
Proceedings of the 29th International Conference on Computational Linguistics, pages 4907–4917
October 12–17, 2022.

4907

Knowledge Distillation with Reptile Meta-Learning for Pretrained
Language Model Compression

Xinge Ma†, Jin Wang†∗, Liang-Chih Yu‡∗ and Xuejie Zhang†

†School of Information Science and Engineering, Yunnan University, Yunnan, P.R. China
‡Department of Information Management, Yuan Ze University, Taiwan

Contact:wangjin@ynu.edu.cn, lcyu@saturn.yzu.edu.tw

Abstract
The billions, and sometimes even trillions, of
parameters involved in pre-trained language
models significantly hamper their deployment
in resource-constrained devices and real-time
applications. Knowledge distillation (KD) can
transfer knowledge from the original model
(i.e., teacher) into a compact model (i.e., stu-
dent) to achieve model compression. However,
previous KD methods have usually frozen the
teacher and applied its immutable output fea-
ture maps as soft labels to guide the student’s
training. Moreover, the goal of the teacher is to
achieve the best performance on downstream
tasks rather than knowledge transfer. Such a
fixed architecture may limit the teacher’s teach-
ing and student’s learning abilities. Herein,
a knowledge distillation method with reptile
meta-learning is proposed to facilitate the trans-
fer of knowledge from the teacher to the stu-
dent. The teacher can continuously meta-learn
the student’s learning objective to adjust its
parameters for maximizing the student’s perfor-
mance throughout the distillation process. In
this way, the teacher learns to teach, produces
more suitable soft labels, and transfers more
appropriate knowledge to the student, resulting
in improved performance. Unlike previous KD
using meta-learning, the proposed method only
needs to calculate the first-order derivatives to
update the teacher, leading to lower computa-
tional cost but better convergence. Extensive
experiments on the GLUE benchmark show the
competitive performance achieved by the pro-
posed method. For reproducibility, the code for
this paper is available at: https://github.
com/maxinge8698/ReptileDistil.

1 Introduction

In recent years, pre-trained language models
(PLMs) have brought natural language processing
to a new era and achieved state-of-the-art perfor-
mance in a variety of tasks. Based on a multi-
layer Transformer architecture (Vaswani et al.,

∗Corresponding authors.

2017), PLMs, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019), typically contain hundreds of mil-
lions of parameters, making them computation-
ally expensive and inefficient. Consequently, such
large-scale models are difficult to be deployed on
resource-constrained devices and real-time applica-
tions due to high computational complexity, huge
storage requirements, and slow inference speed.

Knowledge distillation (KD) (Hinton et al.,
2015) has been recommended to compress PLMs.
Based on the teacher-student architecture applied,
it teaches a smaller student model to reproduce the
behavior of a larger teacher model. In practice,
the teacher produces output feature maps as soft
labels, providing the student with more information
than the ground truth of one-hot labels to learn. By
minimizing the Kullback-Leibler (KL) divergence
between the softened probability distributions of
the teacher and student, the student is then trained
as an equally-effective model without significant
sacrifice in performance.

However, previous studies (Sanh et al., 2019;
Sun et al., 2019; Turc et al., 2019; Jiao et al., 2020;
Wang et al., 2021) have usually frozen the teacher
during the KD process and used its immutable
knowledge to teach the student. Inevitably, this ar-
chitecture has two major limitations: 1) The param-
eters of the teacher were fixed for KD. Concretely,
the teacher is frozen throughout the distillation pro-
cess, and the student can only passively receive the
fixed knowledge conveyed by the teacher, which
ignores the capacity gap and incompatibility be-
tween the teacher and student; 2) The teacher is
unaware of the existence of the student. Specif-
ically, the teacher model is usually fine-tuned to
optimize its performance in downstream applica-
tions rather than to optimize the ability to distill the
knowledge to the student.

Recent studies (Park et al., 2021; Pham et al.,
2021; Zhou et al., 2022) have suggested that up-

https://github.com/maxinge8698/ReptileDistil
https://github.com/maxinge8698/ReptileDistil

4908

dating the teacher together with the student during
the KD process, rather than freezing it, can make
the student learn better. To be specific, Park et al.
(2021) proposed a student-friendly teacher network
for training the teacher and student branches to
make the teacher aware of the student before dis-
tillation and obtain student-friendly knowledge,
which is then transferred to the student via vanilla
KD. Pham et al. (2021) presented meta pseudo
labels where the student is trained based on the
pseudo labels generated by the teacher and the
teacher is trained based on the performance of the
student on labeled data. Zhou et al. (2022) em-
ployed a meta-learning strategy to explicitly opti-
mize the teacher with the optimization objective of
the student’s performance on a hold-out training
subset during the KD process, allowing the teacher
to evolve continuously to adapt to the current state
of the student and better transfer knowledge to it.

