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Abstract

The quality of Natural Language Processing
(NLP) models is typically measured by the ac-
curacy or error rate of a predefined test set. Be-
cause the evaluation and optimization of these
measures are narrowed down to a specific do-
main like news and cannot be generalized to
other domains like Twitter, we often observe
that a system reported with human parity results
generates surprising errors in real-life use sce-
narios. We address this weakness with a new
approach that uses an NLP quality measure
based on robustness. Unlike previous work that
has defined robustness using Minimax to bound
worst cases, we measure robustness based on
the consistency of cross-domain accuracy and
introduce the coefficient of variation and (ϵ, γ)-
Robustness. Our measures demonstrate higher
agreements with human evaluation than accu-
racy scores like BLEU on ranking Machine
Translation (MT) systems.

1 Introduction

Evaluation criteria serve as learning objectives and
model assessment standards and are crucial for
NLP research. Conventional evaluation methods
compute the accuracy or errors compared to the
reference on a predefined test set, such as BLEU or
TER. Since the evaluation results highly depend on
the test set, they may not apply to real-world test in-
puts that come from an unknown distribution. For
example, one may query a legal document while
the system is trained on the news. Therefore, it
is necessary to define a measure that can give an
idea of how robust system performance will be on
unseen test data so that we can predict whether our
model is generalizable to new domains.

There has been influential investigation into
defining robustness instead of accuracy alone (Bas-
tani et al., 2016; Hein and Andriushchenko, 2017;
Weng et al., 2018). Robustness of a machine learn-
ing model can be described as the characteristic

of how accurate the model is in making its predic-
tions when tested on a new (but similar) dataset.
For example, one definition of robustness claims
“If a testing sample is similar to a training sam-
ple, then the testing error is close to the training
error” (Xu and Mannor, 2012). Such testing sam-
ples, which are samples dissimilar from training
samples are known as adversarial examples. Many
studies on robustness measures (Heinze-Deml and
Meinshausen, 2017; Araujo et al., 2019; Carlini and
Wagner, 2017) focus on the worst-case scenarios
with adversarial inputs.

However, because the worst-case appears very
infrequently, in particular, if artificially simu-
lated (Wang et al., 2020; Jin et al., 2020; Alzantot
et al., 2018), a worst-case analysis has the inher-
ent problem that if the worst case is far from the
typical, then the quantification assigns a numeri-
cal value to cases that occur rarely, like outliers.
For instance, if a system accuracy has a very small
variance in a million test cases but fails dramati-
cally in one, then Minimax will label this system
less robust than a system with a high accuracy vari-
ance. While focusing on the worst-case can be
important for some areas of computer science and
engineering like astronautics, but in our view, it is
usually not desirable in the NLP context. In our
view, robustness is a notion that should address typ-
ical behavior, not atypical and rare behavior. Note
that if the worst-case differs a lot from the typical, a
statistical notion of robustness should make this ap-
parent. Additionally, a useful formalization should
ignore atypical behavior of our system - because
only focusing on a worst-case is not practical.

In this paper, we introduce novel definitions of
robustness for NLP systems. Instead of defining
robustness in terms of worst-case performance, we
define it in terms of the typical behavior of the sys-
tem and the consistency in their performance of the
system. Under this definition, the more inconsis-
tent the model predictions are, the less robust the
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model is. Specifically, we simulate unknown test
domains using leaving-one-out cross-validation to
measure the variance of model accuracy on a set
of test domains. More precisely, we introduce the
coefficient of variation to quantify the variants of
accuracy that is non-linear.

We further expand this notion to a probabilis-
tic definition, called (ϵ, γ)-Robustness, where the
higher probability of consistent behavior, the more
robust the system. We provide statistical guaran-
tees on the performance of an NLP model through
the following assertion:

“I certify that, with high probability, my NLP
model’s performance will not change too much,
given test sets from different domains and/or with
various types of noise."

