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Abstract

Intent detection is at the core of task-oriented
dialogue systems. Existing intent detection sys-
tems are typically trained with a large amount
of data over a predefined set of intent classes.
However, newly emerged intents in multiple do-
mains are commonplace in the real world. And
it is time-consuming and impractical for dia-
logue systems to re-collect enough annotated
data and re-train the model. These limitations
call for an intent detection system that could
continually recognize new intents with very few
labeled examples. In this work, we study the
Continual Few-shot Intent Detection (CFID)
problem and construct a benchmark consist-
ing of nine tasks with multiple domains and
imbalanced classes. To address the key chal-
lenges of (a) catastrophic forgetting during con-
tinuous learning and (b) negative knowledge
transfer across tasks, we propose the Prefix-
guided Lightweight Encoder (PLE) with three
auxiliary strategies, namely Pseudo Samples
Replay (PSR), Teacher Knowledge Transfer
(TKT) and Dynamic Weighting Replay (DWR).
Extensive experiments demonstrate the effec-
tiveness and efficiency of our method in pre-
venting catastrophic forgetting and encourag-
ing positive knowledge transfer across tasks.

1 Introduction

Intent Detection (ID) is at the core of task-oriented
dialogue systems. It aims at understanding the
goals underlying user utterances and classifying
them into different intents accurately (Zhang et al.,
2020; Qin et al., 2021). Traditionally, the ID system
is trained with plenty of labeled data to identify
a predefined set of intent classes (Larson et al.,
2019). However, newly emerged intents in multiple
domains are commonplace in the real scenario. A
naive approach to detecting new intents is to re-
collect annotated data and re-train the model, which
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Setting Few-shot Continual Multi-Domain #Classes
FSID (Zhang et al., 2020) ✓ ✗ ✓ -
CID (Liu et al., 2021) ✗ ✓ ✓ -
FSCIL-ID (Xia et al., 2021) ✓ ✓ ✗ Balanced
CFID (Ours) ✓ ✓ ✓ Imblanced

Figure 1: Illustration of Continual Few-shot Intent De-
tection (CFID). Compared with existing works, CFID
aims to recognize continually new intents from multiple
domains with very few labeled examples and imbal-
anced number of classes across tasks.

is time-consuming and impractical for dialogue
systems in deployment. Thus, an intent detection
system that could continually recognize new intents
with very few labeled examples is called for.

Many efforts have been made in existing works
to achieve this goal. Zhang et al. (2020) pro-
pose a discriminative nearest neighbor classifica-
tion method to solve the Few-Shot Intent Detection
(FSID) problem. They mainly focus on the data
scarcity and ignore the ability to learn consecutive
tasks. Liu et al. (2021) and Wang et al. (2021) pro-
pose promising solutions for the Continual Intent
Detection (CID) problem. Nevertheless, they do
not consider the few-shot setting, which is more
realistic due to the scarcity of labeled data for new
intents. The most recent work (Xia et al., 2021) pro-
vides the first study on few-shot class-incremental
learning for intent detection (FSCIL-ID). However,
it assumes (1) all tasks belong to the same domain
and (2) the number of classes across few-shot tasks
is balanced, which is not practical in the real world.

In this work, we define a more realistic problem
as Continual Few-shot Intent Detection (CFID) and
construct a benchmark consisting of nine tasks with
multiple domains and imbalanced classes in 5-shot
and 10-shot settings. As shown in Figure 1, the
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system is provided with a sequence of tasks with
limited labeled data and expected to continually
learn on new intents while performing accurate
classification on all previously seen tasks. Com-
pared with existing works, CFID is more aligned
with real scenario where the number of classes is
highly imbalanced and task domains vary widely.

We consider addressing the problem from the
intersection perspective of few-shot and lifelong
learning. A strong baseline is to construct prototyp-
ical networks with a pre-trained language model
(PrLM) and sequentially update all the weights on
each task. However, there are two issues: (i) over-
parameterization of PrLMs makes them prone to
overfit the current task and cause catastrophic for-
getting of previous knowledge (Ke et al., 2021a;
Yuan et al., 2021). (ii) due to the domain gaps and
imbalanced classes, the knowledge inherited from
the past task may degrade the performance of the
current, namely negative knowledge transfer.

