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Abstract

In this paper we present MisNet, a novel model
for word level metaphor detection. MisNet con-
verts two linguistic rules, i.e., Metaphor Identi-
fication Procedure (MIP) and Selectional Pref-
erence Violation (SPV) into semantic matching
tasks. MIP module computes the similarity be-
tween the contextual meaning and the basic
meaning of a target word. SPV module per-
ceives the incongruity between target words
and their contexts. To better represent basic
meanings, MisNet utilizes dictionary resources.
Empirical results indicate that MisNet achieves
competitive performance on several datasets.

1 Introduction

Metaphor is an omnipresent figurative language in
daily communication. Conceptual Metaphor The-
ory proposes that metaphor is a mapping mech-
anism between the source domain and the target
domain (Lakoff and Johnson, 2008).

e.g. 1 The scream pierced the night.
In e.g. 1, the literal meaning of the verb pierce is

"some sharp object goes into or on through some-
thing" . However, the contextual meaning is "break
silence". Here, the source domain is a highly ab-
stract action, while the target domain can present
the corresponding meaning in a more concrete way.
In general, there exists two types of metaphors, i.e.,
novel metaphors and conventional metaphors.

e.g. 2 He attacked the government’s defence
policy.

Semantic Shift Theory shows that new lexical
senses can derive from metaphors (Blank, 2013).
Once a metaphorical usage of a word is accepted
by most people, the metaphorical lexical sense is
fixed. Thus a polysemant may have metaphorical
marginal meanings (Bloomfield, 1994). In e.g. 2,
the metaphorical target word attack means criticize,
which is also a sense of it. It is a conventional
metaphor for the metaphorical meaning has been

fixed. While e.g. 1 is a novel metaphor, for the
metaphorical usage is temporary.

Linguistic rules instruct us how to identify
metaphors. According to Metaphor Identification
Procedure (MIP) (Crisp et al., 2007; Steen, 2010),
a metaphor is identified if the contextual meaning
of the target word contrasts with one of its more
basic meaning. More basic meanings are: 1) More
concrete; what they evoke is easier to imagine, see,
hear, feel, smell, and taste; 2) related to bodily ac-
tion; 3) more precise (as opposed to vague); 4) his-
torically older(Group, 2007; Do Dinh et al., 2018).
The basic meaning of pierce in e.g. 1 contrasts
with its contextual meaning so it is a metaphor.

Researchers are divided on how to represent ba-
sic meanings. Gao et al. (2018) and Mao et al.
(2019) used dynamic ELMo embeddings and static
GloVe embeddings to encode contextual target
meanings and basic target meanings respectively.
Choi et al. (2021) proposed that a target used alone
is literal. Su et al. (2021) and Wan et al. (2021)
used the gloss (brief definition) of a target to rep-
resent its literal meaning. All the methods are not
linguistically intuitive, because we do not know
whether the basic meaning is accurately encoded
through embedding and a basic meaning is not sim-
ply the average of its gloss. Since basic meanings
are not properly represented, MIP may be invalid.
Consequently, conventional metaphors are ignored
by previous studies as well(Tong et al., 2021).

Another linguistic rule is Selectional Preference
Violation (SPV) (Wilks, 1975, 1978), which sug-
gests that a metaphor is identified by noticing se-
mantic incongruity between a target word and its
context. In e.g. 1, pierce rarely occurs in the con-
text consisting of scream and night. There comes
a contextual contrast in such a collocation. No-
tice that SPV becomes invalid when faced with a
conventional metaphor, because the context is also
usual for the metaphor word like attack in e.g. 2.

To better use linguistic rules, we propose to use
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the sentence where the target adopts its basic mean-
ing for a better representation. This idea is in line
with mainstream language models: you shall know
a word by the company it keeps (Firth, 1957).

In this paper, we propose a novel metaphor
detection model named Metaphor Identification
from Siamese Network (MisNet). MisNet adopts
a siamese framework, consisting of two separate
encoders . We regard MIP as a representation based
semantic matching task between target in the given
sentence and target in the basic usage. MIP is ac-
complished across two encoders. We model SPV
as an interaction based semantic matching task be-
tween the target word and its context to measure
semantic incongruity. SPV is implemented within
a single encoder. Based on the fusion of MIP and
SPV modules, MisNet makes a final prediction.