Both variation of coefficient and (ϵ, γ)-
Robustness takes a new direction away from the
worst-case result to a general consistency of the
model quality. They are meta-evaluation methods
that measure the consistency of user-defined qual-
ity metrics. Thus, any standard evaluation metrics
can be applied to our paradigm. Our robustness
measures are evaluated by comparing with human
rankings on system outputs and by simulating
unknown test domains using cross-validation. Our
experimental results show that our robustness
measures have higher agreements with human
rankings on machine translation (MT) system
submissions than BLEU scores.

In summary, the main contributions of this work
include:

1. introducing a definition of robustness which
is different from the typical notion of perfor-
mance in worst-case scenarios;

2. developing a probabilistic definition of robust-
ness based on Chebyshev’s inequality;

3. experimenting on four different NMT models
using cross-validation techniques to simulate
the scenarios of unknown test data;

4. evaluating using human assessment on WMT
submission systems;

5. carrying out human annotation experiments
as a comparison with our measure;

The rest of the paper is as follows: In Section 2,
we describe the three definitions of robustness. In
Section 2.4, we connect the coefficient of variation
with (ϵ, γ)-Robustness and show their relationship.
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Figure 1: Left: Shortage of Variance; Right: Shortage
of coefficient of variation.

Section 3 describes the six algorithms to compute
robustness metrics we used during our experimen-
tation. Section 4 describes our evaluation methods
including cross-validation and manual comparison.
Section 5 describes the experiments that evaluate
our robustness measures. In Section 6, we discuss
the previous literature on robustness in machine
learning. Section 7 concludes the paper.

2 Definition of robustness

We define robustness as the consistency in the be-
havior of a machine-learned system. We think of
it as the standard or typical behavior of the system.
The more this behavior deviates from the typical,
the less robust the system is defined to be. No-
tice that this definition does not give a notion of
whether the performance of the system is good or
bad. A system with consistent terrible performance
is still a robust system under this definition. For
example, in terms of MT, this definition becomes
the consistency in translation performance for a
trained MT system.

2.1 Variance

We take the NLP model accuracy (e.g, BLEU score)
as a random variable. We introduce measuring
the variance of, for instance, the BLEU score to
indicate the consistency of the translation quality
over the combination of various test sets. This
random variable will give us a value that quantifies
how stable is a translation system over different
test sets.

2.2 Coefficient of Variation

However, the same variance value measured on the
datasets with different means will carry a different
meaning. For example, as left of Figure 1 shows,
the variance measured on a dataset which has the
mean of 10% in the BLEU score indicates a much
higher inconsistency than that with the mean of
70%. Therefore, we can scale the variance by the
mean, and finally, use the coefficient of the varia-
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tion to measure the consistency over the accuracy
scores across test sets in the dataset pool. The coef-
ficient of variation is a scaled variance. Nonethe-
less, the variance or the coefficient of variation is
not sufficient to express the consistency of the ac-
curacy. For example, as right of Figure 1 shows,
the accuracy can only have two values: 0 and 1
but have the same variance as values following the
normal distribution. Thus looking at the distribu-
tion itself is crucial to decide on the robustness of
a model.

2.3 (ϵ, γ)-Robustness

We follow the direction of the probabilistic robust-
ness (Xu and Mannor, 2012) and introduce the
notion of (ϵ, γ)-robust to consider all cases.

Briefly speaking, we want to measure the proba-
bility of upper bounding the NLP model accuracy
gap between any test set and their average.

We call an NLP system (ϵ, γ)-robust, if for every
test set drawn from a distribution D, its prediction
error (or accuracy) X is centered around the mean
error (or accuracy) µ, which is bounded through a
parameter ϵ with a probability of 1− σ2

ϵ2
· γ.

Pr[|X − µ| < ϵ] = 1− σ2

ϵ2
· γ (1)

This definition is a relaxation of Chebyshev’s in-
equality by adding γ ∈ [0, 1]. In the above formu-
lation, the lower the value of γ, the more robust is
the system. 1− γ value indicates how much tighter
we can bound the prediction accuracy around its
mean than the Chebyshev’s bound. A robust sys-
tem can be provided with a tighter bound, while the
Chebyshev in Equation 2 bounds a fragile system.
Below is the inference.