To address the above issues, we propose a novel
Prefix-guided Lightweight Encoder (PLE) with
three auxiliary strategies. In detail, PLE adopts
a parameter-efficient tuning paradigm to alleviate
forgetting caused by over-parameterization, con-
sisting of a lightweight Continual Adapter mod-
ule to interact with a frozen PrLM, and a Prefix-
guided Attention mechanism to guide the frozen
PrLM. To further alleviate forgetting, we propose
the Pseudo Samples Replay (PSR) strategy, which
consolidates previous knowledge by replaying two
essential samples that best approximate the previ-
ous tasks. To alleviate negative knowledge trans-
fer, we propose the Teacher Knowledge Transfer
(TKT) strategy, which transfers the task-specific
knowledge into the current model via distillation to
compensate for the performance drop of new tasks.
Moreover, due to the variability of tasks, it is hard
to identify whether a past task transfers positive
or negative knowledge to the current. Thus, we
propose the Dynamic Weighting Replay (DWR)
strategy to balance learning new tasks and replay-
ing old ones, which dynamically determines the
learning weight of the old task in each iteration.

Our main contributions are as follows: 1) To
the best of our knowledge, we are the first to for-
mulate the Continual Few-shot Intent Detection
(CFID) problem and construct a benchmark for
it. 2) We propose a novel method PLE with three
strategies for CFID to alleviate forgetting and neg-
ative transfer. 3) Extensive experiments show the

effectiveness of our method in preventing forget-
ting and encouraging positive knowledge transfer
across tasks.

2 Related Work

Traditional Intent Detection aims to classify in-
tent in the utterance, which can be defined as a
sentence classification task. Popular approaches
such as Goo et al. (2018); Qin et al. (2019);
Mehri et al. (2020) have achieved promising per-
formance. However, such methods heavily rely on
large amounts of labeled data.
Few-shot Intent Detection aims to classify accu-
rately identify intents in few-shot settings. Zhang
et al. (2020) solves it as a textual entailment prob-
lem and uses large-scale entailment datasets for
pre-training. However, it is time-consuming and ex-
pensive to train with hundreds of intents. Mehri and
Eric (2021) proposes an example-driven strategy to
tackle this task, which learns to classify utterances
by comparing them to examples. Luo et al. (2021)
and Dopierre et al. (2021) solve the data scarcity
by leveraging the label names or augmented sam-
ples. More recently, Zhang et al. (2021a,b) show
the effectiveness of pre-training and contrastive
fine-tuning on this task.
Continual Learning aims to learn a sequence of
tasks incrementally. Most works in NLP domains
focus on text classification tasks in continual set-
tings (Ke et al., 2021c,a,b; Geng et al., 2021; Qin
and Joty, 2022). The main problem for contin-
ual text classification is catastrophic forgetting and
replay-based methods (Han et al., 2020; Cui et al.,
2021) have been proven promising to alleviate the
problem, which retain a few examples in previous
tasks and continually replay them with new tasks.
Continual Intent Detection. Recently, Liu et al.
(2021) and Wang et al. (2021) have made some ef-
forts on the Continual Intent Detection task (CID).
However, they did not further investigate with the
few-shot setting, which is more challenging and
crucial for the low-resource dialogue systems. The
most similar to our work is (Xia et al., 2021), which
firstly proposes the Few-shot Class-Incremental
Learning for Intent Detection (FSCIL-ID). How-
ever, it is not aligned with the real scenario for
the following reasons: (i) All tasks belong to the
same domain without considering the domain gaps
of different intents. (ii) The number of classes in
emerging new tasks is fixed without considering the
imbalance of classes across tasks in real systems.
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Figure 2: Overview of the proposed framework. The left side shows the structure of our PLE, which consists of a
frozen PrLM and the Prefix (Pk, Pv) and Continual Adapter inserted into each layer. The trainable parameters are
in green. The top right shows the process of learning for a new task Ti with three strategies: Teacher Knowledge
Transfer (TKT), Pseudo Samples Replay (PSR), and Dynamic Weighting Replay (DWR). The lower right shows the
distance-based classification pipeline at inference.

Summary. Existing works in few-shot intent de-
tection mainly focus on the data scarcity and ignore
the ability to learn consecutive tasks, which is es-
sential for the online dialogue systems. The works
in continual intent detection do not consider the
data scarcity of emerging new intents. The newly
proposed FSCIL-ID setting is also not aligned with
the online dialogue systems. In contrast to those
works, our work aims to recognize continually
emerging new intents from multiple domains with
very few labeled examples.

