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Abstract

At least 5% of questions submitted to search
engines ask about cause–effect relationships
in some way. To support the development
of tailored approaches that can answer such
questions, we construct Webis-CausalQA-22,
a benchmark corpus of 1.1 million causal ques-
tions with answers. We distinguish different
types of causal questions using a novel typol-
ogy derived from a data-driven, manual anal-
ysis of questions from ten large question an-
swering (QA) datasets. Using high-precision
lexical rules, we extract causal questions of
each type from these datasets to create our cor-
pus. As an initial baseline, the state-of-the-art
QA model UnifiedQA achieves a ROUGE-L
F1 score of 0.48 on our new benchmark.

1 Introduction

The term “causality” usually refers to a directed
relationship between events in which one is the
cause of the occurrence of the other, called the ef-
fect. Many empirical studies begin with a research
question about a causal relationship, ranging from
“yes/no”-questions such as “Does the quality of ed-
ucation affect economic growth?” to open-ended
questions such as “What causes depression?”. But
the general public also frequently asks causal ques-
tions. Figure 1 shows an example of the top Google,
Bing, and Naver search result for the question “Can
broccoli cause constipation?”. While Bing directly
answers the question in the affirmative, Google’s
featured snippet and Naver’s first snippet claim that
broccoli actually has the opposite effect.

With at most a few thousand question–answer
pairs, existing causal question answering datasets
are relatively small and include only one type of
causal question, e.g., “yes/no”-questions (Hassan-
zadeh et al., 2019; Kayesh et al., 2020), “what-if”-
questions (Tandon et al., 2019), “why”-questions
(Verberne et al., 2006a, 2008, 2010; Lal et al.,
2021), or multiple-choice questions (Gordon et al.,
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Figure 1: “Can broccoli cause constipation?” Google’s
and Naver’s top results both disagree with that of Bing.

2012). The effectiveness of question answer-
ing (QA) systems on these benchmarks range from
F1 scores of 0.67 to 0.72. In contrast, QA systems
have already performed better than humans for ar-
bitrary questions. For instance, the F1 score of the
most effective system on the SQuAD benchmark
is 0.93, while that of humans is only 0.89 (Ra-
jpurkar et al., 2018).1 Since neither SQuAD nor
other large QA benchmarks explicitly label causal
questions, the difference in effectiveness between
causal and other questions remains unclear. But the
inconsistent results of Bing compared to Google
and Naver in Figure 1 suggest that more research
is needed on answering causal questions.

We take the first steps towards a more thorough
investigation of causal question answering by cre-
ating the Webis-CausalQA-22 benchmark,2 which
consists of 1.1 million questions and answers about
causal relationships.3 The resource compiles causal
questions from the ten QA datasets shown in Ta-
ble 1. To identify the causal questions in these

1https://rajpurkar.github.io/SQuAD-explorer/
2Leaderboard: https://causalqa.webis.de
3Code and data: https://github.com/webis-de/COLING-22

https://rajpurkar.github.io/SQuAD-explorer/
https://causalqa.webis.de
https://github.com/webis-de/COLING-22
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Table 1: Characteristics of the question answering datasets used to create Webis-CausalQA-22. We removed
questions without answer (respective datasets marked by ∗; in total, 25,841 causal questions without answers).

Dataset Type Size Length (Words) Reference

Question source Answer Questions Causal questions Caus. qu. Answ.

PAQ Generated with BART Term(s) 64,875,601 769,606 (1.2%) 9.6 2.7 Lewis et al. (2021)
GooAQ Google’s autocomplete Term, Passage 5,030,530 146,286 (2.9%) 7.3 44.3 Khashabi et al. (2021)
MS MARCO QnA∗ Bing query log Passage 1,010,916 25,569 (2.5%) 6.4 17.5 Nguyen et al. (2016)
Natural Questions∗ Google query log Passage 315,203 1,208 (0.4%) 9.8 10.8 Kwiatkowski et al. (2019)
ELI5∗ Reddit questions Passage 272,634 131,033 (48.0%) 32.5 99.0 Fan et al. (2019)
SearchQA Human-written Term(s) 216,136 780 (0.4%) 16.8 1.8 Dunn et al. (2017)
SQuAD v.2.0∗ Human-written Term(s) 142,192 3,209 (2.3%) 10.5 6.2 Rajpurkar et al. (2016)
NewsQA∗ Human-written Term(s) 119,633 652 (0.5%) 7.2 6.1 Trischler et al. (2017)
HotpotQA Human-written Term(s), Passages 112,662 390 (0.4%) 21.8 3.8 Yang et al. (2018)
TriviaQA Human-written Term(s) 109,767 703 (0.6%) 19.4 3.1 Joshi et al. (2017)

Webis-CausalQA-22 Mixed Mixed 72,205,274 1,079,436 (1.5%) 12.0 22.5 This paper

datasets, we manually analyzed samples and devel-
oped a two-dimensional typology of causal ques-
tions based on their semantic properties and prag-
matic interpretation (Section 3). Using a set of
manually created lexical rules, we extract causal
questions with 80% recall at near-perfect precision
(Section 4). When applied to a large sample of a
query log from a commercial search engine, we
also find that at least 5% of submitted queries are
causal, highlighting the need for tailored technolo-
gies. As an initial baseline, we evaluate the Uni-
fiedQA model (Khashabi et al., 2020) fine-tuned
on our resource (Section 5). It achieves an average
ROUGE-L F1 score of 0.48 across datasets.