Pr[|X − µ| ≥ ϵ] ≤ σ2

ϵ2
(2)

⇔ 1− Pr[|X − µ| ≥ ϵ] ≥ 1− σ2

ϵ2
(3)

⇔ Pr[|X − µ| < ϵ] ≥ 1− σ2

ϵ2
(4)

Chebyshev’s inequality in Equation 2 provides
an upper bound to the probability that the differ-
ence between X and the mean will exceed a given
threshold. If we put “1−" in front of both sides, we
have Equation 3, thus Equation 4, which shows a
lower bound of the difference between X and µ.

X

Pr(X) system 1 (         ）
system 2 (           )

- Robustness 1 > - Robustness 2 

- Robustness

Figure 2: Illustration of the (ϵ, γ)-Robustness

Algorithm 1 Plot (ϵ, γ)-Robustness
Input: translation accuracy (e.g. BLEU or human
eval) of each sentence of a test set on a given
translation model
Output: 100 (ϵ, γ) values

1: for ϵ in 1 to 100 do
2: output γ := (1− Pr[|X − µ| = ϵ]) · ϵ2

σ2

3: end for
4: return

In robustness measure, we are interested in com-
ing up with a bound tighter than the Chebyshev’s
bound. To make it scalable and interpretable, we
can add γ ∈ [0, 1] to express how much tighter
bound we can provide than Chebyshev’s. If γ = 1
then we have the worst case, the system is not ro-
bust at all; if γ is approaching to 0, then it is getting
very tightly bounded.

Therefore, we introduce γ to be an indicator of
how robust a system is. ϵ is a parameter that we
can explore. Algorithm 1 shows the algorithm of
plotting the ϵ, γ-Robustness. γ relates to the proba-
bility that accuracy X is within a given threshold,
and ϵ controls the width of such threshold, as illus-
trated in the example of Figure 2.

2.4 Relating the (ϵ, γ)-Robustnes to the
coefficient of variation

ϵ is a hyper-parameter related to our robustness
metrics. We show the (ϵ, γ)-Robustnes can be con-
nected with the coefficient of variatioin by simply
tuning ϵ.

Replace ϵ by ϵ′, ϵ = ϵ′ · σ
µ to Chebyshev’s in-

equality:

Pr[|X − µ| ≥ ϵ] ≤ σ2

ϵ2
Eq. 2

⇒ Pr[|X − µ| ≥ ϵ′ · σ
µ
] ≤ σ2

ϵ′2 · σ
µ

2 (5)

⇒ Pr[|X − µ| ≥ ϵ′ · σ
µ
] ≤ µ2

ϵ′2
(6)
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Replace ϵ by ϵ′, ϵ = ϵ′ · σ
µ to the ϵ − γ robust

definition

Pr[|X − µ| < ϵ′ · σ
µ
] = 1− µ2

ϵ′2
· γ (7)

3 Robustness metrics

Using our definition of robustness (see Section 2),
we create three different robustness metrics. The
first metric (Algorithm 2) computes the variance for
all the samples in the test pool. The second metric
(Algorithm 3) scales variance by the mean of all
samples. The third metric (Algorithm 4) computes
the (ϵ, γ)-Robustness given a pre-defined parameter
ϵ.

Algorithm 2 Robustness Metrics I: Variance

Require: Error function ϵ(·); a test set pool T con-
taining N samples (ts).
V (T ) = 1

I

∑
i {ϵ(ti; s,A)−

1
I

∑
j ϵ(tj ; s,A)}

2

Algorithm 3 Robustness Metrics II: Coefficient of
Variation
Require: Error function ϵ(·); a test set pool T con-

taining N samples (ts).

