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Abstract

While pre-trained language models like
BERT (Devlin et al., 2019) have achieved im-
pressive results on various natural language
processing tasks, deploying them on resource-
restricted devices is challenging due to their
intensive computational cost and memory foot-
print. Previous approaches mainly focused on
training smaller versions of a BERT model
with competitive accuracy under limited com-
putational resources. In this paper, we extend
Length Adaptive Transformer (Kim and Cho,
2021) and propose to design Token and Head
Adaptive Transformer, which can compress and
accelerate various BERT-based models via sim-
ple fine-tuning. We train a transformer with
a progressive token and head pruning scheme,
eliminating a large number of redundant tokens
and attention heads in the later layers. Then, we
conduct a multi-objective evolutionary search
with the overall number of floating point oper-
ations (FLOPs) as its efficiency constraint to
find joint token and head pruning strategies that
maximize accuracy and efficiency under vari-
ous computational budgets. Empirical studies
show that a large portion of tokens and atten-
tion heads could be pruned while achieving
superior performance compared to the base-
line BERT-based models and Length Adaptive
Transformers in various downstream NLP tasks.
MobileBERT(Sun et al., 2020) trained with our
joint token and head pruning scheme achieves
a GLUE score of 83.0, which is 1.4 higher than
Length Adaptive Transformer and 2.9 higher
than the original model.

1 Introduction

The Transformer (Vaswani et al., 2017) has be-
come the dominant neural architecture used in
natural language processing. Especially, pre-
trained models using the Transformer architecture
as their backbone, e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and GPT-3 (Brown
et al., 2020), have shown significant accuracy im-

provement across various natural language process-
ing tasks. However, the amount of computation
required for these large neural networks is enor-
mous, which leads to a substantial increase in en-
ergy consumption and carbon footprint. For ex-
ample, an article points out that in order to train a
GPT-3 networks using standard NVIDIA gpus, it
would roughly take 190,000 KWh of energy which
is equivalent to producing around 85,000 Kg CO2

considering America’s average carbon emission
intensity (Katyanna Quach, 2020). Despite their
remarkable performance, these power hungry mod-
els pose a great hindrance along the pathway to
sustainable systems. Hence, it is crucial to make
the large-scale networks efficient and sustainable
to be deployed on various hardware with different
computational budgets and adopted for real-world
applications.

There have been efforts to improve the efficiency
of the large language models (see section 6 for a dis-
cussion in detail.) One of the effective approaches
has focused on removing redundant model parame-
ters. Recent works (Voita et al., 2019; Michel et al.,
2019) show that only a small subset of heads are
important and mainly attributed to the final deci-
sion making and some heads could even be pruned
at test time to improve efficiency. Other works
successfully improve the efficiency of BERT-based
models by pruning out word token vectors. Length
Adaptive Transformer (Kim and Cho, 2021) based
on PoWER-BERT (Goyal et al., 2020) demon-
strates that training an adaptive transformer with
progressive word token pruning improves accuracy-
efficiency trade-off that can satisfy any target com-
putational budget. In this paper, we focus on de-
veloping a framework capable of training an adap-
tive Transformer that jointly eliminates redundant
attention heads and word tokens to maximize ac-
curacy and minimize required computational re-
sources. We perform a multi-objective evolutionary
search to find a full Pareto frontier of joint token
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and attention-head pruning schemes that provides
optimal accuracy-efficiency trade-offs given any
computational budget.