2 Related Work

We review the literature in four areas: prior ty-
pologies of causal questions, causal QA, as well as
generic QA datasets and QA systems.

2.1 Causal Question Typologies
In the QA literature, causal questions are usually
considered in terms of their lexical surface form
and their answer type (i.e., the content of the an-
swer). Most of the existing causal question typolo-
gies only deal with questions clearly identifiable
by the question word “why”. Somewhat conse-
quently, early open-domain QA research only had
a single type covering all “why”-questions (Hovy
et al., 2000; Moldovan et al., 2000, 2003) before
Verberne et al. (2006b) subcategorized them based
on the answer type as cause (no deliberate human
intention involved), motivation (human intention
involved), circumstance (strict condition for the
resulting event), or generic purpose (physical func-
tion of an object). For Webclopedia, Verberne et al.

(2007) suggested five types: motivation, physical
explanation, non-physical explanation, etymology,
and nonsense. Later, Breja and Jain (2017) pro-
posed another, rather reasoning-based, typology of
causal questions: informational / factual (reason-
ing about a fact), historical (reasoning about the
past), situational (reasons for an event at a particu-
lar time), and opinion (personal reasons).

Interestingly, all these typologies lack abstrac-
tion and do not capture general properties of causal
relations. For instance, physical, non-physical,
and etymology can be seen as subtypes of a class
“causal explanation” that specify the nature of the
explanation. The typologies also operate at differ-
ent granularities, which makes comparisons diffi-
cult. For instance, Verberne et al. (2007) address
specific properties of causes (physical, linguistic),
whereas Breja and Jain (2017) focus on the strength
of the evidence (fact vs. opinion).

In contrast, an objective, data-neutral approach
to categorizing questions in general had been pro-
posed by Lehnert (1977), including some causal
types dependent on the structure of the causal de-
pendencies. Our typology builds on Lehnert’s, and
we derive subtypes of causal questions in a sys-
tematic way along with their semantic and prag-
matic characteristics: analytically at the semantic
level and in a data-informed fashion at the prag-
matic level. Moreover, our approach is not limited
to causal “why”-questions as in most of the prior
work, but characterizes the type of causal questions
independent of their surface form.

2.2 Causal Question Answering
The related work on causal QA is rather limited.
Most datasets for causal QA focus on “why”-
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questions and are relatively small (Gordon et al.,
2012; Hassanzadeh et al., 2019; Verberne et al.,
2006a, 2008, 2010; Tandon et al., 2019; Kayesh
et al., 2020; Lal et al., 2021). Usually, QA sys-
tems only achieve F1 scores of around 0.7 on
these datasets—worse than the effectiveness ob-
served for many other question types. For in-
stance, Ishida et al. (2018) and Iida et al. (2019)
retrieve “compact” answers for “why”-questions
from a web corpus using a pointer-generator net-
work (See et al., 2017). Kayesh et al. (2019) ad-
dress causal “yes/no”-questions by transfer learn-
ing, while Hassanzadeh et al. (2019) use large-scale
text mining. Finally, Heindorf et al. (2020) suggest
to use CauseNet, a large knowledge graph with
more than 11 million cause–effect relationships ex-
tracted from ClueWeb12 web pages and Wikipedia
articles. With Webis-CausalQA-22, we create a
larger dataset to enable training and testing causal
QA approaches on a dedicated broader benchmark.

2.3 Question Answering Datasets
Current QA research is characterized by the grow-
ing sizes of datasets (see Table 1) to improve neu-
ral QA models, and by a diversification across do-
mains and question types (e.g., HotpotQA specif-
ically includes comparative questions) and lan-
guages (e.g., TyDi QA features eleven languages).
QA systems have meanwhile outperformed hu-
mans on Rajpurkar et al.’s (2018) SQuAD bench-
mark for reading comprehension. Hence, new
task-specific smaller benchmarks such as Com-
monsenseQA (14,000 “yes/no”-questions by Tal-
mor et al. (2019, 2021)) for common sense rea-
soning have been published as new challenges.
On CommonsenseQA v. 2.0, for instance, Lourie
et al.’s (2021) T5-based UNICORN model achieves
an accuracy of 0.7, but this is still below the 0.94
of humans (Talmor et al., 2021). Out of the many
available open-domain QA datasets, we selected
those that are well-known enough to be mentioned
in surveys (e.g., Cambazoglu et al. (2020)), con-
tain lexically diverse question types, and have more
than 100,000 QA pairs (cf. Table 1 for the selected
datasets and their characteristics).