The contributions of this paper can be summa-
rized as follows:

• We model two linguistic rules, i.e., MIP and
SPV as two semantic matching tasks. Our
model is linguistically intuitive and also ex-
tensible.

• We use basic usage to better encode the basic
meaning for a target word, thus our model
can avoid the invalidation of MIP and SPV.
It is also proficient in tackling conventional
metaphors.

• Experimental results show that our method
achieves competitive performance on several
datasets over existing approaches.

• Our code is available on GitHub1.

2 Related Work

Recently, metaphor detection has attracted lots of
attention. With the development of NLP technolo-
gies, various methods have been applied. In gen-
eral, these approaches can be categorized into three
types: feature engineering based, RNN based and
transformer based methods.

Feature engineering based methods use linguis-
tic features such as word concreteness, word ab-
stractness (Turney et al., 2011), and word class
etc., as input of a certain machine learning model
like Logistic Regression and SVM (Shutova and
Sun, 2013; Assaf et al., 2013; Tsvetkov et al., 2014;
Wan et al., 2020). RNN based models use RNN as

1https://github.com/SilasTHU/MisNet

a feature extractor to form contextual representa-
tions to identify metaphors(Wu et al., 2018; Gao
et al., 2018; Mao et al., 2019; Le et al., 2020).
Though great improvements have been made, RNN
based models mostly use static word representa-
tions like Word2Vec and GloVe, so they are not
adept at metaphors which convey complex contex-
tual senses. Also, due to the nature of RNN, these
models cannot be paralleled.

Transformer based methods use a Pretrained
Language Model (PLM) like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), as the back-
bone of the model, yielding promising results in
metaphor detection. Su et al. (2020) converted
metaphor detection into a machine reading com-
prehension task with various linguistic features in-
corporated, achieving best reported results in ACL
2020 metaphor detection shared task. Choi et al.
(2021) used a late-interaction mechanism to en-
code the contextual meaning and the literal mean-
ing of a target word. Song et al. (2021) focused on
verb metaphor detection. They used dependency
parsing to extract the objects and subjects of the
given verbs to use syntactic relations. Lin et al.
(2021) utilized contrastive learning to distinguish
metaphors from literal usages. They also used self-
training strategy to generate pseudo-labels, which
largely expanded existing public datasets. Also,
some recent researches noticed that external dictio-
nary resources could greatly help metaphor detec-
tion. Wan et al. (2021) and Su et al. (2021) used
glosses to interpret target words. They took the
average embeddings of a gloss as the correspond-
ing target representation. However, the meaning of
a word is not simply the average of its definition.
There still leaves much space to better represent
literal meanings.

3 Proposed Model

Some researchers use sequence labeling to detect
metaphors, i.e., label all n words in a sentence in
one go (Gao et al., 2018; Mao et al., 2019). In
this paper, we use word classification paradigm to
detect metaphors. We regard each word in the given
sentence as target in order, then take a target along
with its given sentence to predict the metaphoricity
of the target for n times.

3.1 SPV & MIP : Semantic Matching

Semantic matching intends to measure the similar-
ity between two given texts, of which Interaction-
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based Models and Representation-based Models
are two main paradigms. In this paper, we use
the mentioned two semantic matching models to
implement SPV and MIP.
Interaction-based Model for SPV: for an
Interaction-based Model (IM), two texts are con-
catenated as input, where each token within the
input can fully interact with the others (Yang et al.,
2019; Rao et al., 2019). Vanilla BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) take
two texts as model input to compute a similarity
score, so they are also IMs. SPV suggests to notice
the incongruity between the target word and its con-
text, which can be measured through the semantic
similarity between them. As Fig. 1 (a) shows, we
adopt an IM to implement SPV, because the target
and its context are from a same sequence, such that
they are naturally concatenated. In our model, they
are two texts to be matched. Hence they can in-
teract thoroughly through multi-head self-attention
(Vaswani et al., 2017) in BERT. Finally, we manage
to retrieve the contextual target embedding ht and
context embedding hc to calculate the similarity.