3 Methodology

3.1 Problem Formulation

In the CFID setting, given a sequence of n tasks
{T1, T2, ..., Tn}, each task Ti contains its own train-
ing set Di

train, development set Di
dev, and test set

Di
test. Each dataset D contains a series of sam-

ples {(xi, yi)}||D|
i=1, where yi is the ground-truth

intent class of the input utterance xi. In particular,
we describe its few-shot nature that there are only
K ∈ {5, 10} samples for each class in the training
set. There are also a few (e.g., 10) samples for
each class in the development set. This is because
using a larger development set brings significant

advantages and defeats the goal of few-shot learn-
ing (Gao et al., 2021). After learning Ti, the model
is evaluated separately on the test set of seen tasks.
The setup is aligned with the real scenario, where
the data privacy of different users is protected while
the task information is available.

3.2 Overall Framework
As shown in Figure 2, the framework of the pro-
posed method consists of one main module and
three strategies of continual learning: 1) The
lightweight PLE is responsible for extracting se-
mantic features of the input utterances. 2) The
TKT aims to transfer task-specific knowledge to
the current model. 3) The PSR first selects two key
samples per class and encodes them through the
frozen embedding layer (EL) to generate pseudo
samples and save them into the Memory. 4) The
DWR is responsible for balancing the learning of
new tasks and replaying past tasks.

3.3 Prefix-guided Lightweight Encoder (PLE)
PLE serves as the main module to alleviate catas-
trophic forgetting caused by over-parameterization.
As a sub-module of PLE, the Continual Adapter
is a full continual learning lightweight module
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designed to capture knowledge across tasks and
mitigate over-fitting by only tuning a small num-
ber of parameters, inspired by adapter-based tun-
ing (Houlsby et al., 2019). More specifically, it
consists of a down-projection with Wdown ∈ Rd×r

to project the input hidden states h ∈ Rd, followed
by a nonlinear activation function ReLU(·), and an
up-projection with Wup ∈ Rr×d, formally:

h← h+ReLU(hWdown)Wup. (1)

Following (He et al., 2021), the adapter is inserted
only after the feed forward layer of the transformer
block. Note that the parameters of Continual
Adapter are shared by each task and continually
updated in the continual learning process while the
PrLM is kept frozen.

To guide the frozen backbone in capturing task-
specific knowledge dynamically, we further pro-
pose the Prefix-guided Attention mechanism in-
spired by prefix tuning (Li and Liang, 2021).
It incorporates continuous prompts into the self-
attention layer to guide the final self-attention flow.
More specifically, we concatenate two sets of l tun-
able prefix vectors Pk, Pv ∈ Rl×d to the keys and
values of the multi-head attention at every layer. In
this way, the computation of headi is modified as:

headi = Attn(XWQ
i , [P i

k, XWK
i ], [P i

v, XW V
i ]),

(2)
where X ∈ Rm×d is the input sequence represen-
tation and WQ

i , WK
i , and W V

i ∈ Rd×dh are the
parameter matrices. With the guidance of the prefix,
the distribution of attention can be re-modulated
dynamically in the continual learning process.

3.4 Teacher Knowledge Transfer (TKT)

TKT is to alleviate negative knowledge transfer
across tasks, a phenomenon that impairs model
performance on the current task. While most
works (Ke et al., 2021a) design complicated dy-
namic architecture to encourage positive knowl-
edge transfer, TKT can simply and explicitly distill
task-specific knowledge into the model to compen-
sate for the performance.

Concretely, we first train a teacher PLE individ-
ually. The parameters of prefix and adapters are
randomly initialized to avoid transferring knowl-
edge from past tasks and gain more task-specific
knowledge from the current. Then, we transfer
the task-specific knowledge into the continually
learning model through knowledge distillation.

As for the teacher PLE fT
θ , in each iteration, N

classes are randomly selected from the label space,
and then K samples are selected for the encoder to
extract features. The obtained features are averaged
for each class prototype: ŷj = 1

K

∑K
k=1 f

T
θ (xk).