We applied our framework to BERT-based mod-
els with different sizes. Our progressive head prun-
ing scheme combined with word token pruning al-
lows heavy head pruning in the last layers of BERT,
MobileBERT, and DistilBERT(Sanh et al., 2019)
without any accuracy loss. Furthermore, the final
models trained with our framework are robust to
prune even more tokens along with attention heads.
This results in superior accuracy and latency trade-
off than simply pruning word tokens. Empirical
evaluations show that MobileBERT trained with
our joint token and head pruning scheme achieves
a GLUE score of 83.0, which is 1.4 higher than
Length Adaptive Transformer and 2.9 higher than
the original model. Our adaptive BERT and Dis-
tilBERT also achieve higher accuracy with less
computational cost compared to Length Adaptive
Transformers. On SQuADv1.1 (Rajpurkar et al.,
2016) question answering task, Token and Head
Adaptive Transformers (THAT) obtain higher dev
F1 scores with less computational resources com-
pared to Length Adaptive Transformers and the
original BERT-based models.

2 Background

In this section, we present the main building blocks
of our framework. We review multi-head atten-
tion, the essential mechanism in the Transformer
architecture. Our framework uses multi-head self-
attention to decide which tokens and heads to prune
in each layer. Then, we review PoWER-BERT and
Length-Adaptive Transformer, which are recent
works that eliminate tokens to improve efficiency
in BERT-based models.

2.1 Multi-head Attention

The multi-head attention mechanism decomposes
the scaled dot-product attention to extract indepen-
dent features from the same input sequence in par-
allel. Let x = (x1, x2, . . . , xT ) be a sequence of T
word token vectors where xt ∈ Rd, and q ∈ Rd be
a query vector. An attention mechanism is defined
as

Attention(x, q) = Wo

T∑
t=1

αt(q)Wvxt (1)

where

αt(q) = softmax

(
q⊤W⊤

q Wkxt√
d

)
(2)

Wo,Wv,Wq,Wk ∈ Rd×d are trainable weight ma-
trices and query q comes from the same sequence
x in self-attention. Then multi-head attention is
defined as

MHAttention(x, q) =
H∑

h=1

Attentionh(x, q)

(3)
where H is a set of attention heads h and
Attentionh is a decomposed low-rank attention
from the head h. All the representation outputs
from Attentionh are created from the same in-
put and merged together to produce a single output.
Studies from (Voita et al., 2019; Michel et al., 2019)
have shown possible efficiency improvement from
pruning some features extracted from the heads.

2.2 PoWER-BERT

PoWER-BERT prunes out redundant word token
vectors xt ∈ x at each layer of BERT model based
on the attention significance score αt (Goyal et al.,
2020). While having the same number of parame-
ters as BERT model, PoWER-BERT significantly
reduces the computational cost. PoWER-BERT
requires sequence length configuration search and
re-training steps. In the sequence length configu-
ration search step, auxiliary retention parameters
and a regularizer parameter are briefly introduced
in the model and the loss function, respectively,
to approximate the number of retained token vec-
tors across layers under the desired accuracy and
efficiency trade-off. Then the model is re-trained
based on the searched sequence length configu-
ration z = (z1, z2, . . . , zN ) where N is the total
number of the encoder layers and zn is the number
of tokens to keep at layer n.

PoWER-BERT significantly improves the effi-
ciency and achieves a better accuracy-efficiency
trade-off than DistilBERT and other models with
different compression techniques. However, the se-
quence length configuration search and re-training
steps need to be repeated for each computational
budget. Furthermore, PoWER-BERT’s token prun-
ing is limited to sequence-level classification tasks
since it progressively prunes out hidden token vec-
tors on each layer.
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Figure 1: Overview of joint token and head pruning. The encoder blocks on the left show pruned token features as
they pass to the next layer and restored at the last layer. On the right, only a subset of attention heads are aggregated
to update the retained tokens to further reduce computational cost while achieving higher accuracy with better
generalization.

2.3 Length Adaptive Transformer
Based on PoWER-BERT, (Kim and Cho, 2021)
proposed a framework to train Length-Adaptive
Transformers to reduce expensive computational
cost caused by the repetitive search and re-training
phases from PoWER-BERT. They train the model
once with random sequence length configurations
to make the model robust to various token drop dur-
ing inference. Then, multi-objective evolutionary
search on the adaptive model provides sequence
length configurations that result in optimal trade-
offs between accuracy and efficiency for any given
computational budget. They also introduced drop-
and-restore process to separately store the dropped
token features and restore them in the final hid-
den layer, which makes the model applicable to
token-level applications such as span-based ques-
tion answering.