The application of model-agnostic meta-learning
(MAML) (Finn et al., 2017) in MetaDistil (Zhou
et al., 2022) significantly improved the perfor-
mance of the distilled student by calculating the
second-order derivatives of the student’s loss on
the query set to obtain the update gradients of the
teacher. However, limited by the MAML algorithm,
there are some concerns in MetaDistil: 1) A query
set needs to be designed. MetaDistil split the query
set from the training set at a ratio of 9:1, as a re-
sult, it missed one-tenth of the training data since
this separate query set is not directly used to train
the student model. Nevertheless, this one-tenth
of the data could lead to significant performance
gain, especially when the training data is scarce; 2)
The training process may be slow due to the nature
of meta-learning. Furthermore, MAML involves
the calculation of the second-order derivatives, so
that more training time and computing resource are
required.

To address the above issues, a knowledge distil-
lation method with reptile meta-learning (Nichol
et al., 2018) is proposed to facilitate the trans-
fer of knowledge from the teacher to the student,
termed ReptileDistil, where the update gradients of
the teacher are approximated by calculating the
difference between the parameters of the meta-
learner (i.e., teacher) and inner-learner (i.e., stu-
dent), thereby reducing the computational burden
by avoiding calculating the second-order deriva-
tives, and mitigating the tedious operation of parti-
tioning the query set and the performance loss that

Meta Learner StudentInner Learner

Copy

Update

Training

batches

T
f S

f S
f

(; ;)KD

S S T d

(a) Inner update

Meta Learner Inner Learner

Training

batches

Update

()T S T −

T
f S

f

(b) Meta update

Teacher Student

Training

batches Update

T
f S

f

(; ;)KD

S S T d

(c) Optimized knowledge distillation

Figure 1: An overview of the proposed ReptileDistil
framework.

may be caused. To illustrate the effectiveness and
practicality of the proposed ReptileDistil, extensive
experiments are conducted on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018). Empirical results demon-
strate that the proposed method can yield meaning-
ful improvements compared with other KD meth-
ods in distilling a 12-layer BERTBASE model with
110M parameters into a 6-layer BERT6 model with
66M parameters and 1.94 times speedup.

In summary, the contributions of this paper are
as follows:

• A knowledge distillation method with reptile
meta-learning is proposed for compressing
PLMs, for which the reptile meta-learning is
introduced to calculate the update gradients
of the teacher model for optimizing it.

• Four different layer-wise parameter update
strategies are proposed for updating the pa-
rameters of the teacher model, which avoid
calculating the second-order derivatives and

4909

lead to better and faster convergence.

• Extensive experiments are conducted on the
GLUE benchmark, and the results show that
the proposed method performs better in distill-
ing BERT than state-of-the-art KD methods.

The rest of this paper is organized as follows.
Section 2 reviews the related work. Section 3 de-
tails the proposed ReptileDistil framework. Sec-
tion 4 presents extensive experiments. Section 5
provides experimental results and analysis. Sec-
tion 6 summarizes the paper.

2 Related Work

Model compression is a potential approach to re-
duce the model size and improve computational
efficiency. Currently, the model compression tech-
niques for PLMs can be divided into the following
six categories: 1) model pruning (Michel et al.,
2019; Fan et al., 2020; Gordon et al., 2020), which
removes redundant or less important parameters;
2) weight quantization (Zafrir et al., 2019; Shen
et al., 2020), which uses fewer bits to represent the
parameters; 3) knowledge distillation (Sanh et al.,
2019; Sun et al., 2019; Turc et al., 2019; Jiao et al.,
2020; Wang et al., 2021; Zhou et al., 2022), which
trains a smaller model that learns from the out-
put feature maps of the original model; 4) module
replacing (Xu et al., 2020), which replaces the mod-
ules of the original model with more compact sub-
stitutes; 5) matrix factorization (Lan et al., 2020),
which reduces the parameters using methods such
as cross-layer parameter sharing and factorized em-
bedding parameterization; 6) early exit (Zhou et al.,
2020; Liu et al., 2020; Xin et al., 2020), which al-
lows the model to exit early at an off-ramp instead
of passing through the entire model.

Here, we briefly review state-of-the-art work on
investigating knowledge distillation to compress
PLMs, especially the popular BERT model. Dis-
tilBERT (Sanh et al., 2019) is performed at the
pre-training stage, which distills output logits from
a pre-trained BERTBASE teacher into a 6-layer
BERT6 student initialized by taking one layer out
of every two layers of a pre-trained BERTBASE.
BERT-PKD (Sun et al., 2019) is performed at the
fine-tuning stage, which distills output logits and
hidden states from a fine-tuned BERTBASE teacher
into a 6-layer BERT6 student initialized with the
first 6 layers of a pre-trained BERTBASE. PD (Turc
et al., 2019) is performed at the pre-training stage,

in which a randomly initialized 6-layer BERT6 stu-
dent is first trained with a masked language mod-
eling objective and then is distilled with the out-
put logits from a pre-trained BERTBASE teacher.
TinyBERT (Jiao et al., 2020) first is performed at
the pre-training stage, which distills embedding
outputs, hidden states, and self-attention distribu-
tions from a pre-trained BERTBASE teacher into a
4-layer TinyBERT4 student with a hidden size of
312 and an intermediate size of 1200, or a 6-layer
TinyBERT6 student with a hidden size of 768 and
an intermediate size of 3072 as same as BERT6.
These two models are then treated as the initializa-
tion of student models for further distillation. After
that, at the fine-tuning stage, the output logits, em-
bedding outputs, hidden states, and self-attention
distributions from a fine-tuned BERTBASE teacher
are distilled into the aforementioned TinyBERT4

student or TinyBERT6 student on the augmented
task-specific dataset. MiniLM v2 (Wang et al.,
2021) is performed at the pre-training stage, which
distills self-attention relation from the last Trans-
former layer of a pre-trained BERTBASE teacher
into a randomly initialized 6-layer BERT6 student.
MetaDistil (Zhou et al., 2022) is performed at the
fine-tuning stage, which distills output logits from
a pre-trained BERTBASE teacher into a 6-layer
BERT6 student obtained from the aforementioned
PD (Turc et al., 2019) via a meta-learning strategy.