The teacher is optimized by minimizing the cross
entropy loss Lsim, formally:

Lsim = −
N×K∑
i=1

N∑
j=1

I(yi = yj)×

log
exp(sim(fT

θ (xi), ŷj)/τ)∑N
l=1 exp(sim(fT

θ (xi), ŷl)/τ)
.

(3)

where sim(·) is the cosine similarity function and
τ is a temperature hyper-parameter and I(·) is the
indicator function. To fully make use of N × K
samples, we select one sample at a time from a
class as a query and the rest of the samples as sup-
port samples to compute the prototype so that there
are N ×K times of nearest neighbor classification
in parallel at each iteration.

As for the student PLE fS
θ , it firstly inherits the

previous knowledge by reusing the parameters of
the last learned model. Then, it gains task-specific
knowledge by training on the current task with
knowledge distillation, formally:

Ldis =
N×K∑
i=1

∥fS
θ (xi)− fT

θ (xi)∥. (4)

3.5 Pseudo Samples Replay (PSR)

PSR is to consolidates previous knowledge in
replaying-based ways. Concretely, after learning
for new tasks, we first obtain the prototype feature
of each class by averaging the features of all sam-
ples labeled as this class: ŷj = 1

K

∑K
k=1 f

S
θ (xk).

Then we select the instance closest to the prototype
of class as the most representative sample, and se-
lect the instance farthest to the prototype of class
as the hardest sample. To avoid direct access to
the raw texts for privacy, these two samples are
encoded with the frozen PrLM to generate pseudo
samples, whose embedding space is always not dis-
torted during continual learning. Finally, we store
the two samples in the memory for each class.

In this way, the goal of replaying can be achieved
by storing a minimum number of samples (i.e, two
samples per class). During replaying the pseudo
samples, we randomly select N classes from the
previous task and adopt the cross-entropy loss
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Lmem to ensure intra-class compactness while in-
creasing inter-class distances, formally:

Lmem = −
N×2∑
i=1

N∑
j=1

I(yi = yj)×

log
exp(sim(fS

θ (xi), ŷj)/τ)∑N
l=1 exp(sim(fS

θ (xi), ŷl)/τ)
.

(5)

3.6 Dynamic Weighting Replay (DWR)
DWR is to find a good trade-off between learning
new tasks and replaying. Due to the domain variety,
it is hard to determine whether to replay more on
old tasks (i.e., PSR) or distill more on new tasks
(i.e., TKT). They can be regarded as two contradic-
tory optimization objectives. It drives us to design
DWR to dynamically decide the weights of the two
objectives and get a Pareto optimal solution.

Concretely, we first randomly sample one previ-
ous task to replay at each iteration rather than all the
previous tasks. Then, we adopt a Pareto-optimal
weighting strategy (Sener and Koltun, 2018) in-
spired by multi-task learning. The learning weight
of the sampled old task can be determined dynami-
cally in each iteration. The total loss is defined as
follows:

L = λdisLdis + λmemLmem,

λdis, λmem = Pareto_Solver(Ldis, Lmem).
(6)

The details of Pareto_Solver can be referred
in Sener and Koltun (2018).

3.7 Inference
For a given utterance x in Dt

test, we calculate the
similarity between the extracted feature of x and
all class prototypes {ŷi} in the t-th task and pick
the one with the highest cosine similarity:

y∗ = argmax
ŷi∈{ŷi}

Sim(fS
θ (x), ŷi). (7)

The prototype of class ŷi can be obtained by aver-
aging the features of training samples labeled as yi
through the current trained PLE.

4 Experiments

4.1 CFID Benchmark
As for the first work in CFID, we first collect nine
popular intent detection datasets and arrange them
in a fixed random order to construct the bench-
mark: CLINC150, ATIS, HWU64, BANKING77,
MTOP, SNIPS, LEYZER, MSLU, and TOP. For

Dataset #Domain #Class #Train #Dev #Test
CLINC150 10 150 750/1500 1500 4500
ATIS 1 14 70/140 121 827
HWU64 18 64 320/640 640 1076
BANKING77 1 77 385/770 770 3080
MTOP 11 85 425/860 850 4354
SNIPS 7 7 35/70 70 1429
LEYZER 15 57 285/570 469 381
MSLU 3 12 60/120 120 7799
TOP 2 11 55/110 110 8196

Table 1: The statistics of datasets (5-shot/10-shot).

each dataset, we randomly select K = 5 or 10 sam-
ples per class as a 5-shot or 10-shot training set and
select 10 samples per class as a development set.
Details of nine datasets are reported in Table 1.