Our work combines findings of (Voita et al.,
2019; Michel et al., 2019) and Length Adaptive
Transformer to design joint token and attention
head adaptive transformers which maximizes the
accuracy-efficiency trade-offs.

3 Token and Head Adaptive Transformer

In this section, we describe the pruning strategy
based on attention importance and head sensitivity
score to remove tokens and attention heads respec-
tively. We train Token and Head Adaptive Trans-
formers with the pruning strategy to make the final
models robust to arbitrary attention head and token

drops at inference time. Fig. 1 illustrates how to-
kens and heads are jointly pruned in Transformer
models. Then we conduct a multi-objective evo-
lutionary search on the trained model to find the
optimal pruning configuration that meets the target
computational budget.

3.1 Attention score for token pruning

The importance scoring function for a sequence of
tokens is based on the self-attention score.

It(x) = αt(x) = softmax

(
x⊤W⊤

q Wkxt√
d

)
(4)

The function measures the attention imposed by xt
on the other words x ∈ x. Intuitively, if the atten-
tion score for a token x has a high value then it is
likely to influence the final model decision. The
significance score of x is the overall attention score
aggregated over the heads. Our adaptive model dy-
namically prunes tokens based on the self-attention
scores online.

3.2 Sensitivity score for head pruning

Following the first order method from (Michel
et al., 2019; Molchanov et al., 2016), the sensitivity
score is based on an unlearned gradient measure of
attention heads.

Ih = Ex∼X

∣∣∣∣Attentionh(x)
T ∂L(x)
∂Attentionh(x)

∣∣∣∣
(5)
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where X is the data distribution and L(x) is the loss
on sample x. In our framework, we estimate the
sensitivity score of each head on a training dataset
and use the score as a proxy for determining which
heads to prune in each layer. Without additional
training cost, smaller models with a fewer num-
ber of attention heads could be efficiently sampled
from our trained model using weight sharing.

3.3 Training Token and Head Adaptive
Transformer

First, we measure the sensitivity score of all the
attention heads by running a single forward pass
of training dataset on a baseline transformer model
fine-tuned for a downstream task. Then, we ran-
domly generate a sequence length and the head
configuration at each iteration.

For the head configuration, we sequentially sam-
ple the number of heads mi+1 at the (i+1)-th layer
within the range [m′

i+1,mi]. m′
i+1 is the minimum

number of retained heads in (i+1)-th layer set from
the lower bound head pruning configuration which
is progressively reducing the number of heads at
a constant rate to retain only one attention head in
the last layer. We set the lower bound configuration
to retain a single head in the last layer based on
the empirical results from (Michel et al., 2019) that
found ablating all heads except one within a single
layer does not significantly impact the performance.
mi is the number of retained heads in the previous
layer.

For the token configuration, we followed (Kim
and Cho, 2021) and sequentially sample the num-
ber of retained token ni+1 at the (i + 1)-th layer
within the range[(1−p)ni, ni] where ni is the num-
ber of retained tokens in the previous layer and p is
the token drop probability. Additionally, we apply
LayerDrop (Fan et al., 2019) and randomly dropout
encoder layers during training to make the model
robust to the random token drop.

We applied the sandwich rule training technique
(Yu and Huang, 2019) to avoid difficulty in conver-
gence as discussed in (Kim and Cho, 2021). First,
we optimize the model with the upper bound con-
figuration where none of the tokens and heads are
eliminated. Then we apply in-place distillation to
update the model with the lower bound with the
maximum pruning configuration and with other
randomly sampled intermediate pruning configura-
tions to transfer the knowledge from the full model
to the sparse models with various pruning schemes.