3 Knowledge Distillation with Reptile
Meta-Learning

Figure 1 shows an overview of the proposed Rep-
tileDistil framework. Unlike prior work on im-
proving KD, which usually designed new distilla-
tion loss, we aim to improve KD via reptile meta-
learning to optimize the parameters of the teacher
model adaptively with the distillation process of
the student model. This allows the teacher model
to adjust its pace to search for the optimal global
solution, thus providing more suitable soft labels
for the student by considering the current capacity
of the latter. In addition, to update the parameters
of the teacher, we propose four different layer-wise
parameter update strategies to provide faster and
better convergence.

3.1 Vanilla Knowledge Distillation

Knowledge distillation aims to transfer hidden
knowledge from a larger teacher model fθT to a
shallow student model fθS to improve the perfor-

4910

mance of the student model significantly, where
θT and θS denote the trainable parameters of the
teacher and student, respectively.

Formally, consider a labeled dataset D =
{x(n), y(n)}Nn=1 containing N training samples,
where x(n) and y(n) are the input feature and corre-
sponding ground-truth label, respectively. The data
is passed through the teacher model with L layers,
and the output hidden representation of each layer
can be obtained by,

t
(n)
1 , ..., t

(n)
l , ..., t

(n)
L = fθT (x

(n); θT), (1)

where t
(n)
l ∈ Rdh is the output representation of

the l-th layer corresponding to the [CLS] token,
and dh is the dimensionality of the model. Particu-
larly, the [CLS] output from the last layer is fed
into a fully-connected layer with a softmax activa-
tion function, as follows,

ŷ
(n)
T = softmax(

tanh(WT t
(n)
L + bT)

τ
), (2)

where WT and bT are the weights and biases of the
classifier, respectively, and ŷ

(n)
T denotes the pre-

dicted probability distribution of the n-th sample,
i.e., the probabilities that the output belongs to the
classes, which is usually softened by a temperature
hyperparameter τ in the softmax activation function
to control the degree of smoothness. With a lower
temperature, the student focuses more on match-
ing the maximal logits of the teacher outputs. On
the contrary, a higher temperature encourages the
student to focus on the logits other than the max-
imal ones. The training objective of the teacher
model is a categorical cross-entropy loss between
distributions of its predicted probability and the
ground-truth label, which is defined as,

LCE
T (D; θT) = −

1

N

N∑
n=1

I(y(n)) ◦ log ŷ(n)
T , (3)

where I(y(n)) denotes the one-hot vector of the
ground-truth label, and ◦ means the element-wise
multiplication operation.

The student model is smaller with K layers,
where K < L. Similarly, the intermediate hidden
representations of the student model are obtained
by,

s
(n)
1 , ..., s

(n)
k , ..., s

(n)
K = fθS (x

(n); θS), (4)

where s
(n)
k ∈ Rdh is the output representation of

the k-th layer corresponding to the [CLS] token.

Also, the predicted probability distribution of the
student on the n-th sample is calculated by,

ŷ
(n)
S = softmax(

tanh(WSs
(n)
K + bS)

τ
). (5)

Same as the teacher, the student is trained on the
task-specific objective to fit the training samples,
as follows,

LCE
S (D; θS) = −

1

N

N∑
n=1

I(y(n)) ◦ log ŷ(n)
S . (6)

In addition, a knowledge distillation objective that
aligns the behavior of the student and teacher is em-
ployed as additional supervision to train the student
to learn the generalization ability of the teacher.
Specifically, taking the soft output ŷ(n)

T from Eq.
(2) as the pseudo label, the student model can learn
more from it than the ground-truth label by,

LKL(D; θS ; θT) = τ2
1

N

N∑
n=1

KL(ŷ
(n)
T ||ŷ

(n)
S), (7)

where KL(·||·) means computing the Kullback-
Leibler divergence between two distributions,
which can force the student model to replicate the
behavior of the teacher model by shrinking it. Fur-
thermore, following Hinton et al. (2015), we scale
the loss by multiplying τ2 to ensure that gradient
magnitudes are approximately constant when the
temperature changes. Therefore, the final training
objective for KD is a weighted sum over the task-
specific cross-entropy and KL-divergence, i.e.,

LKD
S (D; θS ; θT) = (1− α)LCE

S + αLKL, (8)

where α ∈ [0, 1] is a weight hyperparameter used
to balance the importance of these two objectives.