4.2 Evaluation Protocol
Following (Geng et al., 2021), we run all methods
with the same task ordering during training. The
test accuracy of each task is reported after all tasks
are visited.

At time step t, following (Mehta et al., 2021),
we employ the average accuracy At, average for-
getting Ft and learning accuracy LAt metrics after
learning on the t-th task. Let at,i denote the test
accuracy on the task i after learning task t, those
metrics are defined as follows:

At =
1

t

t∑
i=1

at,i LAt =
1

t

t∑
i=1

ai,i

Ft =
1

t− 1

t−1∑
i=1

max
j∈{1,...,t−1}

(aj,i − at,i).

(8)

At measures the average performance over all pre-
viously seen tasks. Ft measures how much the
model has forgotten about all previously seen tasks
after learning task t. LAt measures the learning
capability when the model sees the new task.

To measure the parameter efficiency, we also
employ the following metrics: trainable parameters
and storage parameters after learning n tasks.

4.3 Compared Methods
Since this is the first work in CFID, there is no
prior method that solves exactly the same task. We
extend the typical methods in the few-shot ID set-
ting to the CFID setting to construct the following
strong baselines.

• Lifelong Classifier (LC) consists of a pre-
trained backbone and a task-specific classifica-
tion layer. Each task shares a backbone and owns
its specific layer.
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Task ID 0 1 2 3 4 5 6 7 8
Avg.

Method CLINC150 ATIS HWU64 BANKING77 MTOP SNIPS LEYZER MSLU TOP
LC 10.32/10.55 38.09/43.65 33.18/31.78 45.13/45.47 56.51/57.16 78.61/72.92 90.81/92.21 94.13/94.97 82.83/86.49 58.85/59.47
L-DNNC 83.85/85.82 71.46/81.74 74.38/78.13 63.91/71.40 80.91/85.24 93.52/93.52 92.65/95.28 95.17/97.27 88.14/90.93 82.67/86.59
L-PN 77.93/85.67 73.28/89.68 71.90/79.18 58.97/71.67 80.90/84.55 91.07/93.00 93.00/95.36 95.93/96.72 88.98/90.92 81.33/87.42
PN-AGEM 79.73/86.24 79.60/88.51 72.83/78.81 61.21/72.82 80.79/84.24 90.97/94.29 92.65/95.63 96.15/96.62 88.14/90.69 82.45/87.54
PLE (Ours) 88.70∗/91.20∗ 87.91∗/91.29∗ 76.46∗/80.36 74.90∗/79.09∗ 76.14/80.64 93.40/94.56 89.68/91.16 95.06/96.18 88.27/88.91 85.61/88.16
PN-Joint 89.04/93.19 84.52/90.08 76.58/84.08 76.61/84.19 78.72/86.28 92.93/95.89 92.56/95.10 91.52/96.30 87.15/89.25 85.52/90.49

Table 2: Test accuracy (%) evaluated on the final model in 5-shot/10-shot regime after all 9 tasks are visited. We use
Avg. to represent the average accuracy of all tasks for each method. ∗ indicate statistically significant (p < .05)
improvements over the best baseline.

Method Avg. At Avg. Ft Avg. LAt

LC 70.00/70.54 20.91/26.09 85.21/89.62
L-DNNC 84.22/87.32 4.91/4.54 87.69/90.54
L-PN 82.26/88.95 3.16/3.48 83.87/91.44
PN-AGEM 83.76/89.03 3.11/3.05 85.97/91.21
PLE (Ours) 84.73/88.10 1.16/1.03 85.49/88.79
SC 86.62/90.69 0.00/0.00 86.62/90.69
S-PN 86.90/90.76 0.00/0.00 86.90/90.76
S-PLE 86.93/90.48 0.00/0.00 86.93/90.48
PN-Joint 85.05/90.27 0.80/0.65 85.41/90.52

Table 3: Performance of different methods in 5-shot/10-
shot regime. We use Avg. to All metrics are averaged
over all time steps in three trials.

• Lifelong DNNC (L-DNNC). DNNC (Zhang
et al., 2020) is one of the state-of-the-art meth-
ods in the few-shot ID task, which solves it as a
textual entailment problem and uses large-scale
entailment datasets for pre-training. L-DNNC
tunes the whole DNNC model in a sequential
manner when a new task arrives.