In each iteration, the full model and the sparse
model are optimized simultaneously. In practice,
Token and Head Adaptive Transformer only needs
to be trained for the same steps as Length Adaptive
Transformer model. After training we get the su-
perior accuracy-latency trade-off of sampled token
and head pruning compared to Length Adaptive
Transformer models.

3.4 Evolutionary Search of head and token
pruning configurations

After training a Token and Head Adaptive Trans-
former, we apply evolutionary search to find the op-
timal token and head configurations for the model
that satisfy the target computational budgets. Com-
pared to training models specialized for every sce-
nario, evolutionary search is computationally effi-
cient. It only requires inference on small validation
set for each pruning configuration.

We first initialize the population of joint token
and head pruning configurations with constant drop
ratios. The joint configurations are generated with
evenly spaced token and head drop rates to have
the initial population uniformly distributed between
the upper bound and the lower bound pruning con-
figurations. At each iteration, we evolve the pop-
ulation to consist only of configurations with the
optimal accuracy-efficiency trade-offs that lie on a
new Pareto frontier by mutation and crossover. A
mutation alters an original pruning configuration
(j1, · · · , jL) to (j′1, · · · , j′L). It involves a probabil-
ity that an arbitrary element ji for i-th layer in a
pruning configuration (j1, · · · , jL) will be altered
to a new value j′i sampled from the uniform dis-
tribution

(
j′i−1, ji+1

)
. A crossover takes two joint

configurations and averages the pruning values at
each layer. In each evolution iteration, we maintain
nm joint configurations from mutation and nc joint
configurations from the crossover. The final itera-
tion will generate the furthest Pareto frontier that
consists of the joint configurations with the optimal
accuracy-efficiency trade-offs.

4 Experiments

We conduct extensive experiments to evaluate our
framework and compare to the baseline models and
Length-Adaptive Transformers.

4.1 Model and Data
We investigate three Transformer-based models:
BERT, DistilBERT, and MobileBERT. BERT is
a language model with a Transformer encoder as
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Figure 2: Pareto frontier curves of F1 score (for SQuAD v1.1 and MRPC) and Pearson/Spearman correlation score
(for STS-B) to GFLOPs. We apply the proposed method to BERT, DistilBERT, and MobileBERT and compare
them to the Length-Adaptive Transformers.

its base building block. The model consists of
12 encoder layers and 12 self-attention heads in
each layer (144 heads in total). DistilBERT is
a compact Transformer model based on BERT.
Knowledge distillation is performed during pre-
training to transfer knowledge from BERT teacher
model to DistilBERT. DistilBERT has 6 encoder
layers and 12 self-attention heads in each layer (72
heads in total). MobileBERT is a thin version of
BERTLarge that has bottleneck structures to sig-
nificantly compress the model size. The model
consists of 24 encoder layers and 4 self-attention
heads in each layer (96 heads in total). We use
the Hugging Face implementation and focus on
base-uncased models. We use Stanford Ques-
tion Answering Dataset (SQuAD v1.1) and GLUE
benchmarks (Wang et al., 2018) including CoLA,
STS-B, MRPC, SST-2, QNLI, QQP, and MNLI-
mm to evaluate the proposed approach.

4.2 Baseline methods and evaluation metrics

We compare our approach to standard Transformer
models fine-tuned on downstream tasks and Length-
Adaptive Transformers that are further trained on
downstream tasks with token drops. We focus on
comparing the inference efficiency with three dif-
ferent metrics: the number of trainable parameters,
CPU wall clock time, and the number of floating
operations (FLOPs), which is independent of hard-
ware and validated to have linear correlations with
CPU latency on (Kim and Cho, 2021). We mea-
sured the average CPU latency across the validation