Artificial datasets. With 65 million QA pairs,
PAQ (Lewis et al., 2021) is the largest of the se-
lected datasets. Its questions were generated us-
ing the BART-base model (Lewis et al., 2020)
fine-tuned on the questions, answers, and context
passages from Natural Questions (Kwiatkowski

et al., 2019), TriviaQA (Joshi et al., 2017), and
SQuAD (Rajpurkar et al., 2016). Fine-tuning on
human questions ensures some naturalness, but
the answers were automatically extracted from
Wikipedia. Among our selected datasets, PAQ is
the only automatically generated one. We include
it since the generation evaluation by Lewis et al.
shows the questions to be plausible and since more
than 700,000 causal questions are contained.

User-generated datasets. GooAQ (Khashabi
et al., 2021), MS MARCO QnA (Nguyen et al.,
2016), Natural Questions (Kwiatkowski et al.,
2019), ELI5 (Fan et al., 2019), SearchQA (Dunn
et al., 2017), and TriviaQA (Joshi et al., 2017) con-
tain real-world questions submitted to search en-
gines or posted on web fora. The GooAQ dataset
contains about five million QA pairs with questions
collected from Google’s query auto-completion
when prompted with a given question word. The
answers were extracted from Google’s featured
snippets shown as direct answers on top of the
search results. The MS MARCO QnA corpus con-
tains about one million questions that were sampled
from Bing’s query logs, with long answers (text pas-
sages) extracted from web documents retrieved by
Bing, and short answers (terms) written manually
by crowdworkers. Similarly, the Natural Questions
dataset contains more than 300,000 queries sam-
pled from Google’s search logs. Long answers and
short answers were manually selected by crowd-
workers from Wikipedia articles.

The about 270,000 ELI5 questions were col-
lected from Reddit’s subreddit “Explain Like I’m
Five (ELI5)” where users provide simple answers
to posted questions. Only answers (text passages)
with at least two more up-votes than down-votes
were used. The more than 215,000 questions in
SearchQA and their short answers (terms) stem
from Jeopardy!, while context passages were ob-
tained by querying Google and collecting at least
40 result snippets. The more than 100,000 QA pairs
in TriviaQA were scraped from various trivia and
quiz websites. Each QA pair is complemented with
context passages in the form of web documents
from Bing’s search results or from Wikipedia.

Crowdsourced datasets. The SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2017), and
HotpotQA (Yang et al., 2018) datasets were exclu-
sively constructed using crowdsourcing. SQuAD
version 2.0 contains about 140,000 QA pairs writ-
ten by crowdworkers who were shown paragraphs
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from Wikipedia and tasked to compose up to five
questions and answers about them. The about
120,000 QA pairs in NewsQA were similarly
crowdsourced using CNN news articles’ headlines
and their summaries, but different crowdworkers
wrote the questions and the answers. Lastly, Hot-
potQA contains about 113,000 entries with ques-
tions, answers, and supporting facts written by
crowdworkers based on Wikipedia paragraphs. De-
signed for multi-hop QA, these questions require
a system to “hop” over several supporting facts
(mostly sentences) from different text passages to
arrive at a short answer.

2.4 Question Answering Systems
Early question answering systems such as Baseball
(Green et al., 1961) used dictionaries of attribute–
value pairs to answer questions, usually in narrow
domains. Recent, more sophisticated QA systems
can be divided into systems based on textual data
and systems based on knowledge graphs.

Text-based systems, like UnifiedQA (Khashabi
et al., 2020) that we employ as a first baseline for
our new benchmark, mainly use language models.
Their input may just be a question but often also
is a question with context like some text passage
or even the whole Wikipedia (Chen et al., 2017).
The actual answering process ranges from binary
classification (answer selection) over span extrac-
tion (identifying answer boundaries within a text)
to abstractive text summarization and generation.

Knowledge base question answering (KBQA)
systems operate on graphs with a single or up to
thousands of edge types (e.g., DBpedia by Auer
et al. (2007)). Typically, they use manually de-
signed templates of graph patterns to detect an-
swers (Zheng et al., 2018; Vollmers et al., 2021),
use knowledge graph embeddings (Sharp et al.,
2016; Huang et al., 2019; Saxena et al., 2020),
or train neural networks on knowledge graphs
(Chakraborty et al., 2021). Questions are often di-
vided by their answer type being a single graph rela-
tion (Mohammed et al., 2018), a path with multiple
hops (Saxena et al., 2020), or complex answers
requiring reasoning (e.g., combining information
from multiple paths; Lu et al. (2019); Mitra and
Baral (2016); Asai et al. (2020)).