• Lifelong Prototypical Network (L-PN). Proto-
typical Network (PN) (Snell et al., 2017) is also
a strong distance-based baseline for few-shot ID
tasks. Lifelong PN (LPN) tunes the whole PN
model during lifelong learning.

• PN-AGEM. We also compared with a strong
replay-based lifelong learning method called
AGEM (Chaudhry et al., 2019). It needs to
maintain a memory for storing selected samples
from previous tasks. We apply it to the proto-
typical network and get a variant referred to as
PN-AGEM.

• PN-Joint stores all data from all seen previous
tasks and trains the whole prototypical network
with all data when learning the new task. It serves
as an upper bound of the prototypical network.

We also test those baselines in a single-task setting
to measure the knowledge transfer ability.

• Single Classifier (SC) trains one classifier for
each task. Obviously, it suffer from serious pa-
rameter explosion problem when the number of
tasks increasing.

• Single Prototypical Network (S-PN) trains one
prototypical network for each task. It also suffers
from the parameter explosion problem.

• Single PLE (S-PLE) is an extension of our PLE
model, which trains one adapter with one prefix
individually for each task.

4.4 Implementation Details.

We use a pre-trained model SimCSEbase as the
backbone for all experiments, because of its pow-
erful text representation capabilities. For classifier-
based experiments, the batch size is 4 and 8 in the
5/10-shot setting respectively. For all experiments
except those using the PLE, the learning rate is
2e-5. For PLE, it is 1e-4. For the replay-based
baseline, the memory size is the same as ours. For
experiments with episode training, we chose N and
K for each task based on the maximum memory
capacity and ensured that the same values were
used for each experiment. For DNNC, we follow
the settings in Zhang et al. (2020).

4.5 Main Results

In this part, we report the test accuracy of each task,
referred to as “Overall Performance" and provide
more insights into the catastrophic forgetting and
average performance at each time step, referred to
as “Middle States Performance".

Overall Performance As shown in Table 2, we
report the experimental results of our approach and
baselines. From the results, we can observe that:
1) Our proposed PLE outperforms previous base-
lines concerning the average accuracy of all tasks
(85.61% and 88.16% for 5-shot and 10-shot set-
tings), which demonstrates the effectiveness of our
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Figure 3: t-SNE visualization of PN-AGEM and Ours
on the final model with test data of CLINC150. We
randomly choose ten classes of the task to visualize.

method. 2) Our method still achieve better perfor-
mance in the earlier accessed tasks, which demon-
strates the superiority of our model in avoiding
catastrophic forgetting.

In comparison, simply fine-tuning the backbone
and the new involved classifier inevitably suffers
from catastrophic forgetting. For example, the ac-
curacy of LC on the first task is only 10.32%. We
attribute it to the mismatch between the updated
backbone and the classifier of the old task. For
L-DNNC and L-PN, since they only have a shared
encoder across tasks, catastrophic forgetting can
be avoided. Thus they achieve 83.85% and 77.93%
accuracy on the first task. Compared with L-PN,
PN-AGEM is better on the early accessed tasks as
it replays some samples of past tasks. As shown
in Figure 3, compared with PN-AGEM, our PLE
shows better intra-class compactness and larger
inter-class distances.

For PN-Joint, it uses training data of all previ-
ously seen tasks at each step, which is more likely
to be affected by negative knowledge transfer in a
few cases. For tasks with very different domains,
e.g., ATIS with flight domain, other tasks may trans-
fer more negative knowledge to it. Thus, we can ob-
serve a worse performance than our method in this
case (Accuracy of 90.08% vs. 91.29% on ATIS). It
shows our effectiveness in alleviating this problem.

Middle States Performance As shown in Ta-
ble 3, we report the average accuracy, forgetting,
and learning accuracy of our method and baselines.
All metrics are averaged over all time steps. From
the results, we can observe that: Our proposed PLE
outperforms previous baselines in the 5-shot CFID
setting concerning Avg. At and Avg. Ft. It also
has competitive performance in the 10-shot CFID
setting and less forgetting than other baselines. For
baselines in the single-task setting (i.e., SC, S-PN,
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Figure 4: Test accuracy (%) of different methods on
the CLINC150 dataset in 5-shot/10-shot CFID setting.
Each curve denotes a kind of method. Shaded regions
indicate standard deviation over three trials.