SQuAD v1.1
Model F1 FLOPs
BERT 88.39 1.00x
BERTLAT

† 89.12 0.86x
BERTLAT

⋆ 87.39 0.41s
BERTTHAT

† 89.23 0.68x
BERTTHAT

⋆ 87.53 0.34x
DistilBERT 85.69 1.00x
DistilBERTLAT

† 85.46 0.80x
DistilBERTLAT

⋆ 84.69 0.55x
DistilBERTTHA

† 85.87 0.92x
DistilBERTTHA

⋆ 84.70 0.50x
MobileBERT 89.31 1.00x
MobileBERTLAT

† 89.63 0.93x
MobileBERTLAT

⋆ 88.69 0.56x
MobileBERTTHA

† 89.99 0.84x
MobileBERTTHA

⋆ 89.13 0.51x

Table 1: Comparison of Length Adaptive Transformers
and Token and Head Adaptive Transformers on SQuAD
v1.1. † denotes the most efficient model while having
the highest accuracy among the Pareto frontier. ⋆ de-
notes the most efficient model with accuracy within 1
percent of the standard model accuracy.

dataset with Intel i9-9980XE using 18 threads.

4.3 Hyperparameters

We fine-tune pre-trained BERT models for down-
stream tasks for 3 epochs without any pruning ac-
cording to (Goyal et al., 2020). Then we further
fine-tune BERT and DistilBERT on our token and
head adaptive framework with sequence drop rate
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and layer drop rate set to 0.2, which is the same rate
used for training a Length Adaptive Transformer.
For MobileBERT, we train with a sequence drop
rate set to 0.05 and a layer drop rate set to 0.15
to avoid an excessive amount of tokens pruned
across 24 encoder layers. The head drop rate is
set to a constant rate based on the number of lay-
ers of the models to have a single head remaining
in the last layer. We fine-tuned with 2 randomly
sampled intermediate pruning configurations in ad-
dition to upper and lower bound configurations to
apply the sandwich training technique. We fine-
tuned for 5 epochs on all the benchmarks. We use
the batch size of 16 for BERT and 32 for Distil-
BERT and MobileBERT. The learning rate is set to
5e-5 for SQuAD and 2e-5 for GLUE benchmarks.
For MobileBERT, the learning rate is set to 5e-5 for
both SQuAD and GLUE benchmarks. The maxi-
mum sequence length is set to 384 for SQuAD v1.1
and 128 for SST-2, QQP, MNLI-mm, STS-B, and
QNLI, and 64 for CoLA.

For evolutionary search, we run 30 iterations of
evolutionary search with 30 mutation pruning con-
figurations with a mutation probability of 0.5 and
30 crossover pruning configurations on each itera-
tion to find the accuracy-efficiency Pareto frontier.

5 Results and Analysis

In this section, we evaluate the experiments and
analyze the pruning results in terms of the accuracy-
efficiency trade-offs and head distribution.

5.1 Pareto frontier
We compare the accuracy-efficiency Pareto fron-
tier of Token and Head Adaptive Transformers and
Length Adaptive Transformers on the SQuAD and
GLUE benchmarks. As shown in Fig. 2, the Pareto
curve of the Token and Head Adaptive Transform-
ers have a larger area-under-curve (AUC) compared
to those of the Length Adaptive Transformers. The
Pareto frontier for the SQuAD benchmark shows
that all the BERT models fine-tuned with the pro-
posed framework generate joint pruning schemes
with superior accuracy-latency trade-offs. It is no-
ticeable in the MRPC Pareto curve that the sparse
models with certain pruning configurations have
even higher accuracy with significantly less num-
ber of floating point operations compared to the
full model (rightmost point on Pareto curve) for
both Length Adaptive Transformers and Token
and Head Adaptive Transformers. Furthermore,

the full model fine-tuned with the proposed frame-
work achieves higher accuracy compared to those
of Length Adaptive Transformers under the same
fine-tuning setup with equal number of training it-
erations and learning rate. This shows that the mod-
els trained with the proposed framework generalize
better compared to the standard fine-tuned models
and the Length Adaptive Transformers. As we try
to reduce the computational effort and reduce the
GFLOPs, our models trained with the joint prun-
ing policy remove unnecessary distractors both in
terms of tokens and heads leading to boosting the
accuracy. Beyond a certain point of pruning drops
essential information as well showing the trend
towards lowering accuracy consequently. This de-
scribes a general behavior that depends on the ac-
tual pruning that happens, and it is very data sensi-
tive. This trend is also shown for the STS-B Pareto
curve for BERT and DistilBERT.