3.2 Reptile Meta-Learning for Better
Distillation

In the original formulation of vanilla KD and pre-
vious KD methods, the teacher model was first
fine-tuned and then frozen to transfer knowledge
to the student by teaching fixed soft labels or in-
termediate features to the student for updating the
student’s parameters θS . Instead, we introduce rep-
tile meta-learning (Nichol et al., 2018) to optimize
the teacher’s parameters θT as the student’s param-
eters θS are updated. Specifically, we designate
the student and teacher as the inner-learner and
meta-learner, respectively, to fit the bi-level opti-
mization framework in reptile meta-learning. The

4911

Algorithm 1 Knowledge Distillation with Reptile Meta-Learning (ReptileDistil)
Require: θS , θT : parameters of the student and teacher models, respectively
Require: λ, µ: learning rate of the studnet and teacher models, respectively
Require: D: training set

1: while not done do
2: for each batch of training set d ∈ D do
3: Copy an inner-learner θ′S from the student model θS : θ′S ← θS

4: Inner-update θ′S with d and θT : θ′S ← θ′S − λ
∂LKD

S (d;θ′S ;θT)

∂θ′S
5: Meta-update θT with the updated θ′S : θT ← θT − µ(θT − θ′S(θT))

6: Update θS with d and the updated θT : θS ← θS − λ
∂LKD

S (d;θS ;θT)
∂θS

7: end for
8: end while

inner-learner is trained to accomplish a task or a dis-
tribution of tasks with the help of the meta-learner,
and this procedure is called an inner-loop. In return,
the meta-learner is optimized with a meta-objective
that generally maximizes the expected performance
of the inner-learner after the inner-loop, and this
procedure is called a meta-loop. After the above
two processes, the teacher can perceive the current
state of the student and adjust its parameters in the
direction of maximizing the student’s performance.
Then we use this optimized teacher to distill its
more appropriate knowledge to the student, mak-
ing the student learn better.

Formally, for each training step, we copy the
student’s parameters θS to an inner-learner as θ′S .
Given a batch of training samples d = {x, y} ∈ D,
the inner-learner is inner-updated with one-step
stochastic gradient descent, as follows,

θ′S ← θ′S − λ
∂LKD

S (d; θ′S ; θT)

∂θ′S
, (9)

where λ is the learning rate of the student model.
It is noteworthy that the updated inner-learner’s
parameters θ′S are essentially a function of the
teacher’s parameters θT on account of learning
θ′S depends on θT , i.e., θ′S(θT). The reptile meta-
learning is then conducted by measuring the dif-
ference between the parameters of the teacher and
the inner-learner as approximate gradients to meta-
update the teacher’s parameters θT via stochastic
gradient descent, as follows,

θT ← θT − µ(θT − θ′S(θT)), (10)

where µ is the learning rate of the teacher model.
Finally, we again apply vanilla KD between the up-
dated teacher model and the original student model,

as follows,

θS ← θS − λ
∂LKD

S (d; θS ; θT)

∂θS
. (11)

Such a meta-learning framework allows the teacher
model to adjust its parameters according to the cur-
rent learning state of the student model for better
transferring knowledge to it. The detailed algo-
rithm is illustrated in Algorithm 1.

3.3 Updating of Layer-wise Parameters
Notably, as shown in Eq. (10), the computation of
gradients for updating the teacher’s parameters re-
quires the participation of the inner-learner’s param-
eters and the teacher’s parameters. However, the
layers of these models are different, i.e., K < L,
as mentioned. Taking knowledge distillation from
a 12-layer teacher to a 6-layer student as an exam-
ple, we also proposed four different strategies for
updating the parameters of the teacher model. As
listed below, the LT layers of the teacher model
will be updated by the corresponding k layers of
the student model.

• First-k: The first k layers of the teacher will
be updated, i.e., LT = {1, 2, 3, 4, 5, 6}.

• Last-k: The last k layers of the teacher will
be updated, i.e., LT = {7, 8, 9, 10, 11, 12}.

• Skip-k: The 2k-th layers of the teacher will
be updated, i.e., LT = {2, 4, 6, 8, 10, 12}.

• Both-k: The (2k-1)-th and 2k-th layers
of the teacher will be updated, i.e., LT =
{(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12)}.

Figure 2 shows the details of different strategies
for updating the teacher’s parameters, and the effect

4912

KL Divergence

Teacher Student

Classifier Classifier

Cross Entropy

Training data

The building is tall and wide .

Transformer 1

Transformer 2 Transformer 2

Transformer 1

Transformer 7

Transformer 6 Transformer 6

...

...

Transformer 12

...

(a) First-k

KL Divergence

Teacher Student

Classifier Classifier

Cross Entropy

Training data

The building is tall and wide .

Transformer 1

Transformer 2

Transformer 2Transformer 7

Transformer 6

Transformer 6

...

Transformer 12

...

...

Transformer 1

(b) Last-k

KL Divergence

Teacher Student

Classifier Classifier

Cross Entropy

Training data

The building is tall and wide .

Transformer 1

Transformer 2 Transformer 1

Transformer 6

Transformer 4

Transformer 3

Transformer 2

...

Transformer 12

...

(c) Skip-k

KL Divergence

Teacher Student

Classifier Classifier

Cross Entropy

Training data

The building is tall and wide .