Target in Sentence

BERT

𝒉"

Similarity

Sentence

BERT

Target in Basic Usage

𝒉#

Basic Usage

(b) Representation-based Model

Concat

Target Context

BERT

𝒉" 𝒉$

(a) Interaction-based Model

Similarity

Figure 1: Interaction-based Model and Representation-
based Model in semantic matching task.

Representation-based Model for MIP: for a
Representation-based Model (RM), two texts are
input into different encoders to get their repre-
sentations, so the two texts do not interact with
each other during encoding (Conneau et al., 2017;
Reimers and Gurevych, 2019). MIP prompts us
to determine whether the target has a more basic
usage. Thus we calculate the semantic similarity
between target in the given sentence and that in the
basic usage. As Fig. 1 (b) shows, we model MIP as
an RM because using two separate encoders for the
given sentence and the basic usage can avoid unnec-
essary interactions. Hence the contextual meaning
and the basic meaning of a target can be better
captured. We then obtain the contextual target em-
bedding ht and the basic embedding hb, based on

which the similarity is computed.

NOUN
1. An aggressive and violent act.
eg. He was killed in an arson attack.
2. Public criticism or opposition.
eg. The Opposition Leader intensified his attack on 

the Prime Minister.

VERB
1. Take aggressive military action.
eg. In February the Germans attacked Verdun.
2. Criticize or oppose publicly.
eg. He attacked her opinion.

Attack👈 Step 0

👈 Step 1
👈 Step 2

Figure 2: Basic Usage Retrieving Strategy for attack
(verb). Step 0. Find the term of the target word. Step 1.
Locate at the same POS tag. Step 2. Take the example
sentence under the first gloss as a basic usage since
dictionary editors tend to place more basic meanings in
the front.

3.2 MisNet Architecture

Combine MIP and SPV: Using SPV to detect a
metaphor depends on the incongruity of the target
and its context. However, a conventional metaphor-
ical target does not own a paradoxical context
(the context is usually common for the target), so
SPV may be invalid (Haagsma and Bjerva, 2016;
Do Dinh et al., 2018). MIP is utilized based on the
basic meaning and the contextualized meaning of a
target. Since we use basic usages to encode basic
meanings, our MIP module is suitable for both con-
ventional and novel metaphors. We leverage the
combination of MIP and SPV for better metaphor
detection, which is proved to be a better method by
experimental results.

Fig. 3 shows the architecture of MisNet. Mis-
Net adopts a siamese framework to combine MIP
and SPV. The left part encodes the given sentence,
while the right uses the target, the POS tag, and the
basic usage. MIP is implemented across the left
and the right encoders, while SPV functions within
the left one.
Left Encoder Input: the left encoder input is the
given sentence in the dataset:

L = ([CLS], given_sentence, [SEP]) , (1)

where [CLS] and [SEP] are the two special tokens
of BERT.



4152

𝒉"# 𝒉"$ 𝒉"% 𝒉"&𝒉"' 𝒉"( 𝒉") 𝒉"*𝒉"+ 𝒉"+, 𝒉-' 𝒉-% 𝒉-) 𝒉-* 𝒉-+,𝒉-&𝒉-+ 𝒉-( 𝒉-# 𝒉-$ 𝒉-++

Pretrained BERT Encoder Pretrained BERT Encoder

drain

drain

TAR

2

He

LF

6

drain

LF

7

the

LF

9

pool

10

LF

#ed

LF

8

[CLS]

GF

1

[SEP]
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Figure 3: MisNet architecture. The two BERT encoders share weights. hc, ht, hb are context embedding, contextual
target meaning, and basic meaning respectively. GF, LF, POS, TAR denote global feature, local feature, POS feature
and target word.

Right Encoder Input: we concatenate the target
word, target POS tag and the basic usage as the
right encoder input. The basic direct usage (or a
more basic usage, which is still in line with MIP
rule.) for the target word is retrieved via Basic
Usage Retrieving Strategy as Fig. 2 shows. The
right input is:

R = ([CLS], target_word, [SEP],POS, [SEP],

basic_usage, [SEP]). (2)

If we fail to retrieve the basic usage, we just use
the target word and its POS tag.