3 A Typology of Causal Questions

While various types of causality-related questions
have been previously addressed in automated ques-

tion answering, there has been no attempt so far to
systematize “questions about causality” as a class
in the QA community. Computational process-
ing of causal structures, however, dates back to
the 1970s and the early AI research on causal de-
pendencies between events in the context of story
comprehension. Notably, Lehnert (1977) devel-
oped a computational model of question answer-
ing based on a theory of “conceptual information
processing”. Their QUALM system was capable
of answering 13 types of questions about stories—
9 types being related to causal relationships.

Following Lehnert, we define questions about
causal relationships in terms of causal chains
(Schank, 1975) and integrate Lehnert’s causal cat-
egories into a more specific typology of causal
questions. While Lehnert’s definitions and cate-
gories are motivated by and directly linked to pro-
cessing strategies in a story comprehension system,
our typology is more generic and motivated by the
semantic and pragmatic properties of causal ques-
tions. At the semantic level, we group causal ques-
tion types in terms of which component of a causal
chain a question addresses. Our type set combines
Lehnert’s causality-related categories and Verberne
et al.’s categories of “why”-questions (Verberne
et al., 2006b, 2007) as subtypes. At the pragmatic
level, we group question types in terms of the as-
sumed purpose of inquiry or the so-called intent of
a question. We arrived at the pragmatic categories
in a data-driven fashion by analyzing 1,000 ques-
tions (100 sampled from each of the 10 selected
QA datasets; cf. Table 1). In the following sections,
we first define the category causal question and
then present the semantic and pragmatic dimen-
sions of our typology.

3.1 The Causal Question Category
We define the category causal question by referring
to knowledge resources required in providing an
answer, specifically, to inference based on causal
chains (Schank, 1975). A causal chain is a se-
quence of alternating events (or statestions) linked
by relationships expressing causal dependencies be-
tween them: an event can enable, result in, be the
reason of, cause, or lead to another event. A ques-
tion is a causal question if answering it requires
(1) identifying causal chains, (2) inference on those
chains, and (3) verbalizing the causal relations in-
volved when answering it. By this definition the
question “Why is there something rather than noth-
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Table 2: (a) The semantic and (b) the pragmatic dimensions of causal questions; the set of subtypes in (b) is not
exhaustive, but serves to show that the top-level categories are well-motivated—considering that coherent subtypes
can be identified—and to illustrate the range of domains of the requests. (c) Rules to classify causal questions in
the labeled sample of 1,000 questions. Reported: precision and recall for the class of causal questions and number
of matches in Webis-CausalQA-22. For the rules not present in the initial random sample, we sampled 50 random
questions afterwards, manually labeled them, and calculated a precision (numbers are given in gray).

(a)

Category Examples

Questions about an antecedent
Cause Why does a mosquito bite itch?
Goal Why did Jean Valjean take care of Cosette?
Purpose Why do gaming chairs have a race car design?
Enablement How can FIFA be so blatantly corrupt?

Questions about a consequent
Result What does increasing water vapor lead to?

Questions about the causal chain
Verification Would hydrophobic coating affect swimming?

(c)

Measure Lexical rules

R1 R2 R3 R4 R5 R6 R7 R1–7

Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.59 0.11 0.07 0.02 0.01 – – 0.80

Matches 505K 313K 132K 131K 10K 15K 4K 1.1M

(b)

Intent Examples

Solution seeking
Problem solving

Practical problems Why can’t I log in into Facebook?
Medical problems Can broccoli cause constipation?

Problem prevention
Medical problems What to do to prevent cancer?
Societal problems What to do to prevent global warming?

Coping with problems
Mental coping Why do you think about the people who are gone?
Anger Why doesn’t a director fire a stupid employee?

Knowledge seeking
Physical world Why do chemical reactions depend on pH?
Politics / history How did World War II start?
Language Why is a notebook called “notebook”?
Trivia / fun facts What happens if you scan a mirror?

Opinion seeking
Social issues Why do men cheat on their wives?
Entertainment Why is Messi not playing on the team?
Rational future outcomes What will happen if Trump wins another election?
Irrational future outcomes What will happen if one dreams of pregnancy?

ing?” can be interpreted as causal and eliciting a
physical cause for existence, whereas the question
“What is your name?” will not be considered causal
even though a causal chain leading to a person be-
ing given a name may be identified; the answer
“My name is Mary” does not verbalize the causal
chain and an answer like “My mother named me
Mary”, while it may be considered as related to
the question, provides irrelevant information under
standard assumptions about responsiveness.