COV (T ) =
1
I

∑
i {ϵ(ti;s,A)− 1

I

∑
j ϵ(tj ;s,A)}2

1
I

∑
j ϵ(tj ;s,A)

Algorithm 4 Robustness Metrics III: (ϵ, γ)-
Robustness
Require: Error function ϵ(·); a test set pool T con-

taining N samples (ts), hyper-parameter ϵ.
µ = 1

I

∑
i ϵ(ti; s,A)

σ =
√∑

(ti−µ)2

I−1

Pr[|ti − µ| < ϵ] =
|{tj |tj−µ<ϵ}|

I
(ϵ, γ)−Robustness(T ) = (1− Pr[|ti − µ| =
ϵ]) · ϵ2

σ2

We have a collection of test samples, where each
test sample is ti, and there are I many test sam-
ples in the test pool. An error function ϵ(t; s,A)
indicates the translation error (1-accuracy) on a test
sample ti on s according to evaluation criterion
A. The variance measures the “consistency” of the
translation accuracy among all the test samples.

Bootstrapping Considering the test scores on
one test sample can be unstable and inaccurate, we

create a more robust method to compute robustness
by bootstrapping subsamples from the entire test
pool. We randomly subsample the test pool into
M bootstraps and then compute the average robust-
ness score (variance/coefficient of variation/(ϵ, γ)-
Robustness) across bootstraps.

Algorithm 5 Robustness Metrics by Bagging

Require: Error function ϵ(·); a test set pool T con-
taining I samples: t1 · · · tI ; block size b, each
block B1 · · ·BM with number of blocks M , uni-
verse size N .
Initialize m empty blocks.
for b_ = 1 to b ·M do

choose L at random from the set of blocks
with current min number of elements
S : set of elements in the universe not in L
L = L ∪ t, where t ∈ S chosen uniformly at
random

end for
for m ∈ M do

Compute R(Bm) according to Algorithm 2/
Algorithm 3/Algorithm 4:
R(Bm) = V (Bm)/COV (Bm)/(ϵ, γ) −
Robustness(Bm)

end for
AV (T ) = 1

M

∑
mR(Bm)

In practice, random sampling requires the times
of bootstrapping to be relatively large to achieve a
thorough coverage of the test pool. To complement,
we create two bootstrapping methods to selectively
design the subsampled bootstraps. First, for each
bootstrap, we randomly sample from the elements
not present in the current bootstrap, which is de-
scribed in Algorithm 5. Second, we subsample
from the set of elements with least sampled fre-
quency (Papakonstantinou et al., 2014), which is
described in Algorithm 6.

4 Evaluation of the robustness measures

4.1 Cross-validation
We use the leave-one-out error stability to show
that the robustness measure can be generalized if
we exclude a left-out test set from all four datasets
where we measure the robustness. More precisely,
for a given translation model, we randomly select
one leaving-one-out test set and then combine all
other tests to compute the variance, the mean, and
the coefficient of variation on the left-out datasets,
as shown in Figure 3.
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Algorithm 6 Robustness Metrics by Design Bag-
ging

Require: Error function ϵ(·); a test set pool T con-
taining I samples: t1 · · · tI ; block size b, each
block B1 · · ·BM with number of blocks M , uni-
verse size N .
Initialize m empty blocks.
for b_ = 1 to b ·M do

choose L at random from the set of blocks
with current min number of elements
S : set of elements in the universe not in L
that appear least frequently
L = L ∪ t, where t ∈ S chosen uniformly at
random

end for
for m ∈ M do

Compute R(Bm) according to Algorithm 2/
Algorithm 3/Algorithm 4:
R(Bm) = V (Bm)/COV (Bm)/(ϵ, γ) −
Robustness(Bm)

end for
AV (T ) = 1

M

∑
mR(Bm)
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Figure 3: Leaving-one-out to verify robustness metrics.