Different parts of the input have different im-
pacts on metaphor detection. Self-Attention mech-
anism in BERT can benefit semantic representa-
tions for input tokens(Vaswani et al., 2017), but
it may not be sufficient to notice the differences
among various input parts. To treat them differ-
ently, for both the left and the right input, we add
input type feature embeddings to the BERT input
layer. We design four features and embed them
into fixed-length vectors:

• POS Feature: the POS tag of the target word.
It only exists in the right input.

• Target Feature: the target word. The left and
the right input have a same target word.

• Local Feature: following Su et al. (2020) and
Choi et al. (2021), we set the clause where

the target word lies as local context. For sim-
plicity, a clause is separated by commas, dots,
exclamation marks, and question marks etc.
Since a basic usage is usually short2, we re-
gard the whole basic usage as local feature.

• Global Feature: other tokens except the POS
tag, the target word, and its local feature.

After tokenization via Byte-Pair Encoding (BPE)
algorithm (Radford et al., 2019), L is cut into n
tokens, while R has m tokens. The final input for
BERT is token embeddings, positional embeddings,
plus feature embeddings. Then we use BERT to
get contextualized representations:

HL = BERT(L) = (hl1 ,hl2 , · · · ,hln), (3)

HR = BERT(R) = (hr1 ,hr2 , · · · ,hrm), (4)

where HL ∈ Rn×d and HR ∈ Rm×d are the
embedding matrices of L and R respectively. d is
the hidden dimension in BERT.

Based on HL, we can get the contextual meaning
of the target word, which is denoted by ht. If the
target word is cut into k tokens by BPE, we just
take the average:

ht =
1

k

∑u+k−1

i=u
hli , (5)

2It is difficult to get the exact position for a target word in
its basic usage, because it may not be rendered in the original
form and lemmatization is not always accurate.
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where u is the start location for target in the left
input. Similarly, based on HR, we get the basic
meaning of the target word, which is denoted by
hb. Notice that we do not need to know the exact
position of the target word in the basic usage, be-
cause transformer encoder will apply self-attention
mechanism to make the target word in R focus
on the relevant parts automatically (Vaswani et al.,
2017).

For the left input, we take the average of the em-
bedding matrix HL to get the context embedding:

hc = Mean(HL). (6)

MIP layer compares the basic meaning vector hb

and the contextual target meaning vector ht. We
use a linear transformation to implement MIP:

hMIP = W⊤
MIP[ht;hb; |ht − hb|;ht ∗ hb] + bMIP,

(7)
where [·] is a readout method. | · | means absolute

value. ; is concatenation, and ∗ denotes hadamard
product. We combine these methods to readout dif-
ferent representations. WMIP and bMIP are weight
and bias of MIP layer respectively. Similarly, we
conduct SPV on context vector hc and contextual
target meaning vector ht:

hSPV = W⊤
SPV[hc;ht; |hc − ht|;hc ∗ ht] + bSPV,

(8)
where WSPV and bSPV are weight and bias of

SPV layer respectively. POS information plays an
important role in metaphor detection, so we extract
POS vector hPOS from the right encoder. Finally,
we combine MIP, SPV, and POS information to
decide whether the target word is metaphorical:

y = σ
(
W⊤[hMIP;hSPV;hPOS] + b

)
, (9)

where W and b are weight and bias. σ is a soft-
max function. y ∈ R2 indicates the predicted label
distribution.

3.3 Training Objective
For a classification task, we use cross entropy loss
as our optimization criterion:

L = − 1

N

∑N

i=1
wyiyi log(ŷi), (10)

where N is the count of training samples. yi and
ŷi denote the ground truth label and the predicted
score for the i-th sample respectively. wyi is class
weight to alleviate data unbalance problem.