3.2 The Semantic Dimension
Our three top-level semantic categories for causal
questions reflect the question’s target with respect
to the structure of causal chains: questions about
an antecedent ask about events, actions, or states
that in a (maybe just hypothetical) causal chain pre-
cede the ones mentioned in the question, questions
about a consequent ask about events, actions, or
states that follow the ones mentioned in the ques-
tion, and questions about the chain ask about some
property of the causal chain itself. Each of these
three categories has further more specific subtypes;
selected subtypes with example questions are given
in Table 2a. Note that the list of subtypes is not
meant to be exhaustive: we show only those types
that we actually encountered in the literature or in
our annotated datasets.

Cause questions ask about a general cause due
to which the consequent holds; the causal depen-
dency may be of any type: physical cause, social,
psychological, etc. Goal questions ask about in-
tentional motives behind an action, be it general
future goals or inner motivations, whereas purpose
questions ask about a generic purpose of the con-
sequent, and enablement questions ask about the
circumstances that enable / enabled the consequent.
Result questions ask about the general effect of the
antecedent, and verification questions ask whether
a causal chain between events exists.

In this typology, Lehnert’s disjunction is sub-
sumed under the more general verification cate-
gory (properties of the verified proposition possi-
bly marked as attributes) and expectational is an
attribute of cause, since the only difference be-
tween Lehnert’s cause and expectational categories
is that in the case of the latter, the consequent act
presumably did not occur. Verberne et al.’s moti-
vation, essentially a combination of Lehnert’s goal
and circumstance, is our enablement category with
possibly Charniak’s (1975) additional attributes.

Note that answering procedural questions (e.g.,
“how to . . . ”) also often involves inferences based
on somewhat “causal” chains. However, procedural
questions usually reflect a non-causal underlying
information need in the sense that they ask about
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the sequential nature of a chain but not about the
causal relations. Such questions can rather be con-
sidered manner questions, as also suggested by
Hovy et al. (2002), so that we do not include them
in our typology of causal questions.

3.3 The Pragmatic Dimension
At the pragmatic level, we model the inquirer’s
assumed motive for asking, i.e., their “visceral
need” in Taylor’s (1962) terminology or the “query
intent” in Broder’s (2002). We link the causal
questions’ intents to the pragmatic function of
the inquiries—their “illocutionary force” (Austin,
1962). Much as recognizing the underlying func-
tion of a question affects a listener’s response strat-
egy, also in the case of web search, being able to
identify a query’s underlying speech act can guide
the choice of what resources (e.g., what document
subset) to use in a search for answers.

Our analysis of the 1,000 question sample
dataset revealed three core categories of intent in
causal questions: solution seeking, knowledge seek-
ing, and opinion seeking. These intents, in turn, can
be interpreted in terms of their illocutionary force
as indirect requests for help (some of the ques-
tions under solution and opinion) or as genuine
requests for information (solution and knowledge).
Solution seeking and non-trivia/-trivial knowledge
seeking calls for search in authoritative knowledge
sources, whereas opinion seeking calls for search,
for instance, in discussion fora or social media.
Moreover, recognizing a request for help (falls into
coping with problems in our typology) in a question
might justify additional content in the generated
response, such as advice where to seek help in case
of a medical question. Subtypes of the three in-
tent categories are exemplified in Table 2b. Again,
the presented subtypes are not meant to be exhaus-
tive, but rather to show that the top-level categories
are well-motivated and to illustrate the range of
possible information needs in causal questions.

3.4 Causal Questions in Web Search
Finally, to gain some insights into causal questions
that people actually submit to search engines, we
briefly analyze a dataset of all question-like queries
submitted to Yandex in 2012; dataset created by
Völske et al. (2015) and also used by Bondarenko
et al. (2020). The question-like queries were ex-
tracted from the complete 2012 Yandex log by
matching any of 58 hand-crafted syntactic ques-
tion indicators (e.g., queries starting with “how”,

“what”, “where”, etc.). The final set contains about
1.5 billion question-like log entries with about
730 million unique questions. Applying trans-
lated versions of the seven lexical rules we use for
our benchmark corpus construction (cf. Table 3),
about 81.7 million causal questions are mined from
the log (about 5% of the 1.5 billion question-like
log entries). The most frequent causal questions
are “why”-questions (50 million; frequent example:
“Why can’t I log in into VKontakte?”) followed by
“what to do if”-questions (13.1 million) and “what
happens if”-questions (11 million). Interestingly,
from manual spot checks of 1,000 mined “what
happens if”-questions, it seems that 90% of them
are about dream interpretation (e.g., “What will
happen, if one dreams of pregnancy?”). This cat-
egory of somewhat fictitious causality, raises the
interesting question about how search engines or
QA systems should deal with respective informa-
tion needs. However, somewhat unsurprisingly,
such examples are not contained in current stan-
dard QA datasets. Another manual inspection of a
sample of 1,000 questions explicitly asking about
causes or effects shows that most of them target
causes of medical conditions or effects on health.

4 The Webis-CausalQA-22 Corpus

In this section, we describe how we extract causal
questions from the ten QA datasets in Table 1 and
briefly analyze or resulting new benchmark corpus.