Additionally, we find that BERT model fine-
tuned with the joint pruning framework generates
significantly better accuracy-efficiency trade-offs
compared to the standard DistilBERT model when
enough computational budget is allowed. For exam-
ple, with the computational budget of 25 GFLOPs,
BERT model outperforms DistilBERT by achiev-
ing 5 percent higher accuracy while requiring the
same number of GFLOPs. Similar trends can be
found in the other two benchmarks as well.

5.2 Maximizing efficiency gain

We also measure how much efficiency could be
gained with less than 1 percent accuracy loss from
the standard fine-tuned models. Table. 1 shows
the accuracy and the efficiency gain of the stan-
dard Transformers, Length Adaptive Transform-
ers, and Token and Head Adaptive Transformers
on the SQuAD benchmark. To validate our pro-
posed framework could find joint pruning configu-
rations that maximize both accuracy and efficiency,
we searched two pruning configurations for each
model that maximize accuracy and efficiency gain
respectively. † denotes the most efficient model
while having the highest accuracy. ⋆ denotes the
model with the highest efficiency gain that has an
accuracy within 1 percent of the standard model
accuracy. For all cases, Token and Head Adaptive
Transformers achieves higher accuracy and higher
efficiency gain. Fig. 2 provides further insights
and shows the Pareto frontier curves of our models
are shifted upper-left compared to the curves from
Length-Adaptive Transformers. This shows that



4581

Accuracy/FLOPs
Model CoLA STS-B MRPC SST-2 QNLI MNLI-mm QQP GLUE

BERT 55.3/1.00x 87.3/1.00x 89.3/1.00x 92.6/1.00x 90.8/1.00x 83.0/1.00x 88.4/1.00x 83.8/1.00x
BERTLAT

† 57.7/0.38x 88.4/0.55x 89.0/0.39x 92.7/0.36x 91.1/0.55x 84.1/0.53x 89.6/0.60x 84.6/0.48x
BERTLAT

⋆ 56.2/0.34x 86.6/0.36x 89.0/0.39x 92.4/0.35x 89.8/0.35x 83.2/0.34x 89.4/0.35x 83.8/0.35x
BERTTHAT

† 58.1/0.31x 88.6/0.49x 89.0/0.32x 92.5/0.31x 91.1/0.46x 83.9/0.48x 89.5/0.41x 84.7/0.40x
BERTTHAT

⋆ 56.8/0.30x 86.9/0.30x 89.0/0.32x 91.6/0.30x 89.8/0.31x 83.3/0.31x 89.4/0.30x 83.8/0.31x
DistilBERT 40.2/1.00x 83.4/1.00x 83.2/1.00x 90.2/1.00x 87.1/1.00x 80.0/1.00x 87.1/1.00x 78.7/1.00x
DistilBERTLAT

† 44.1/0.54x 84.6/0.55x 82.4/0.54x 90.7/0.54x 88.1/0.63x 81.2/0.56x 88.6/0.59x 80.0/0.56x
DistilBERTLAT

⋆ 44.1/0.54x 84.5/0.54x 82.4/0.54x 90.7/0.54x 87.8/0.54x 81.2/0.56x 88.5/0.54x 79.9/0.54x
DistilBERTTHAT

† 45.9/0.46x 84.9/0.48x 83.3/0.52x 91.2/0.46x 88.0/0.59x 81.2/0.46x 88.6/0.46x 80.4/0.49x
DistilBERTTHAT