4 Experiments

4.1 Datasets
Following most metaphor identification works, we
use four widely-used public datasets. The statistic
information is shown in Table 1.
VUA All (Steen, 2010): The largest metaphor
dataset drawn from VU Amsterdam Metaphor Cor-
pus (VUA). VUA collects sentences from the BNC-
Baby Corpus, including four genres: academic,
conversation, fiction, and news. VUA All dataset
labels each word in each POS for each sentence.
VUA Verb (Steen, 2010): VUA Verb is a subset of
VUA All. VUA Verb dataset only has verb targets.
MOH-X (Mohammad et al., 2016): MOH-X
dataset focuses on the verb track. MOH-X col-
lects metaphorical and literal usages for verbs from
WordNet. Each verb in MOH-X has multiple
senses, of which at least one is metaphorical.
TroFi (Birke and Sarkar, 2006, 2007): TroFi
dataset only includes verb targets. The literal and
metaphorical usages for 50 English verbs are drawn
from The 1987-89 Wall Street Journal Corpus.

Dataset #Sent. #Target %Met. Avg. Len

VUA Alltr 6,323 116,622 11.19 18.4
VUA Allval 1,550 38,628 11.62 24.9
VUA Allte 2,694 50,175 12.44 18.6

VUA Verbtr 7,479 15,516 27.90 20.2
VUA Verbval 1,541 1,724 26.91 25.0
VUA Verbte 2,694 5,873 29.98 18.6

MOH-X 647 647 48.69 8.0

TroFi 3,737 3,737 43.54 28.3

Table 1: Datasets information. #Sent.: Number of sen-
tences. #Target: Number of target words. %Met.:
Percentage of metaphors. Avg. Len: Average sentence
length.

4.2 Baselines
RNN_ELMo (Gao et al., 2018) and RNN_BERT
(Mao et al., 2019): two RNN based sequence la-
beling models. They concatenate embeddings of
ELMo (or BERT) and GloVe to represent a word.
RNN_HG and RNN_MHCA (Mao et al., 2019):
RNN_HG uses MIP to compare literal target mean-
ings and contextual target meanings, which are
represented by GloVe and ELMo embeddings re-
spectively. RNN_MHCA is based on SPV, with
multi-head contextual attention utilized.
MUL_GCN (Le et al., 2020): MUL_GCN adopts
a multi-task learning framework to tackle metaphor
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Model VUA All VUA Verb MOH-X (10 fold)
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

RNN_ELMo 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2
RNN_BERT 71.5 71.9 71.7 92.9 66.7 71.5 69.0 80.7 75.1 81.8 78.2 78.1
RNN_HG 71.8 76.3 74.0 93.6 69.3 72.3 70.8 82.1 79.7 79.8 79.8 79.7
RNN_MHCA 73.0 75.7 74.3 93.8 66.3 75.2 70.5 81.8 77.5 83.1 80.0 79.8
MUL_GCN 74.8 75.5 75.1 93.8 72.5 70.9 71.7 83.2 79.7 80.5 79.6 79.9

RoBERTa_SEQ† 80.4 74.9 77.5 - 79.2 69.8 74.2 - - - - -
DeepMet† 82.0 71.3 76.3 - 79.5 70.8 74.9 - - - - -
MelBERT 80.1 76.9 78.5 - 78.7 72.9 75.7 - - - - -
MrBERT 82.7 72.5 77.2 94.7 80.8 71.5 75.9 86.4 80.0 85.1 82.1 81.9

MisNet 80.4 78.4 79.4 94.9 78.3 73.6 75.9 86.0 84.2 84.0 83.4 83.6

Table 2: Results on VUA All, VUA Verb, and MOH-X. Best in bold and second best in italic underlined. The
top block exhibits RNN based methods, while the middle block includes the transformer based. The † results are
reproduced by Choi et al. (2021).3

detection and word sense disambiguation simulta-
neously. It also uses Graph Convolution Network
with Bi-LSTM to encode dependency relations.
RoBERTa_SEQ (Leong et al., 2020): a sequence
labeling baseline model provided by ACL 2020
metaphor detection shared task. RoBERTa_SEQ
takes a sentence as input, and uses a softmax clas-
sifier to predict the metaphoricity for each token.
DeepMet (Su et al., 2020): the winning model in
ACL 2020 metaphor detection shared task. It mod-
els metaphor identification as a reading comprehen-
sion task, with query features, fine-grained POS
features, and context features etc. incorporated.
MelBERT (Choi et al., 2021): a model based on
RoBERTa. It utilizes siamese network as well.
However, MelBERT assumes that the target word
used alone is literal.
MrBERT (Song et al., 2021): MrBERT regards
metaphor detection as a relation classification task.
It extracts dependency relations among verbs and
subjects or objects, and embeds relations into
BERT input.

