2)

Apparently, Equation (1) is not equal to (2), which
means that the combination of operations in Rota-
teCT is non-commutative. If and only if b1i = b2i
or r1ir2i = r1i+ r2i, r1i� r2i(xi) = r2i� r1i(xi).

C Proof of Theorem 2

Proof 2 For the symmetry/antisymmetry pattern,
given r ∈ R and x, y ∈ E , if r(x, y) and r(y, x)
hold, we have{

yi − bi = (xi − bi)ri
xi − bi = (yi − bi)ri

⇒ ri = ±1

Otherwise, if r(x, y) and ¬r(y, x) hold, we have{
yi − bi = (xi − bi)ri
xi − bi 6= (yi − bi)ri

⇒ ri 6= ±1

For the inversion pattern, given r1, r2 ∈ R and
x, y ∈ E , if r1(y, x) and r2(x, y) hold, we have{

xi − b1i = (yi − b1i)r1i
yi − b2i = (xi − b2i)r2i

⇒

{
r1ir2i = 1

b1i = b2i
or r1i = r2i = 1

For the composition pattern, given r1, r2, r3 ∈ R
and x, y, z ∈ E , if r1(x, z), r2(x, y) and r3(y, z)
hold, we have

zi − b1i = (xi − b1i)r1i
yi − b2i = (xi − b2i)r2i
zi − b3i = (xi − b3i)r3i

⇒

{
r1ir2i = r3i

b1ir1ir2i = b1ir2i − b2ir2i + b3ir3i

if r2 and r3 are commutative, then

b2i = b3i or r2ir3i = r2i + r3i,

if r2 and r3 are non-commutative, then{
b2i 6= b3i

r2ir3i 6= r2i + r3i

In conclusion, RotateCT can infer symme-
try/antisymmetry, inversion and composition pat-
terns.

D Illustrations of RotateCT

Fig. 6 shows illustrations of RocateCT modeling
symmetry and non-commutative composition pat-
terns.



4930

Dataset embedding
dimension

batch
size

self-adversarial
temperature margin negative sample

size distance regularization/rate learning
rate

WN18 1000 512 0.5 12 256 L1 L1/0.1 1× 10−4

WN18RR 1000 1024 1.0 6 512 L1 L1/0.1 5× 10−5

FB15k 1000 1024 0.5 24 256 L2 - 2× 10−4

FB15k-237 1000 1024 1.0 12 256 L2 - 2× 10−4

WordNet 1000 512 1.0 6 256 L2 L2/0.1 5× 10−5

Freebase 1000 1024 2.0 12 512 L2 - 2× 10−5

Table 6: Hyperparameters setting of RotateCT over different datasets.
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Figure 6: Illustrations of RotateCT over two relation
patterns. Fig. 6(a) shows how RotateCT models the
symmetry pattern, i.e., r = ±1. In 6(b), blue solid
lines represent the path h → r1 → r2 → t and red
dashed lines represent the path h → r2 → r1 → t′.
r1 and r2 form a non-commutative composition pattern.
When the relative order of r1 and r2 changes, RotateCT
can get two different entities: t and t′.

E Hyperparameters Settings

We list the best hyperparameters setting of Rota-
teCT on all datasets in Table 6.

F Details of Link Prediction Datasets

WN18 is a subset of WordNet (Miller, 1995), a
database consisting of lexical relations between
words. FB15k is extracted from Freebase (Bol-
lacker et al., 2008), a large-scale knowledge
graph containing general facts. The main re-
lation patterns in WN18 and FB15k are sym-
metry/antisymmetry and inversion (Sun et al.,
2019). However, both WN18 and FB15k
suffer from test leakage through inverse rela-
tions (Toutanova and Chen, 2015). To avoid this
problem, WN18RR and FB15k-237 remove the in-
verse relations in WN18 and FB15k, respectively.
Therefore, the main relation patterns in WN18RR
and FB15k-237 are symmetry/antisymmetry and
composition (Sun et al., 2019). Notably, semantic
information in WN18RR and FB15k-237 is more
difficult to capture on account of removing the in-

verse relations. The statistics of the benchmarks
for link prediction are listed in Table 7.

Dataset #entity #relation #training #validation #test

FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 7: Number of entities, relations, and triplets in
each split for four benchmarks.

G Details of Path Query Answering
Datasets

The statistics of path query answering datasets are
summarized in Table 8.