4.1 Corpus Construction
Table 1 gives an overview of the QA datasets from
which we extract causal questions to construct the
Webis-CausalQA-22 benchmark. The datasets ful-
fill three selection criteria: (1) they contain lexi-
cally diverse questions, (2) they are well-known in
the research community, and (3) they are large.

We investigate causal questions in two steps:
based on prior work and based on a manual analy-
sis of 1,000 questions randomly sampled from the
QA datasets (100 from each). We asked two anno-
tators to label whether a given question is causal
or not, considering a question to be causal if the
answer may only be provided as a result of causal
reasoning involving entities from the question. To
discover new patterns beyond more “obvious” ones
like “What are the effects of X?” or “What causes
Y?”, we did not provide examples, but specified
that the question may be asking about explicit or
implicit causal relationships. They achieved an
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ID [Regular Expression] / Example

R1 [why]
Why does mosquito bite itch?

R2 [cause(s)?]
What causes broken blood vessels?

R3 [how come|how did]

How did the constellation Bootes get its name?
R4 [effect(s)?|affect(s)?]

What was the effect of the silk road on religions?
R5 [lead(s)? to]

What does increasing water vapor lead to?
R6 [what(will|might)? happen(s)?]∧[if|when]

What happens if we drink very hot water?
R7 [what(to do|should be done)]∧[if|to|when]

What to do if my Xbox won’t connect to the Wi-Fi?

Table 3: Lexical rules used to match causal questions in
a regular expression syntax. E.g., a question matching
R6 must contain ‘what happens’ or ‘what will happen’
or ‘what might happen’ and ‘if’ or ‘when’.

inter-annotator agreement of Cohen’s κ = 0.54
(moderate agreement). Coding differences were
reconciled in a discussion with a third annotator
and a total of 86 questions labeled as causal.

Based on the causal questions from our sample
and based on existing question typologies (Lehnert,
1977; Graesser and Person, 1994; Graesser et al.,
2008; McClure et al., 2001; Gelman, 2011; Gel-
man and Imbens, 2013), we hand-crafted the seven
lexical rules to identify causal questions (cf. Ta-
ble 3). Rules R1–R5 achieve a precision of 1.0
on our labeled sample (cf. Table 2c), while no in-
stances matched Rules R6 and R7 (derived from
prior work). We thus randomly sampled 50 ques-
tions from the QA datasets using these rules and
manually checked that their precision also is 1.0.

We run these seven high-precision rules on the
ten standard QA datasets and extract a total of about
1.1 million causal questions that, together with their
answers and context passages (if available), form
the Webis-CausalQA-22 benchmark corpus.

4.2 Corpus Analysis
Table 2c shows how many causal questions have
been extracted by each of the seven lexical rules.
About half of the causal questions are open-ended
“why”-questions (e.g., “Why does a mosquito bite
itch?”). Questions about causes (e.g., “What causes
broken blood vessels?”) constitute another 28% of
our corpus. Interestingly, the least frequent ones
are “what to do if”-questions (e.g., “What to do if
my Xbox won’t connect to the Wi-Fi?”) that at less

than 1% are by far less common than their 11% in
real web search questions (cf. Section 3.4).

The context available for the question–answer
pairs in our Webis-CausalQA-22 corpus de-
pends on the source dataset and varies from
Wikipedia passages (e.g., PAQ, Natural Ques-
tions, SQuAD) to search engine snippets (e.g.,
SearchQA) or passages from web documents (e.g.,
MS MARCO QnA). Also the average question and
answer lengths vary widely per extraction source.
While, on average, a question contains 12 words (cf.
Table 1), the questions from MS MARCO QnA,
for instance, are much shorter (6.4 words, Bing
search) and questions from ELI5 are much longer
(32.5 words, extracted from Reddit). Similarly,
on average, an answer has 23 words but the an-
swers from SearchQA are way shorter (1.8 words,
human-written answers for Jeopardy! clues) while
the answers from ELI5, again, are much longer
(99 words, human-written answers with explana-
tions). Besides the causal nature of the questions,
also this diversity of questions and answers in our
corpus poses a challenge to (causal) QA systems.