4.3 Implementation Details

Gao et al. (2018) expanded VUA All dataset with
POS tags. We retrieve basic usages from a digi-
tal Oxford dictionary4 following Su et al. (2021).
Since MOH-X does not have a training, validation,
and test split, we perform 10-fold cross validation
on it. Also, following previous studies (Choi et al.,
2021; Song et al., 2021), we conduct zero-shot
transfer on TroFi dataset to examine the general-

3In ACL 2020 shared task, participants can manipulate
training dataset or perform ensemble learning, making the
original results incomparable.

4https://www.lexico.com/

ization ability of MisNet. We use the RoBERTa
(Liu et al., 2019) implementation for BERT, pro-
vided by HuggingFace5. It has stacked 12-layer
transformer encoders, each with 12 attention heads.
The hidden dimension in each layer is 768. Both
hidden dimensions in MIP and SPV layer are 768.

VUA All: for VUA All dataset the learning rate
is 3e-5. The epoch number is 15 and the training
batch size is 64. Since VUA All suffers from data
unbalance, we use different class weights in cross
entropy loss function, 1 for literal samples and 5
for metaphors. VUA Verb: for VUA Verb, we
remove POS tag from the input since it provides
few information when only training on verbs. The
training batch size is 64 with a 3e-5 learning rate.
The class weights are 1 for literal samples and 4
for metaphors. We train for 15 epochs. MOH-X:
MOH-X is a balanced dataset, such that we do not
apply different class weights. The batch size is
16 with a 3e-5 learning rate, and we train for 15
epochs. All the experiments adopt AdamW (Peters
et al., 2019) optimizer. For VUA All and VUA
Verb, we take the best model on validation set to
do testing. For MOH-X, we take the best score in
each fold, and calculate the average over total 10
folds. All experiments are done in PyTorch 1.10
and cuda 11.2, on a single NVIDIA RTX 3090
GPU. Our code, saved model weights, and datasets
are available for more details.

5 Results and Analysis

5.1 Overall Results
Following Mao et al. (2019), we mainly focus on
F1 score. As shown in Table 2, MisNet obtains

5https://huggingface.co/roberta-base
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Model Academic Conversation Fiction News
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

RNN_ELMo 78.2 80.2 79.2 92.8 64.9 63.1 64.0 94.6 61.4 69.1 65.1 93.1 72.7 71.2 71.9 91.6
RNN_BERT 76.7 76.0 76.4 91.9 64.7 64.2 64.4 94.6 66.5 68.6 67.5 93.9 71.2 72.5 71.8 91.4
RNN_HG 76.5 83.0 79.6 92.7 63.6 72.5 67.8 94.8 61.8 74.5 67.5 93.4 71.6 76.8 74.1 91.9
RNN_MHCA 79.6 80.0 79.8 93.0 64.0 71.1 67.4 94.8 64.8 70.9 67.7 93.8 74.8 75.3 75.0 92.4

RoBERTa_SEQ† 86.0 77.3 81.4 - 70.5 69.8 70.1 - 73.9 72.7 73.3 - 82.2 74.1 77.9 -
DeepMet† 88.4 74.7 81.0 - 71.6 71.1 71.4 - 76.1 70.1 73.0 - 84.1 67.6 75.0 -
MelBERT 85.3 82.5 83.9 - 70.1 71.7 70.9 - 74.0 76.8 75.4 - 81.0 73.7 77.2 -

MisNet 85.1 82.5 83.8 94.5 71.8 72.0 71.9 95.7 74.5 77.5 76.0 95.5 82.6 77.0 79.7 94.1

Model Verb Adjective Adverb Noun
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

RNN_ELMo 68.1 71.9 69.9 - 56.1 60.6 58.3 - 67.2 53.7 59.7 94.8 59.9 60.8 60.4 -
RNN_BERT 67.1 72.1 69.5 87.9 58.1 51.6 54.7 88.3 64.8 61.1 62.9 94.8 63.3 56.8 59.9 88.6
RNN_HG 66.4 75.5 70.7 88.0 59.2 65.6 62.2 89.1 61.0 66.8 63.8 94.5 60.3 66.8 63.4 88.4
RNN_MHCA 66.0 76.0 70.7 87.9 61.4 61.7 61.6 89.5 66.1 60.7 63.2 94.9 69.1 58.2 63.2 89.8