4.2 Correlation with manual evaluation:
pair-wise system comparison

Human evaluation is another way to evaluate the
robustness measure. More precisely, we have hu-
man linguists come up with translation test sen-
tences and evaluate the consistency of the transla-
tion model 1 (θ) and translation model 2 (θ′). The
human evaluators can ask as many as translation
sentences until she/he decides on the ranking of the
performance between model 1 and model 2. A per-
fect robustness estimator ρ would satisfy that the
human ranking of the robustness of two NLP sys-
tems is the same as the ranking by our robustness
measures:

ρhuman(θ) < ρhuman(θ
′) ⇐⇒ ρ(θ) < ρ(θ′) (8)

In other words, we do not necessarily need the
actual value of ρ to verify that it gives us enough

information to compare the two models. There
are some problems with this approach, though, not
least because we need to evaluate this on multiple
models.

5 Experiments

Data & Tools We evaluate our robustness met-
rics in machine translation and sentiment classifica-
tion. For machine translation, we use four different
English-French NMT models trained on WMT’14,
Biomedical’18, ISLWT’17, and MTNT’18 datasets.
The models are trained using 35M, 2M, 200K, and
40K sentences, respectively. The WMT’14 model
is the pre-trained model provided by Facebook re-
search (Ott et al., 2019) and the remaining were
trained in house using ConvS2S Toolkit (Gehring
et al., 2017) till convergence. The development
data used for the in house trained models include
Khresmoi for Biomedical, test2014 and test2015
for IWSLT, and MTNT’18 development for MTNT.
The four different test data were also from the same
domains, including WMT (newstest14), Biomed-
ical (EDP2018), IWSLT (test2017), and MTNT
(MTNT2018).

For sentiment classification, we use Amazon
product review dataset (Blitzer et al., 2007). Specif-
ically, we train four models using pre-processed
balanced reviews from DVD, kitchen, electronics
and books domains where each review is labeled
with 0 or 1. We randomly split 15% of the sen-
tences as validation set and the rest as training
set. We evaluate the classification model on unpro-
cessed reviews from 21 domains different from the
training domain, and compute the mean, var and co-
efficient of variance of these 21 test accuracy scores.
Then we leave the apparel, baby, beauty, grocery
and music domain out to compute the mean, vari-
ance, and the coefficient of variation on other 20
domains. Different from machine translation that
uses sentence level performance score (i.e. BLEU)
to compute robustness, we use domain/document
level performance score (i.e. accuracy) to compute
robustness metrics in sentiment classification.

Results As addressed in Section 3, We carry out
three different robustness experiments correspond-
ing to robustness metrics with no sampling method,
robustness by bagging, and robustness by design
bagging, respectively. For every experiment, we
use each of the training models and translated all
the four test sets. We calculate the sentence level
BLEU scores and use one of the robustness metrics
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to compute the change in the BLEU scores. We
use a combined test data from all the four domains.
We want our model of robustness measure to work
on any test domain. In order to simulate a blind
test domain, we apply leave-one-out testing, where
we leave out one domain from the four domains.
Therefore we calculate the mean, variance, and the
coefficient of variation on the five testing environ-
ments.

Results in Table 1 and Table 2 use all training
samples to measure. The rest four tables experi-
ment with bagging techniques on sub-sampled test
data where we create 30 bootstraps each containing
60% of the data. We calculate the mean and vari-
ance of each of the bootstrap and finally average
values of these measures to calculate the coeffi-
cient of variation. For machine translation, we
can observe that for models, including WMT, the
change in the coefficient of variation when test-
ing on different leave-one-out scenarios, does not
change a lot compared to IWSLT. For sentiment
classification, the model trained on kitchen domain
has the lowest coefficient of variation compared to
all other three models, and the coefficient of vari-
ation of the model trained on electronics domain
varies largely when testing on different leave-one-
out scenarios. Table 3 and table 4 use the bagging
algorithm (Breiman, 1996) to make the intersec-
tion between bootstraps as less as possible. The
mean, variance, and coefficient of variation were
calculated the same way as in traditional bagging
experiment.