5 Evaluation

To establish a first baseline effectiveness for causal
question answering on the Webis-CausalQA-22
benchmark, we report the results achieved by the
state-of-the-art UnifiedQA model Khashabi et al.
(2020, 2022). UnifiedQA is a text-based ques-
tion answering model that has been reported by
Khashabi et al. to perform well on 32 QA datasets,
including SQuAD v. 2.0, where it achieved a bag-
of-word-based F1 score of 0.90. We experiment
with Version 2 of the model, Checkpoint 1363200,
using (1) the base model, and (2) a version fine-
tuned on Webis-CausalQA-22 using the hyperpa-
rameters of Khashabi et al. (2022).4 In a pilot
study, we attempted to fine-tune a joint model on
all datasets but found fine-tuning per source dataset
to yield better results. Moreover, we experiment
with the causal questions extracted from the origi-
nal train/dev splits proposed by the authors as well
as a random 90/10 train-test split of our own. The
reason for the latter is that, for some datasets, by
chance, only few causal questions are part of the
original train/dev splits (compare the number of

4All experiments were conducted on an NVIDIA A100
GPU. Fine-tuning: 60K steps in general, or 6K steps to avoid
overfitting on datasets containing less than 50K causal ques-
tions; AdamW optimizer (Loshchilov and Hutter, 2019); learn-
ing rate 5e−5; batch size 2.
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Table 4: Effectiveness of the UnifiedQA model on causal question answering on the Webis-CausalQA-22 corpus:
(a) the base model (Version 2) and a fine-tuned version on the original train/dev splits per dataset if availalbe; (b) a
fine-tuned version on a random 90/10 train/test split. N: number of questions used for evaluation, P: precision,
R: recall, F1: F1 score, EM: exact match. The star (*) indicates datasets usually evaluated using ROUGE-L.

Dataset Original train/dev split Random 90/10 split

N Base model Fine-tuned model N Fine-tuned model

ROUGE-L Traditional ROUGE-L Traditional ROUGE-L Traditional

P R F1 EM F1 P R F1 EM F1 P R F1 EM F1

PAQ 76,961 0.79 0.85 0.80 0.69 0.80 0.95 0.95 0.94 0.91 0.94 76,961 0.95 0.95 0.94 0.91 0.94
GooAQ* 33 0.29 0.04 0.06 0.00 0.07 0.14 0.11 0.12 0.00 0.15 14,629 0.17 0.15 0.15 0.00 0.19
MS MARCO QnA* 2,558 0.44 0.19 0.23 0.05 0.24 0.49 0.40 0.39 0.10 0.41 2,557 0.45 0.42 0.39 0.13 0.40
Natural Questions 71 0.14 0.05 0.06 0.01 0.07 0.34 0.37 0.33 0.18 0.34 121 0.37 0.34 0.32 0.16 0.33
ELI5* 13,104 0.26 0.04 0.06 0.00 0.08 0.16 0.09 0.10 0.00 0.12 13,104 0.16 0.09 0.10 0.00 0.12
SearchQA 117 0.20 0.22 0.20 0.15 0.20 0.63 0.64 0.62 0.53 0.62 78 0.55 0.54 0.54 0.47 0.54
SQuAD v.2.0 252 0.79 0.81 0.78 0.63 0.78 0.84 0.84 0.83 0.66 0.83 321 0.96 0.96 0.95 0.93 0.95
NewsQA 29 0.57 0.55 0.53 0.31 0.53 0.65 0.56 0.58 0.45 0.58 66 0.76 0.76 0.73 0.58 0.73
HotpotQA 35 0.49 0.39 0.40 0.14 0.40 0.60 0.55 0.53 0.26 0.54 39 0.73 0.73 0.73 0.67 0.72
TriviaQA 66 0.37 0.35 0.34 0.26 0.35 0.43 0.41 0.40 0.27 0.40 71 0.44 0.43 0.42 0.28 0.42

Macro-averaged 9,323 0.43 0.35 0.35 0.23 0.35 0.52 0.49 0.48 0.34 0.49 10,795 0.55 0.54 0.53 0.41 0.53
Micro-averaged 65,447 0.70 0.72 0.68 0.58 0.68 0.82 0.81 0.81 0.75 0.81 58,505 0.73 0.72 0.72 0.65 0.73

causal questions reported in Table 1 to the left Sub-
column N in Table 4. The original test sets are
often not publicly available, but only indirectly via
run submission to a leaderboard.

Effectiveness is measured using the ROUGE-L
scores precision, recall, and F1 (Lin, 2004), as well
as the traditional exact match (EM) and F1 mea-
sures. The ROUGE-L measures are based on the
longest common subsequence between a predicted
answer and a ground truth answer, whereas EM re-
quires the order of all tokens to match and the tra-
ditional F1 measure is based on an order-invariant
bag-of-words representation. If a question has
more than one ground truth answer, the maximum
score per measure and question is taken. Effec-
tiveness is measured both per constituent dataset
of Webis-CausalQA-22, and averaged using micro-
and macro-averaging across datasets.