RoBERTa_SEQ† 74.4 75.1 74.8 - 72.0 57.1 63.7 - 77.6 63.9 70.1 - 76.5 59.0 66.6 -
DeepMet† 78.8 68.5 73.3 - 79.0 52.9 63.3 - 79.4 66.4 72.3 - 76.5 57.1 65.4 -
MelBERT 74.2 75.9 75.1 - 69.4 60.1 64.4 - 80.2 69.7 74.6 - 75.4 66.5 70.7 -

MisNet 77.5 77.7 77.6 91.4 68.8 65.2 67.0 91.2 76.4 70.5 73.3 96.3 74.4 67.2 70.6 91.6

Table 3: Breakdown results for genre and POS on VUA All. Best in bold and second best in italic underlined.

competitive results. In VUA All dataset, MisNet
gains as most as 7.7 and 3.1 F1 score improvements
compared with RNN based models and transformer
based models respectively. Also, MisNet gains
nearly 1.0 F1 score over the strongest baseline Mel-
BERT, and achieves highest recall and accuracy
scores. MisNet can fully utilize POS information,
such that it has a strong ability to distinguish the im-
possible cases, like conjunctions and exclamations,
from the potential ones.

In VUA Verb dataset, we remove POS tag in
input because it provides little information when
there is only one word class, i.e., we only make
judgements via MIP and SPV layers. We get im-
provements by as most as 6.9 and 1.7 F1 scores
compared with RNN based methods and trans-
former based methods respectively. It is worth
mentioning that the strongest baseline MrBERT
uses dependency parsing to extract subjects and ob-
jects for verbs, but MisNet still obtains promising
results only via semantic matching methods, which
shows the importance to properly utilize linguistic
rules.

We attain improvements by 1.3 F1 scores against
the strongest baseline MrBERT in MOH-X dataset,
and achieve best precision and accuracy scores.
Compared with RNN based methods, the perfor-
mance is improved by as most as 7.8 F1 scores as
well. We notice that MisNet performs better on
MOH-X than VUA Verb: MOH-X is built upon

WordNet via extracting metaphorical and literal us-
ages of certain verbs, which means most metaphors
in MOH-X are conventional metaphors. MisNet
can get benefits from basic usages while the other
baselines may fail to capture the basic meanings.
However, verbs in VUA Verb dataset are much
more complex, including auxiliary verbs, link verbs
and etc. Predictions for VUA Verb are much harder.

5.2 VUA All Breakdown Results

Table 3 shows two breakdown analysis on VUA
All dataset. In the genre track, MisNet outperforms
the previous baselines in conversation, fiction, and
news. We achieve a promising result on academic
as well. All the methods perform better on aca-
demic and news, which have formal language us-
ages so the patterns beneath are easy to perceive.

In the POS track, we find that MisNet achieves
largest improvements on verb and adjective, with
2.5 and 2.6 F1 scores gained respectively. Verbs
and adjectives are often used metaphorically, so
there are more positive samples in VUA All dataset.
Also, verb samples take the biggest portion in VUA
All dataset, which makes the training on verbs more
thorough. The performance on adverb is mediocre,
because adverbs are very different internally. For
instance, adverbs of time, place, and degree etc.,
can rarely be metaphors. Such complexity makes
adverbs more difficult to judge.
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5.3 Zero-shot Transfer on TroFi

We conduct zero-shot transfer on TroFi dataset, i.e.,
using TroFi only for testing. As Table 4 shows,
MisNet outperforms all the baselines. Notably, the
baselines with ♠ are trained on an expanded ver-
sion of VUA All (Choi et al., 2021), so they have
more training data. MrBERT explicitly utilizes
dependency relations to benefit verb metaphor de-
tection. However, we still attain best results in all
metrics, which indicates that MisNet has strong
generalization ability.