Results using design bagging are mentioned in
Table 5 and Table 6. A similar trend is observed
where the difference in coefficient of variation
across different leave-one-out experiments is the
smallest for WMT and is much higher for MTNT.

To compute our definition of (ϵ, γ)-Robustness,
we used the same setup of four different trained
models and four different test domains. For each
possible value of ϵ (between 0 and 100), we try
to find the value of γ, which satisfies the Equa-
tion 2. Figure 4 shows the normalized γ values
for each corresponding epsilon value for the four
models. We can observe the γ values for WMT are
much smaller than the values for other models, and
the values for MTNT are the highest. This shows
that the WMT model is the most robust among
all models, and MTNT is the least robust. Sim-
ilarly, our (ϵ, γ)-Robustness can be applied with
human evaluation scores, as shown in Figure 5.

Figure 4: Normalized (ϵ, γ)-Robustness plot on our
models.

Based on these four NMT systems in Figure 5, we
rank them using (ϵ, γ)-Robustness and find the rank
100% agrees with the rank given by human, while
the rank given by the BLEU score 75% agrees to
human, as shown in Table 7. This suggests that
(ϵ, γ)-Robustness evaluates robustness of systems
better than accuracy-based metrics (i.e. BLEU).

Finally, as in Section 4.2, to better compare our
method, we conduct a human evaluation for pair-
wise comparison of the models. We create a small
web-based application where the human annotator
is assigned two NMT models selected at random.
The human annotators do not know any details
about the model or the training data used for each
model. She/He can only use these models to get
two translation outputs for a given input sentence.
This step can be repeated as many times as possible
until the human annotator decides which model is
more "consistent" in its translations. Table 8 men-
tions the pair-wise results for the four models using
the human annotators. For comparison, we have
also mentioned the coefficient of variation and the
(ϵ, γ)-Robustness results. We observe that only one
out of the six scenarios is different (16.66% error
rate) for the human annotators and our robustness
metrics.

6 Related Work

There have been substantial amount of work trying
to improve the robustness of NLP models. Among
those, a majority of focus lies on the vulnerability
of NLP models to input perturbations, such as gen-
erating adversarial examples. For instance, Wang
et al. (2020) uses controllable attributes irrelevant
to task labels to generate diverse adversarial texts.
Li et al. (2020) uses pre-trained masked language
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Model
Leave-One-Out Test Set

None WMT’15 IWSLT’17 MTNT’19 BIO’18 MTNT’18
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

WMT’14 32.52 723.56 0.83 31.33 684.75 0.84 32.35 735.06 0.84 33.86 714.98 0.79 32.51 747.96 0.84 32.52 723.56 0.83
IWSLT’17 10.35 206.43 1.39 10.55 211.85 1.38 8.71 171.72 1.50 11.44 219.58 1.30 10.6 215.8 1.39 10.35 206.43 1.39
MTNT’19 6.97 173.38 1.89 7.19 179.26 1.86 6.2 156.24 2.02 6.73 166.43 1.92 7.61 186.79 1.80 6.97 173.38 1.89
BIO’18 15.36 330.83 1.18 15.7 328.59 1.15 15.37 339.74 1.20 15.89 327.4 1.14 14.66 327.51 1.23 15.36 330.83 1.18
APPERTIUM 1.83 49.20 3.83 1.68 44.11 3.95 1.77 48.53 3.94 2.04 52.74 3.56 1.72 46.72 3.98 1.95 53.79 3.76

Table 1: Robustness Metrics I & II in machine translation. Sentence level BLEU scores when a single test set is left
out. Var is variance of BLEU scores and COR is the coefficient of variance.