Method #Trainable Params. #Storage Params.
LC 125M+∆Ti 125M+

∑n
i=1∆Ti

L-DNNC 125M 125M
L-PN 125M 125M
PN-AGEW 125M 125M
PLE (Ours) 15M+15M=30M 125M+15M=140M

SC 125M+∆Ti
125M×n +∑n

i=1∆Ti
S-PN 125M 125M×n
S-PLE 15M 125M+15M×n
PN-Joint 125M 125M

Table 4: Number of trainable and storage parameters
in different methods. n denotes the number of tasks
and ∆Ti denotes the number of parameters of the task-
specific layer. Here, the number of parameters of the
PrLM and additional parameters of ours are 125M and
15M, respectively.

and S-PLE), although they perform well, when the
number of tasks is large, they inevitably suffer from
parameter explosion.

However, there is a slight drop in Avg. LAt in
our method compared to others. A similar phe-
nomenon can be observed in Table 2, i.e., for tasks
newly visited, the test accuracy is not as good as
other methods. We attribute it to a trade-off be-
tween learning about new tasks and preventing for-
getting of past tasks. Freezing the backbone in
our method damages the expressiveness but guar-
antees the overall performance of all tasks. Specifi-
cally, taking the earliest visited task CLINC150 as
an example, Figure 4 shows the accuracy curves
of the different methods throughout the continual
learning. Compared with other methods, the per-
formance of our method is relatively stable in the
whole process, although the performance is not the
best at the beginning.

Overall, our proposed PLE is a promising solu-
tion for the CFID problem with less forgetting and
comparable performance.
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Figure 5: Test accuracy (%) of different tasks between
PN-AGEM and Ours. Each curve in the sub-figure
denotes a kind of task in the 10-shot setting. Shaded
regions indicate standard deviation over three trials.

4.6 Efficiency & Robustness of PLE

Parameter Efficiency As shown in Table 4, we
list the number of trainable and stored parameters
in different methods. As the number of tasks in-
creases, the stored parameters of the baselines in
the single-task setting (i.e., SC, S-PN, and S-PLE)
also increase, eventually leading to the explosion
problem. Compared to them and other baselines,
PLE achieves competitive performance and param-
eter efficiency with 76% less trainable parameters
(from 125M to 30M) and only 15M additional pa-
rameter storage. As a result, it is possible to employ
a larger pre-trained language model to achieve bet-
ter performance.

Training and Inference Efficiency We observe
that incorporating continuous prompts into PLE
does not suffer from too slower training than other
prototypical-based baselines (i.e., L-PN and PN-
AGEM). However, for L-DNNC, despite its high
performance in Avg. LAt, it makes predictions
by enumerating all the labels to decide whether a
query and a label match or not, which is so time-
consuming during training and inference.

Robustness for Task Ordering To analyze the
effect of task ordering when PLE is learning differ-
ent tasks, we randomly sample five different task
orderings in the 5-shot setting. After all tasks are
learned, we report the test accuracy over differ-
ent orderings. As shown in the the right side of
Figure 6, we can see our method is insensitive to
different task orderings.

4.7 Knowledge Transfer Assessment

Assessing Backward Knowledge Transfer To
assess the influence of learning new tasks on the
performance of previous tasks (backward trans-
fer), we visualize the curve of the test accuracy of
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Figure 6: Left side: Avg. LAt on ATIS in the 5-shot
CFID and single-task settings, respectively. Right side:
Test accuracy (%) of different tasks in the 5-shot setting
with five different task orderings.

different tasks between our method and the baseline
with the lowest Avg. Ft of 3.05%, i.e., PN-AGEM
in the 10-shot setting. As seen in the left side of
Figure 5, the curve of PN-AGEM has a clear down-
ward trend, while the curve of our method remains
stable overall. In particular, we observe that on
ATIS, the performance of PN-AGEM continues to
decline, while our method goes through a phase of
slight decline followed by an increase. It shows a
promising ability to backward knowledge transfer.