Model TroFi (Zero-shot)
Pre. Rec. F1 Acc.

RoBERTa_SEQ♠ 53.6 70.1 60.7 -
DeepMet♠ 53.7 72.9 61.7 -
MelBERT♠ 53.4 74.1 62.0 -
MrBERT 53.8 75.0 62.7 61.1

MisNet 53.8 76.2 63.1 61.2

Table 4: Zero-shot transfer results on TroFi dataset. We
use MisNet trained on VUA All dataset.

5.4 Effectiveness Study

We conduct ablation experiments to test the effec-
tiveness of different modules and features in Mis-
Net, as Table 5 illustrates. In each ablation setting,
the performance drops, which demonstrates the
capability of each part. MIP module is more im-
portant than SPV as is observed. A conventional
metaphor may be normal for its frequent context,
so SPV becomes invalid. But MIP can notice the
discrepancy between the contextual target meaning
and its basic meaning. POS provides useful infor-
mation for MisNet to filter out the impossible cases,
without which the model performs worse. When
basic usages are aborted, MisNet may fail to rep-
resent basic meanings, such that some metaphors
cannot be detected. When feature embeddings are
removed, MisNet works quite badly. Our designed
feature embeddings can help model to treat differ-
ent parts differently to better utilize features.

We also evaluate the impacts from different read-
out methods. We replace the readout method in
Eq. 7 and Eq. 8 with candidates from Table 5.
We find that |u − v| and (u;v) are two crucial
components, without which the performance drops
significantly. |u − v| can directly reveal the dif-
ference between two representations, while (u;v)
can preserve all the original information. However,
the default setting (u;v; |u− v|;u ∗ v) is the best

since all components work as an ensemble.

Ablation Pre. Rec. F1 Acc.

-MIP 83.1 72.8 77.6 94.8
-SPV 81.2 76.0 78.5 94.8
-POS 79.1 77.4 78.2 94.6

-Basic Usage 81.2 75.4 78.2 94.8
-Feature Embedding 78.4 77.7 78.0 94.6

MisNet♣ 80.4 78.4 79.4 94.9

Readout Method Pre. Rec. F1 Acc.

(u;v) 81.5 76.1 78.7 94.9
(|u− v|) 82.5 74.5 78.3 94.9
(|u ∗ v|) 73.9 80.4 77.1 94.0

(|u− v|;u ∗ v) 75.5 81.2 78.3 94.4
(u;v;u ∗ v) 82.4 74.2 78.1 94.8
(u;v; |u− v|) 79.5 77.4 78.5 94.7

(u;v; |u− v|;u ∗ v)♣ 80.4 78.4 79.4 94.9

Table 5: Effectiveness study on VUA All dataset. ♣ are
the default MisNet settings.

Table 6 shows the quality analysis results. The
top block indicates that MisNet can better detect
conventional metaphors by using basic usages,
which confirms our assumptions at the beginning.
The middle block includes indirect metaphors, of
which the metaphoricity is predicted upon preced-
ing words. Metaphors in the bottom block can be
very confusing. If we do not use a wider context,
we can’t distinguish accurately. However, MisNet
only takes sentence-level inputs, thus we cannot
properly handle these situations. We leave it as a
future work.

M
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.

L
ab
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Sentence

✓ ✗ M The ban on emergency work was tightened.
✓ ✗ M A new minister would operate inside the DoE.
✓ ✗ M A financial crash of global proportions.
✓ ✗ M Raising the federal debt ceiling.

✗ ✗ M Er, just maybe the size of this.
✗ ✗ M I’m gonna play with that and see what.

✗ ✗ M She bought it.
✗ ✗ M Thought you might want a lift.

Table 6: Quality analysis on VUA All dataset. Target
words in red italic. M means Metaphor.

6 Conclusion

In this paper, we propose a novel metaphor de-
tection model named MisNet, which uses MIP to
compare the discrepancy between contextual target
word meaning and its basic meaning, and utilizes
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SPV to measure the incongruity between the target
and its context. MisNet takes basic usages to en-
code basic target meanings, which can prevent the
invalidation of MIP and SPV when dealing with
conventional metaphors. Empirical results show
that our method achieves competitive performance
on several datasets.
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