Transformer 1

Transformer 2

Transformer 6

Transformer 11

Transformer 12

...

Transformer 1

...

(d) Both-k

Figure 2: Illustration of different strategies for updating the parameters of the teacher model.

of different strategies is discussed in the following
section.

4 Experimental Setup

4.1 Datasets
We evaluate the proposed ReptileDistil on the
commonly used GLUE benchmark (Wang et al.,
2018), which is composed of nine natural language
understanding tasks, including CoLA (Warstadt
et al., 2019) for linguistic acceptability, SST-
2 (Socher et al., 2013) for sentiment analysis,
MRPC (Dolan and Brockett, 2005), STS-B (Cer
et al., 2017), and QQP1 for semantic similarity
matching, MNLI (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2016), and WNLI (Levesque et al.,
2012) for natural language inference, and RTE (Da-
gan et al., 2005; Bar-Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009) for textual
entailment. We excluded WNLI from GLUE fol-
lowing previous studies (Sanh et al., 2019; Sun
et al., 2019; Turc et al., 2019; Jiao et al., 2020; Xu
et al., 2020; Wang et al., 2021; Zhou et al., 2022).

4.2 Baselines
We apply the proposed ReptileDistil to a sit-
uation in which a 12-layer BERTBASE model
with 110M parameters is distilled into a 6-layer
BERT6 model with 66M parameters and 1.94 times
speedup, and compare it with several state-of-the-
art BERT compression approaches, including Dis-
tilBERT (Sanh et al., 2019), BERT-PKD (Sun et al.,
2019), PD (Turc et al., 2019), TinyBERT (Jiao
et al., 2020), BERT-of-Theseus (Xu et al., 2020),

1https://quoradata.quora.com

MiniLM v2 (Wang et al., 2021), and MetaDis-
til (Zhou et al., 2022).

4.3 Experimental Settings
In previous work, DistilBERT (Sanh et al., 2019),
BERT-PKD (Sun et al., 2019), and BERT-of-
Theseus (Xu et al., 2020) initialized their student
model by truncating certain layers of a pre-trained
BERTBASE model. More concretely, both BERT-
PKD and BERT-of-Theseus initialized the student
model with the first six layers of parameters from
the pre-trained BERTBASE model. DistilBERT
initialized the student model from the pre-trained
BERTBASE model by taking one of every two lay-
ers. Different from the above approaches, Tiny-
BERT (Jiao et al., 2020) initialized the student with
the general TinyBERT2, which can capture the gen-
eral domain knowledge by learning from interme-
diate layers of the pre-trained BERTBASE model.
Therefore, following TinyBERT, we initialize the
student model with a 6-layer general TinyBERT6

for better generalization and performance.

4.4 Implementation Details
The experiments include two stages, i.e., fine-
tuning a teacher model and distilling the fine-tuned
teacher model into a student model.

For experiments on fine-tuning the teacher, we
use the same architecture in the original BERT (De-
vlin et al., 2019) and fine-tune each task separately.
Specifically, for each task, we fine-tune the pre-
trained BERTBASE model for 5 epochs using the

2https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master/
TinyBERT

https://quoradata.quora.com
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT

4913

Method
CoLA
(8.5k)
Mcc

SST-2
(67k)
Acc

MRPC
(3.7k)

F1/Acc

STS-B
(5.7k)

Pear/Spea

QQP
(364k)
F1/Acc

MNLI
(393k)

Acc m/mm

QNLI
(105k)

Acc

RTE
(2.5k)
Acc

Score

Development set

BERTBASE (Devlin et al., 2019) 58.9 93.0 91.6/87.6 90.2/89.8 88.5/91.4 84.6/84.9 91.2 71.4 -

DistilBERT (Sanh et al., 2019) 51.3 91.3 87.5/- -/86.9 -/88.5 82.2/- 89.2 59.9 -
BERT-PKD (Sun et al., 2019) 45.5 91.3 85.7/- -/86.2 -/88.4 81.3/- 88.4 66.5 -
PD (Turc et al., 2019) - 91.1 89.4/84.9 - 87.4/90.7 82.5/83.4 89.4 66.7 -
TinyBERT (Jiao et al., 2020) 54.0 93.0 90.6/86.3 90.1/89.6 88.0/91.1 84.5/84.5 91.1 73.4 -
BERT-of-Theseus (Xu et al., 2020) 51.1 91.5 89.0/- -/88.7 -/89.6 82.3/- 89.5 68.2 -
MiniLM v2 (Wang et al., 2021) 52.5 92.4 88.9/- - -/91.1 84.2/- 90.8 72.1 -
MetaDistil (Zhou et al., 2022) 58.6 92.3 91.1/86.8 89.4/89.1 88.1/91.0 83.5/83.8 90.4 69.4 -
ReptileDistil 54.8 92.2 91.6/87.7 89.5/89.3 87.6/90.1 83.7/83.7 90.5 75.3 -

Test set

BERTBASE (Devlin et al., 2019) 52.1 93.5 88.9/84.8 87.7/85.8 71.2/89.2 84.6/83.4 90.5 66.4 78.3