WordNet Freebase

#Entities 38,551 75,043
#Relations 11 13
#Train Triplets 110,361 316,232
#Valid Triplets 2,602 5,908
#Test Triplets 10,462 23,733
#Train Paths 2,129,539 6,266,058
#Valid Paths 11,277 27,163
#Test Paths 46,577 109,577

Table 8: Number of entities, relations, triples and paths
in each split of the two datasets.

H Evaluation Protocol of PQA

For each test path pt = s → r1 → ... → rj → o,
the corresponding query q is s → r1 → ... →
rj → ?. For each query q, the candidate answers
are entities that “type-match”, i.e., all tail entities
of the final relation rj . The correct answers are
entities that can be reached from s by traversing
the path p; the incorrect answers are obtained by
filtering out the correct answers from the candidate
answers. The set of candidate answers to a query
q denotes as C(q); the set of correct answers to
a query q denotes as P(q); the set of incorrect
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answers to a query q denotes as N (q). We give
the formal definition of C(q), P(q), and N (q) as
follows:

C(q) , {o|∃e s.t. (e, rj , o) ∈ G}
P(q) , {o|∃e1, ..., ej−1 s.t. (s, r1, e1),

..., (ej−1, rj , o) ∈ G}
N (q) , C(q)\P(q)

Here G includes training triplets and test triplets.
For each test path pt, we replace entity o with enti-
ties in C(q) and compute the score of each candi-
date answer. Then we rank the scores of candidates
along with the score of pt in descending order and
caculate the quantile, which is the proportion of
incorrect answers ranked after the target answer o.

Notably, some test paths in both datasets are
“type-match trivial”, i.e., all type matching candi-
date answers are correct. Hence, the quantile of
these test paths are undefined, and we exclude them
from evaluation.

I Proof of Corollary 1

Proof 3 As shown in Theorem 2, if r is a symmetric
relation, we have

ri = ±1 ⇒ cosθi + isinθi = ±1

⇒ cosθi = ±1

⇒ θi = 0 ∨ ±π

Otherwise, if r is an antisymmetric relation, we
have

ri 6= ±1 ⇒ cosθi + isinθi 6= ±1

⇒ cosθi 6= ±1

⇒ θi 6= 0,±π

J Proof of Corollary 2

Proof 4 As shown in Theorem 2, if r1 is the inverse
of r2, we have{

r1ir2i = 1

b1i = b2i
or r1i = r2i = 1

In the first case, we have{
r1ir2i = 1

b1i = b2i

⇒

{
(cosθ1i + isinθ1i)(cosθ2i + isinθ2i) = 1

b1i = b2i

⇒

{
cos(θ1i + θ2i) + isin(θ1i + θ2i) = 1

b1i = b2i

⇒

{
θ1i + θ2i = 0 ∨ ±2π

b1i = b2i

In the second case, we have

r1i = r2i = 1 ⇒ cosθ1i + isinθ1i =

cosθ2i + isinθ2i = 1

⇒ θ1i = θ2i = 0

Combining the above two cases, we have

θ1i + θ2i = 0 ∨ ±2π

K PQA Results of Different Path
Lengths

We further report the path query answering results
for different path lengths. As shown in Table 9
and Table 10, RotateCT outperforms RotatE and
Rotate3D over most metrics, which verifies the
superior capability of RotateCT to deal with the
multi-hop reasoning.
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length=1 length=2 length=3 length=4 length=5

Model MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10

RotatE 0.934 0.794 0.882 0.403 0.922 0.649 0.858 0.415 0.910 0.652
Rotate3D 0.933 0.796 0.901 0.473 0.921 0.685 0.854 0.449 0.908 0.654
RotateCT 0.934 0.803 0.885 0.460 0.928 0.707 0.863 0.462 0.920 0.689

Table 9: Path query answering results of each path length on Freebase. Best results are in bold.

length=1 length=2 length=3 length=4 length=5

Model MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10 MQ Hits@10

RotatE 0.868 0.350 0.970 0.786 0.973 0.778 0.970 0.737 0.967 0.693
Rotate3D 0.872 0.365 0.972 0.797 0.974 0.786 0.973 0.750 0.969 0.706
RotateCT 0.865 0.338 0.972 0.807 0.975 0.796 0.973 0.763 0.971 0.731

Table 10: Path query answering results of each path length on WordNet. Best results are in bold.
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