Model
Leave-One-Out Test Set

None apparel baby beauty grocery music
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

dvd 64.33 2.04 3.18 65.02 2.05 3.16 64.91 2.08 3.21 64.13 2.16 3.37 63.76 2.07 3.25 65.09 2.08 3.19
books 64.33 2.07 3.23 65.10 2.06 3.17 64.95 2.11 3.25 64.04 2.09 3.26 63.70 2.03 3.19 65.03 2.04 3.14
kitchen 58.94 0.60 1.02 59.28 0.59 1.0 59.25 0.62 1.05 59.06 0.64 1.08 58.44 0.60 1.02 59.34 0.63 1.06
electronics 64.45 2.10 3.26 64.94 2.01 3.10 64.91 2.10 3.23 64.17 2.15 3.36 63.77 2.10 3.30 65.03 2.06 3.17

Table 2: Robustness Metrics I & II in sentiment classification. Domain level accuracy scores when a single test set
is left out. Var is variance of accuracy scores and COR is the coefficient of variance.

Model
Leave-One-Out (Bagging)

None WMT’15 IWSLT’17 MTNT’19 BIO’18 MTNT’18
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

WMT’14 32.09 706.49 0.83 30.72 667.16 0.84 31.56 701.76 0.84 32.79 694.34 0.80 31.95 725.51 0.84 32.48 723.32 0.83
IWSLT’17 8.56 185.86 1.59 8.08 182.21 1.67 6.70 146.26 1.80 8.86 194.29 1.57 8.60 192.21 1.61 10.33 205.54 1.39
MTNT’19 5.76 150.79 2.13 5.52 147.63 2.20 4.72 124.94 2.37 5.21 136.62 2.24 6.19 159.87 2.04 7.00 173.80 1.88
BIO’18 12.67 306.96 1.38 12.03 295.04 1.43 11.79 301.49 1.47 12.27 297.29 1.41 11.86 298.77 1.46 15.32 329.75 1.19
APPERTIUM 2.83 81.19 3.19 2.70 74.86 3.20 2.80 80.72 3.21 3.01 82.15 3.01 2.78 80.18 3.22 2.91 85.65 3.18

Table 3: Robustness Metrics by Bagging in machine translation. Sentence level BLEU scores of bagging of test
with a single test set is left out. Var is variance of BLEU scores and COR is the coefficient of variance.

Model
Leave-One-Out (Bagging)

None apparel baby beauty grocery music
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

dvd 58.95 0.012 0.02 59.27 0.026 0.043 59.15 0.014 0.025 58.73 0.018 0.03 58.53 0.018 0.032 59.65 0.021 0.036
books 50.21 0.035 0.069 50.87 0.02 0.04 50.61 0.021 0.042 50.43 0.023 0.047 49.92 0.037 0.075 50.72 0.027 0.053
kitchen 50.88 0.013 0.026 51.25 0.015 0.03 51.15 0.019 0.038 50.39 0.025 0.049 50.22 0.024 0.047 51.06 0.022 0.043
electronics 42.38 0.015 0.037 42.02 0.028 0.068 42.13 0.017 0.041 42.58 0.022 0.053 42.68 0.016 0.038 41.79 0.016 0.039

Table 4: Robustness Metrics by Bagging in sentiment classification. Domain level accuracy scores when a single
test set is left out. Var is variance of accuracy scores and COR is the coefficient of variance.

Model
Leave-One-Out (Design Bagging)

None WMT’15 IWSLT’17 MTNT’19 BIO’18 MTNT’18
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

WMT’14 31.94 703.93 0.83 30.85 667.02 0.84 31.61 707.62 0.84 32.80 693.68 0.80 31.87 722.14 0.84 32.51 723.56 0.83
IWSLT’17 8.55 185.95 1.59 8.10 182.49 1.67 6.70 145.45 1.80 8.82 192.42 1.57 8.59 192.10 1.61 10.35 206.56 1.39
MTNT’19 5.76 150.24 2.13 5.51 146.54 2.20 4.76 126.83 2.37 5.19 136.47 2.25 6.16 160.23 2.05 6.97 173.48 1.89
BIO’18 12.69 307.07 1.38 12.03 295.87 1.43 11.82 303.21 1.47 12.27 297.13 1.41 11.88 298.30 1.45 15.35 330.40 1.18
APERTIUM 2.84 80.88 3.17 2.69 74.30 3.20 2.82 82.10 3.22 3.00 81.75 3.01 2.77 80.18 3.24 2.92 85.08 3.16

Table 5: Robustness Metrics by Design Bagging in machine translation. Sentence level BLEU scores of design
bagging of test with a single test set is left out. Var is variance of BLEU scores and COR is the coefficient of
variance.