DistilBERT (Sanh et al., 2019) 45.8 92.9 87.6/83.1 71.0/71.0 69.6/88.2 81.6/81.3 88.8 54.1 73.6
BERT-PKD (Sun et al., 2019) 43.5 92.0 85.0/79.9 83.4/81.6 70.7/88.9 81.5/81.0 89.0 65.5 75.6
PD (Turc et al., 2019) - 91.8 86.8/81.7 - 70.4/88.9 82.8/82.2 88.9 65.3 -
TinyBERT (Jiao et al., 2020) 51.1 93.1 87.3/82.6 85.0/83.7 71.6/89.1 84.6/83.2 90.4 70.0 78.1
BERT-of-Theseus (Xu et al., 2020) 47.8 92.2 87.6/83.2 85.6/84.1 71.6/89.3 82.4/82.1 89.6 66.2 77.1
MiniLM v2 (Wang et al., 2021) - 92.9 89.1/- -/84.3 70.9/- 83.8/83.3 90.2 69.2 -
MetaDistil (Zhou et al., 2022) 50.7 93.5 88.7/84.7 86.1/85.0 71.1/88.9 83.8/83.2 90.2 67.2 78.0
ReptileDistil 47.9 92.8 89.2/85.4 87.1/85.9 71.0/89.0 83.6/82.9 90.4 73.5 78.5

Table 1: Experiment results on the development and test sets of GLUE. The numbers and strings under each dataset
indicate the number of training samples and the evaluation metrics, respectively. All student models listed above
have the same architecture of 6 Transformer layers, 66M parameters, and 1.94 times speed-up, and are distilled
from a BERTBASE model fine-tuned during the corresponding task. The results on the development set are reported
from the corresponding original paper, and the results on the test set are reported from the official leaderboard of
GLUE. Note that the column “Score” is reported from the official leaderboard and represents the average score
for all tasks, including WNLI. Acc refers to accuracy, Mcc refers to Matthew’s correlation, Pear/Spea refers to
Pearson and Spearman correlation, respectively, and Acc m/mm refers to the accuracy of MNLI-m and MNLI-mm,
respectively. The best results for each task are marked with boldface.

AdamW optimizer (Loshchilov and Hutter, 2019)
and save the best checkpoint on the development
set as the teacher, with a batch size of 32, a max-
imum sequence length of 128, a learning rate of
{1e-5, 3e-5, 5e-5} with linear decay. Consequently,
we can obtain a teacher model with comparable per-
formance with BERTBASE reported on the GLUE
official leaderboard3.

For experiments on distilling the student, to re-
duce the hyperparameter search space, we set the
maximum sequence length and batch size to 128
and 32, respectively, and fix the temperature τ and
weight α as 5 and 0.5, respectively. To select the
model with the best performance when applying
the development set, a grid search strategy is then
applied over the sets of the learning rate for the
teacher model as {1e-5, 3e-5, 5e-5} and the learn-
ing rate for the student model as {1e-5, 3e-5, 5e-5}
for 5 epochs and save the best checkpoint.

3https://gluebenchmark.com/leaderboard

5 Results and Analysis

5.1 Comparative Results

Table 1 summarizes the comparative results for
both the development and test sets of the GLUE
tasks. We also report the average score of all
tasks, including WNLI, which can be obtained
from the GLUE official leaderboard by submitting
predictions to the GLUE test server. As the re-
sult shows, ReptileDistil achieves state-of-the-art
performance on the overall average performance
across all tasks of the GLUE benchmark. In detail,
the proposed ReptileDistil outperforms baselines
on 4 out of 8 tasks, and performs as well or bet-
ter than BERTBASE, particularly on small datasets,
e.g., RTE, MRPC, and STS-B. Correspondingly,
ReptileDistil is not significantly improved on large
datasets, e.g., CoLA, SST-2, and MNLI. Never-
theless, it is still very close to MetaDistil and re-
quires less training time and calculated amount.
One potential reason is that ReptileDistil updates
the teacher’s parameters by calculating the differ-

https://gluebenchmark.com/leaderboard

4914

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

ReptileDistil 54.8 92.2 91.6/87.7 89.5/89.3 87.6/90.1 83.7/83.7 90.5 75.3
w/o Reptile 51.9 91.0 90.0/86.5 88.9/88.6 86.5/89.4 82.8/83.1 90.0 72.8

Table 2: Ablation results in terms of removing reptile meta-learning (w/o Reptile).

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

First-k 53.1 91.9 91.4/87.5 89.5/89.3 87.0/90.1 83.3/83.2 90.5 74.7
Last-k 52.5 91.2 91.1/87.2 89.5/89.3 85.9/89.9 83.4/82.9 90.1 74.4
Skip-k 54.8 92.2 91.6/87.7 89.5/89.3 87.6/90.1 83.7/83.7 90.3 75.3
Both-k 51.3 90.5 90.8/87.0 89.5/89.3 86.4/89.5 81.9/81.8 90.0 73.6

Table 3: Performance comparison of four different layer-wise parameter update strategies.