⋆ 45.9/0.46x 84.0/0.45x 82.4/0.45x 91.2/0.46x 86.6/0.45x 81.2/0.46x 88.6/0.46x 80.0/0.45x
MobileBERT 46.0/1.00x 84.0/1.00x 85.1/1.00x 91.3/1.00x 87.0/1.00x 81.1/1.00x 86.0/1.00x 80.1/1.00x
MobileBERTLAT

† 49.6/0.20x 86.9/0.39x 83.1/0.22x 92.4/0.25x 89.6/0.46x 83.0/0.71x 88.3/0.39x 81.6/0.37x
MobileBERTLAT

⋆ 49.6/0.20x 83.1/0.20x - 90.9/0.20x 86.2/0.23x 80.3/0.26x 85.7/0.20x 79.3/0.21x
MobileBERTTHAT

† 53.6/0.25x 87.9/0.92x 85.6/0.33x 92.3/0.80x 90.2/0.65x 83.2/0.94x 88.3/0.35x 83.0/0.60x
MobileBERTTHAT

⋆ 50.1/0.21x 83.3/0.20x 84.3/0.22x 91.9/0.19x 86.1/0.22x 80.2/0.25x 86.3/0.19x 80.3/0.21x

Table 2: Results are evaluated on the test set of GLUE benchmark. † and ⋆ denote the same optimal models as
described in Table 1.

our model trained with the joint pruning scheme
produce models with less computational cost and
higher accuracy. Our token and head adaptive
BERT model achieves higher accuracy and only
requires 34% of the number of floating point opera-
tions from the baseline model, which is 7% smaller
than Length-Adaptive Transformer.

Table. 3 also shows the number of learnable pa-
rameters and CPU latency of the models with max-
imum efficiency gains. Our adaptive BERT model
achieves higher accuracy while it is 15% faster and
20% smaller. Our adaptive DistilBERT and Mobile-
BERT are 12% and 9% faster than Length-Adaptive
Transformer models while achieving better accu-
racy.

The overall GLUE scores for the two pruning
configurations with the highest accuracy and the
maximum latency gain also validate the token and
head adaptive model with joint pruning configu-
rations achieves better efficiency gain and higher
accuracy. MobileBERT trained with our joint to-
ken and head pruning scheme achieves a GLUE
score of 83.0, which is 1.9 higher than the standard
MobileBERT and 1.4 higher than Length-Adaptive
Transformers.

5.3 Head distribution
We further analyze the joint pruning configurations
and compare with length pruning schemes from
Length-Adaptive Transformers. Fig. 3 shows the
best pruning configurations of Length Adaptive
and Token and Head Adaptive Transformers that
maximize efficiency within 1 percent of the stan-
dard model accuracy. For SST-2 benchmark, the 3
token and head adaptive BERT-based models only

Model Param(MB) Lat(ms) heads tokens
BERTLAT

⋆ 415.4 385.7 144 1846
BERTTHAT

⋆ 333.3 333.4 77 1782
DistilBERTLAT

⋆ 253.2 251.4 72 1194
DistilBERTTHAT

⋆ 240.3 223.1 55 1174
MobileBERTLAT

⋆ 93.8 360.4 96 5266
MobileBERTTHAT

⋆ 91.1 331.0 55 4891

Table 3: The number of parameters, CPU latency, the
number of attention heads, and the number of tokens
for BERT-based models that maximize efficiency on
SQuAD benchmark.

retain a single head in the last layer. Table. 3 shows
that 48%, 24%, and 43% of the attention heads are
pruned from BERT, DistilBERT and MobileBERT
respectively and still performs superior to the stan-
dard fine-tuned models and Length-Adaptive Trans-
formers. On SQuAD benchmark, the token and
head adaptive models progressively reduce the at-
tention heads where more than 50% of the attention
heads are pruned in the last layer.