Table 4 shows the effectiveness scores achieved
by UnifiedQA. The columns “Original train/dev
split” shows the effectiveness on the causal ques-
tions that we have identified in the original dev
split using our lexical rules, yielding the number of
causal question–answer pairs indicated in Subcol-
umn N.5 We observe that UnifiedQA is most effec-
tive on PAQ across all measures, perhaps due to the
large number of questions–answer pairs available
and/or the fact that the models underlying PAQ
and UnifiedQA have both been trained (among
others, respectively) on SQuAD. For GooAQ and
ELI5, the effectiveness is lowest, perhaps due to

5For PAQ and ELI5, no dedicated dev sets are available
and we performed a random 90/10 split.

the lack of context information in these datasets.
Fine-tuning UnifiedQA on the respective datasets
increases its effectiveness in terms of ROUGE-L
F1 across the board. Overall, the scores of the fine-
tuned models are between 0.12 and 0.62 with the
exception of PAQ (0.94) and SQuAD (0.83). This
generally indicates plenty of room for improve-
ments in causal QA.

The columns “Random 90/10 split” reports
the corresponding effectiveness scores of Uni-
fiedQA for the fine-tuned model version, where
fine-tuning was repeated on the different train-
ing set. Comparing the ROUGE-L F1 scores to
the fine-tuned model on the original split, we ob-
serve the largest differences for the datasets Hot-
potQA (from 0.53 in the original split to 0.73 in the
new one), NewsQA (from 0.58 to 0.73), SQuAD
(from 0.83 to 0.95), SearchQA (from 0.62 to 0.54),
and GooAG (from 0.12 to 0.15). The effectiveness
on HotpotQA increases because the original split
used more difficult questions for the dev set than
for training (Yang et al., 2018). The effectiveness
on the new splits of SQuAD v. 2.0 and NewsQA
increases because the UnifiedQA base model was
trained on both datasets causing a leakage of train-
ing data. The effectiveness on SearchQA decreases
potentially due to overfitting to the training set, or
a particularly easy dev set in the original dataset by
chance as the original dataset was split by time (dif-
ferent years for dev and test sets than for training).
The effectiveness on GooAQ increases slightly be-
cause the original train/dev sets were explicitly
made dissimilar by avoiding word overlaps while
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our random split does not. Moreover, with the new
split, GooAQ is evaluated on many more questions
because the original dev set contained far fewer
causal questions than 10% of the whole dataset.

Overall, when comparing macro-averages across
datasets, we find that fine-tuning improves the
macro-averaged ROUGE-L F1 scores from 0.35
to 0.48 on the original train/dev split, and to 0.53
on the random 90/10 split. Micro-averaging gen-
erally results in higher scores when compared to
macro-averaging due to imbalanced distribution of
question–answer pairs across datasets, where PAQ
has the largest influence. Interestingly, when com-
paring the macro-averaged ROUGE-L F1 scores of
the original train/dev split with the random one, and
the corresponding micro-averaged ones, the micro-
averaged ones decrease from 0.81 to 0.72, while the
macro-averaged ones increase as mentioned above.
This is mainly caused by GooAQ having a much
higher weight overall due to contributing more than
14,500 question–answer pairs, the second-largest
amount following PAQ, compared to only 33 in the
original train/dev split.

It is a matter of debate, which of the two splits
and which of the two averages are to be preferred
as a baseline. At present, we recommend using the
original train/dev split (especially, if a model was
trained on one of our corpus’s constituent datasets,
like UnifiedQA), and then the macro-averaged
ROUGE-L F1 score. In case of UnifiedQA, this
score is 0.48 for the model version fine-tuned on
each constituent dataset individually.

6 Conclusion

We constructed Webis-CausalQA-22, the first large
benchmark dataset of 1.1 million causal question–
answer pairs, which serves to advance research
in causal question answering. To ensure diver-
sity of questions, we extracted them using seven
hand-crafted high-precision lexical rules to capture
as many subtypes of causal questions as possible.
These rules were derived from a new typology of
causal questions, which in turn is based on relevant
related work on question typologies. A manual
analysis of a sample of questions was used to char-
acterize causal questions in terms of two dimen-
sions: (1) their semantic properties, i.e., according
to which element of the causal structure the ques-
tion is asked (antecedent, consequent, or the causal
chain) and (2) their pragmatic interpretation, i.e.,
the underlying intention or assumed information

need of the questioner (e.g., prevention of medical
problems). Furthermore, a subsequent analysis of
the causal questions contained in a search engine
log showed that a significant proportion of 5% of
question queries are causal. Finally, we evaluated
the state-of-the-art model UnifiedQA on our corpus
as an initial baseline for causal question answering.

Causal questions represent a hitherto poorly con-
sidered challenge for both search engines in general
and QA systems in particular. In this respect, our
typology serves as a guide for the development of
new technologies: The semantic dimension is rele-
vant for understanding queries, while the pragmatic
dimension may guide search engines and QA sys-
tems in finding and presenting answers. In addition,
linking current text-based models with algorithms
for causal inference is a promising direction to an-
swer more complex questions for which answers
cannot be found directly on the web. CauseNet
may also prove useful here, as the graph of cause–
effect relationships already makes such connec-
tions. However, to maximize user confidence in an
information system’s answers to causal questions,
all causal claims must be supported by evidence
(e.g., in the form of scientific studies).
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