0 100 200 300
Training steps

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

RT
E

de
v

ac
c

Meta teacher
Meta student
Vanilla teacher
Vanilla student

(a) Results on RTE

0 2000 4000 6000 8000 10000
Training steps

50

60

70

80

90

SS
T-

2
de

v
ac

c

Meta teacher
Meta student
Vanilla teacher
Vanilla student

(b) Results on SST-2

0 10000 20000 30000 40000 50000
Training steps

60

65

70

75

80

85

M
N

LI
-m

 d
ev

 a
cc

Meta teacher
Meta student
Vanilla teacher
Vanilla student

(c) Results on MNLI-m

Figure 3: Validation accuracy curves of the teacher and student in ReptileDistil and vanilla KD, which are
experimented on the development sets of RTE, SST-2 and MNLI-m datasets, respectively.

ence between the meta-learner (i.e., teacher) and
inner-learner (i.e., student) as approximate gra-
dients. Therefore, ReptileDistil can update the
teacher model at a large pace on small datasets,
leading to better and faster convergence of the
teacher model. Conversely, MetaDistil uses the
second-order derivatives as gradients to update
the teacher’s parameters. Although it is smoother
than ReptileDistil, it requires a certain number of
datasets to accomplish the model convergence. As
a result, ReptileDistil is likely to train better in most
circumstances, which is critical for improvement
on small datasets but may not be so obvious for
improvement on large datasets.

5.2 Ablation Analysis

To examine the effectiveness of the proposed Rep-
tileDistil, we conducted an ablation test on the de-
velopment sets of all tasks in terms of removing
reptile meta-learning, allowing ReptileDistil to be-
come vanilla KD where the teacher is fixed instead
of dynamically evolving to adapt to the student
throughout the distillation process. As the abla-

tion results indicated in Table 2, remarkable per-
formance degradation is observed after removing
reptile meta-learning, indicating that updating the
teacher model with the current state of the student
model is crucial.

5.3 Effect of Updating Strategy

We further investigate the performance gain from
four different layer-wise parameter update strate-
gies of First-k, Last-k, Skip-k, and Both-k. Table 3
summarizes the comparative results on the develop-
ment sets of all tasks. As shown, Skip-k performs
slightly better than the other three strategies in most
cases since information across every k layers in-
volves low- to high-level semantic representations
while the first k layers or the last k layers involve
relatively homogeneous semantic representations.
Particularly, the Both-k strategy performs to be not
competitive with the other three strategies since the
Both-k strategy can induce a mismatch between
the parameters of the teacher and student, resulting
in poor performance.

4915

Method Training Time (Best) Training Time (Match) Memory Footprint Best Acc/F1

Vanilla KD (Hinton et al., 2015) 10 min 10 min 3.7 GB 90.0/86.5
MetaDistil (Zhou et al., 2022) 31 min 15 min 11.4 GB 91.1/86.8
ReptileDistil 22 min 9 min 8.1 GB 91.6/87.7

Table 4: Comparison of training time and memory footprint of ReptileDistil with vanillaKD and MetaDistil on
MRPC. “Training Time (Best)” denotes the training time for each method to achieve its own best performance
on the development set. “Training Time (Match)” denotes the training time for each method to match the best
performance of vanilla KD on the development set. All experiments are conducted on a single Nvidia V100 GPU
with a batch size of 4.

5.4 Improvement Analysis

Figure 3 shows the validation accuracy curves
of the teacher and student in ReptileDistil and
vanilla KD on the development sets of the small
dataset RTE, the medium dataset SST-2, and the
large dataset MNLI-m, respectively. As indicated,
the teacher model is always fixed and constant in
vanilla KD, whereas in ReptileDistil, it continu-
ously adjusts itself adaptively. Although the accu-
racy of the teacher model continuously fluctuates
and even declines, the student model still main-
tains a growing accuracy, indicating that the teacher
model is not aimed at optimizing its performance
but rather at optimizing its teaching ability to en-
able the student model to learn better and achieve
higher performance. The results suggest that under
the scenario of knowledge distillation, improving
knowledge distillation by enhancing the teaching
ability of the teacher model may be another poten-
tial direction.

5.5 Performance-Efficiency Tradeoff

MetaDistil (Zhou et al., 2022) inevitably needs
to calculate the second-order derivatives for de-
riving the gradients to update the teacher model.
Thus, more computational time and resources are
required. However, in the proposed ReptileDistil,
this limitation has been greatly improved. Specif-
ically, the proposed ReptileDistil achieved a com-
parable or even better performance using the ap-
proximate gradient computation of reptile meta-
learning and the proposed layer-wise parameter
update strategies to replace the computation of the
second-order derivatives in MAML. Meanwhile,
the training time is reduced by approximately a
third. To verify this, following MetaDistil, we per-
formed an additional experiment on the MRPC task
to compare the computational overhead of the pro-
posed ReptileDistil with MetaDistil and vanilla KD.
As shown in Table 4, the memory footprint of Rep-

tileDistil is higher than vanilla KD but lower than
MetaDistil. Moreover, both the training time and
model convergence time of ReptileDistil are sig-
nificantly lower than MetaDistil, proving that the
proposed method can effectively alleviate the hard-
ware limitation of MetaDistil and achieve better
and faster convergence.