The token and head adaptive MobileBERT tends
to retain slightly more tokens in the center layers
compared to Length Adaptive Transformer and re-
duce more tokens in the later layers. Our adaptive
model have higher token drop rate. This shows the
final models trained with our framework are robust
to prune even more tokens along with attention
heads.

6 Related Work

Transformers and BERT have outperformed exist-
ing language based models and achieved state-of-
the-art results but at the cost of high computational
power requirements. In order to make these models
efficient in terms of memory and power footprint,
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Figure 3: Comparison of the Sequence length configurations of the ⋆ models with the maximum efficiency gains on
SQuAD and SST-2 benchmarks. LAT Sequence represents the token length configuration from Length-Adaptive
Transformer while THA for Token and Head Adaptive Transformers. THA Head shows the retaining head
distribution of Token and Head Adaptive models.

several strategies have been proposed. Here we
discuss a few key studies.

While large networks are essential for the best
performance, the model size becomes an obstacle
when it comes to scaling and also leads to worse
training time. ALBERT (Lan et al., 2020) targets
this limitation and proposed parameter reduction
training by factoring the embedding matrices and
sharing the parameters across layers which resulted
in a smoother up-scaling up of the base model as
well as significantly less training time. However,
in terms of inference latency, there is not much
improvement. PoWER-BERT (Goyal et al., 2020)
points out this fact and proposes an orthogonal
approach of progressive fine-grained word-vector
elimination that can reduce the inference time up
to 4.5x without harming the accuracy much. How-
ever, PoWER-BERT requires repetitive training for
each different constraint and is limited to sequence-
level classification only. Length adaptive trans-
former or LAT (Kim and Cho, 2021) alleviates
these shortcomings by introducing a LengthDrop
method that automatically derives multiple sub-
models using evolutionary search without requiring
any re-training. They also proposed a Drop-and-
Restore process to set aside the word-vectors so
that they can be restored at the final layers extend-
ing the PoWER-BERT beyond classification tasks

to a broader range of NLP tasks.

Parallel to these studies that deal with token prun-
ing, another line of work investigates whether we
need so many attention heads. (Voita et al., 2019)
identifies the most important attention heads us-
ing layer-wise relevance propagation or LRP (Ding
et al., 2017) and gradually prunes the head accord-
ingly. In a complementary approach, (Michel et al.,
2019) finds the most relevant heads by masking or
ablating one or more heads and looking at their
impact on performance. In this way, they calculate
a proxy importance score and iteratively prune the
heads according to that without degrading the per-
formance significantly. Another group of studies
concentrates on model architecture and parameter
size. Where DistilBERT (Sanh et al., 2019) uses a
teacher-student setting to transfer knowledge from
a large model to its small student version to reduce
the model parameters, MobileBERT (Sun et al.,
2020) reduces it by leveraging the bottleneck struc-
ture.

While both token and head pruning improves the
model’s efficiency i.e. less inference time, lower
memory, and power footprint, to the best of our
knowledge, no study has tried to optimize both of
them simultaneously which precisely lays down
the basis of our work.
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7 Conclusion and Future Work

In this work, we propose a joint token and head
pruning framework to train robust Transformer
models adaptive to token and head dropouts. Our
idea is to calculate head importance from the self-
attention operation and eliminate redundant heads
from the retained tokens to further reduce the com-
putational cost and train the model adaptive and
perform better generalization. The final models
trained with the proposed framework show better
generalization and greater efficiency gains. To-
ken and Head Adaptive Transformers are robust
to prune out more tokens than Length-Adaptive
Transformers along with the attention heads. This
leads to superior accuracy-latency trade-offs and
larger area-under-curve of the Pareto frontier found
with an evolutionary search. We would also like
to explore further in the direction of reducing the
computational cost of large-scale models by elimi-
nating redundant operations and applying efficient
optimization techniques to search for efficient mod-
els with minimum resources.
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