Model
Leave-One-Out (Design Bagging)

None apparel baby beauty grocery music
Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR Mean Var COR

dvd 57.80 0.02 0.035 59.27 0.028 0.047 59.03 0.021 0.035 57.93 0.019 0.032 57.58 0.018 0.031 59.29 0.027 0.046
books 59.54 0.025 0.042 61.20 0.033 0.055 60.92 0.024 0.04 59.78 0.022 0.037 59.34 0.021 0.035 61.15 0.032 0.053
kitchen 54.61 0.008 0.015 55.40 0.009 0.016 55.42 0.008 0.016 54.88 0.008 0.016 53.99 0.007 0.014 55.17 0.011 0.021
electronics 57.40 0.008 0.014 57.99 0.007 0.012 59.37 0.019 0.032 56.97 0.005 0.009 56.84 0.005 0.009 58.00 0.008 0.014

Table 6: Robustness Metrics by Design Bagging in sentiment classification. Domain level accuracy scores when a
single test set is left out. Var is variance of accuracy scores and COR is the coefficient of variance.

model to generate contextualized adversarial exam-
ples. Niu et al. (2020) evaluates robustness to input

perturbations for neural machine translation. While
many NLP models achieve better performance af-
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Figure 5: WMT’18 submission systems, human evalua-
tion, (ϵ, γ)-Robustness measured on human evaluation
scores.

Model BLEU rankBLEU rankγ rankHuman

System A 0.379 4 4 4
System B 0.322 2 1 1
System C 0.362 3 3 3
System D 0.320 1 2 2

Table 7: (ϵ, γ)-Robustness 100% agrees with human
ranking, while BLEU 75% agrees with human.

Model 1 Model 2 CV γ Human Agree?
WMT BIO WMT WMT WMT YES
BIO IWSLT BIO BIO IWSLT NO

WMT MTNT WMT WMT WMT YES
WMT IWSLT WMT WMT WMT YES
BIO MTNT BIO BIO BIO YES

IWSLT MTNT IWSLT IWSLT IWSLT YES

Table 8: Robustness Metrics pair-wise comparison on
each two models.

ter retraining with adversarial examples, the lack
of an attack-agnostic evaluation metric leaves the
evaluation of model’s intrinsic robustness difficult
especially when seeing new adversarial attacks.

Another line of work examines the robustness of
NLP models among various domains/distributions.
Hendrycks et al. (2020) compared the robustness
of pretrained Transformers and found that pretrain-
ing models on diverse data helps to improve out-
of-distribution generalization. Müller et al. (2019)
tests several techniques such as subword regulariza-
tion, defensive model distillation to improve gen-
eralization of machine translation models. These
work detect the model performance drop under do-
main shifts but did not give notion of robustness as
consistent performance among domains or distri-
butions. In contrast, we propose three robustness
metrics that are easy to measure quantitatively us-
ing bagging or design bagging.

Some literature propose evaluation metrics for
robustness from the perspectives of statistics or
input perturbations (Weng et al., 2018; Niu et al.,
2020; Mangal et al., 2019), however, they either
focus on the worst-scenario of adversarial inputs
or disregard the full distribution of performance
scores.

7 Conclusion

We introduce variance, coefficient of variation and
(ϵ, γ)-Robustness to measure the robustness of an
NLP model’s typical behavior. Our robustness met-
rics outperform BLEU in MT system performance
rankings and highly agree with human robustness
assessment. Our work demonstrates a successful
step towards general robustness evaluation and op-
timization goals.
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