6 Conclusions

In this paper, a knowledge distillation method with
reptile meta-learning was proposed to compress
pre-trained language models, which also utilizes
the current performance of the student model dur-
ing each step of the distillation process as feedback
to optimize the teacher model, allowing the teacher
to learn to teach and thus produce more appropriate
soft labels to teach the student. However, unlike
previous knowledge distillation methods applying
meta-learning, the proposed method avoids calcu-
lating the second-order derivatives and achieves
better and faster convergence, owing to the inte-
gration of reptile meta-learning and the proposed
layer-wise parameter update strategies. Extensive
experiments demonstrated the competitive perfor-
mance achieved by the proposed method. Future
work attempts to continue to explore such a dy-
namic and interactive teacher-student distillation
architecture to improve the performance of the dis-
tilled model further.

Acknowledgements

This work was supported by the National Natu-
ral Science Foundation of China (NSFC) under
Grant No.61966038, the Ministry of Science and
Technology, Taiwan, ROC, under Grant No.MOST
111-2628-E-155-001-MY2 and the Postgraduate
Research and Innovation Foundation of Yunnan
University under Grant No.2021Y282. The authors
would like to thank the anonymous reviewers for
their constructive comments.

4916

References
Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,

Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge. In Proceedings of the Sec-
ond PASCAL Challenges Workshop on Recognising
Textual Entailment.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The fifth
pascal recognizing textual entailment challenge. In
Proceedings of the Third Text Analysis Conference.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017 task
1: Semantic textual similarity multilingual and cross-
lingual focused evaluation. In Proceedings of the
11th International Workshop on Semantic Evaluation
(SemEval 2017), pages 1–14.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT 2019), pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP 2005), pages 9–16.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In Proceedings of the 8th Inter-
national Conference on Learning Representations
(ICLR 2020).

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML
2017), pages 1126–1135.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9.

Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP (RepL4NLP 2020), pages 143–155.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Computa-
tional Linguistics (EMNLP 2020), pages 4163–4174.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In Proceedings of the
8th International Conference on Learning Represen-
tations (ICLR 2020).

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of the Thirteenth International Confer-
ence on Knowledge Representation and Reasoning
(KR 2012), pages 552–561.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. Fastbert: A self-
distilling bert with adaptive inference time. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2020),
pages 6035–6044.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
7th International Conference on Learning Represen-
tations (ICLR 2019).

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Advances
in Neural Information Processing Systems (NeurIPS
2019).

Alex Nichol, Joshua Achiam, and John Schulman. 2018.
On first-order meta-Learning algorithms. arXiv
preprint arXiv:1803.02999.

Dae Young Park, Moon-Hyun Cha, Changwook Jeong,
Dae Sin Kim, and Bohyung Han. 2021. Learning
student-friendly teacher networks for knowledge dis-
tillation. In Advances in Neural Information Process-
ing Systems (NeurIPS 2021), pages 13292–13303.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V. Le.
2021. Meta pseudo labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR 2021), pages 11557–11568.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2016), pages
2383–2392.

http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.11556
http://arxiv.org/abs/1909.11556
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/2004.02178
http://arxiv.org/abs/2004.02178
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1905.10650
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/2102.07650
http://arxiv.org/abs/2102.07650
http://arxiv.org/abs/2102.07650
http://arxiv.org/abs/2003.10580
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250

4917

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: Smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low preci-
sion quantization of bert. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI
2020), pages 8815–8821.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2013), pages 1631–1642.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP 2019),
pages 4323–4332.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, and Lukasz
Kaiser. 2017. Attention is all you need. In Advances
in Neural Information Processing Systems (NeurIPS
2017).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. Minilmv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics (ACL-IJCNLP 2021),
pages 2140–2151.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT 2018), pages 1112–1122.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2020), pages 2246–2251.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. Bert-of-theseus: Compressing
bert by progressive module replacing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2020), pages
7859–7869.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems (NeurIPS 2019).

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing (EMC2-NIPS
2019), pages 36–39.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit. In
Advances in Neural Information Processing Systems
(NeurIPS 2020), pages 18330–18341.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley.
2022. Bert learns to teach: Knowledge distillation
with meta learning. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (ACL 2022), pages 7037–7049.

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1909.05840
http://arxiv.org/abs/1909.05840
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2012.15828
http://arxiv.org/abs/2012.15828
http://arxiv.org/abs/2012.15828
http://arxiv.org/abs/1805.12471
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/2004.12993
http://arxiv.org/abs/2004.12993
http://arxiv.org/abs/2002.02925
http://arxiv.org/abs/2002.02925
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1910.06188
http://arxiv.org/abs/2006.04152
http://arxiv.org/abs/2006.04152
http://arxiv.org/abs/2106.04570
http://arxiv.org/abs/2106.04570

	Introduction
	Related Work
	Knowledge Distillation with Reptile Meta-Learning
	Vanilla Knowledge Distillation
	Reptile Meta-Learning for Better Distillation
	Updating of Layer-wise Parameters

	Experimental Setup
	Datasets
	Baselines
	Experimental Settings
	Implementation Details

	Results and Analysis
	Comparative Results
	Ablation Analysis
	Effect of Updating Strategy
	Improvement Analysis
	Performance-Efficiency Tradeoff

	Conclusions