Assessing Forward Knowledge Transfer To fur-
ther assess the capability to learn new tasks with
the help of knowledge from past tasks (forward
transfer), we compare the results of Avg. LAt

in the single-task setting and continual learning
setting. From Table 3, we observed that there is
a significant drop in the extremely few-shot (i.e.,
5-shot) regime. For example, there is a drop from
86.90 to 83.87 comparing S-PN and L-PN. In par-
ticular, there is still a drop of 1.49% compared to
S-PN for the upper-bound baseline PN-Joint. It
confirms the existence of negative knowledge trans-
fer across tasks. We select the task ATIS to assess
forward knowledge transfer, which is most affected
by negative knowledge transfer (4% performance
drop comparing PN-Joint with S-PN). From the
left-top side of Figure 6, we can see our method
has the highest Avg. LAt and is closest to the
performance in the single-task setting. It shows
that our approach effectively reduces the effect of
the negative knowledge transfer and enhances the
effect of the forward knowledge transfer.

4.8 Analysis of Domain Variety
To simulate a realistic continual setting, we collect
as many public datasets as possible, a few of which
inevitably overlap in intent classes and domains,
such as MSLU and MTOP. However, we count the
number of similar domains in any two datasets and
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Method Avg. At Avg. Ft Avg. LAt

Ours 85.15/88.22 0.99/0.83 85.79/88.75
w/o prefix 84.74/87.81 2.55/2.25 86.49/89.37
w/o memory 83.22/87.45 4.86/3.39 86.55/89.83
w/o TKT 82.35/87.25 0.84/0.81 82.84/87.82
w/o PSR 84.06/87.86 1.85/1.35 85.33/88.83
w/o DWR 84.63/87.88 1.11/1.43 85.63/88.59

Table 5: Ablation results in 5-shot/10-shot regime. All
metrics are averaged over all time steps.
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Figure 7: t-SNE visualization of ablation: w/o PSR and
Ours on the final model with test data of CLINC150.
The circle region shows our PLE has larger inter-class
distances than the ablation variant.

find less than 1 domain overlap on average. There
are also domain differences in some overlapping
classes, such as the class "exchange_rate" in the
"banking" and "travel" domain. It reflects the do-
main variety between tasks to some extent.

In general, our approach works well in very dif-
ferent domains. For example, the task ATIS be-
longs to the "flight" domain, which is different from
all domains in another task, CLINC150. When
continually learning ATIS after CLINC150, we
observed there is a huge performance drop using L-
PN baseline compared to S-PN in a single-task set-
ting (accuracy of ATIS from 91% to 76%). This is
mostly due to negative knowledge transfer caused
by the domain gap between CLINC150 and ATIS.
With the distillation strategy, our method allevi-
ates this problem and achieves an accuracy of 89%
when continually learning ATIS.

4.9 Ablation Study

As reported in Table 5, we conduct ablation studies
to investigate the impact of different components
of PLE in the 5-shot and 10-shot setting.

Specifically, we analyze the following variants:
a) w/o prefix removes the prefix from the PLE.
b) w/o memory removes the memory and merely
adopting the TKT strategy. c) w/o TKT discards
the TKT strategy and merely adopting the Lsim

with the memory. d) w/o PSR randomly selects the
same number of saved samples instead of using the
PSR strategy. e) w/o DWR sets fixed weight hyper-
parameters heuristically (λdis = 0.9, λmem = 0.1)
instead of dynamically weighting.

From the results in Table 5, we can make the
following observations. First, the introduction of
prefix improves the performance of our method.
Second, the variant without the TKT has a signifi-
cant drop in performance on the Avg. At and Avg.
LAt. It confirms the existence of negative knowl-
edge transfer across tasks. Using the TKT to gain
more task-specific knowledge can effectively allevi-
ate this problem. Also, the memory can effectively
alleviate the catastrophic forgetting problem. Fig-
ure 7 shows that the PSR strategy is an efficient
way to select saved samples.

Moreover, we observe that the Avg. LAt and
Avg. Ft are the highest in the “w/o memory" and
“TKT" settings, respectively. It confirms a trade-
off between learning new tasks and replaying past
tasks. From the results in the “w/o DWR" set-
ting, we can see the DWR strategy can effectively
balance them and significantly improve the perfor-
mance of our method.

5 Conclusion

In this paper, we define a more challenging yet
practical problem as Continual Few-shot Intent De-
tection (CFID), where the system needs to handle
continually emerging new intents with very few la-
beled data. To deal with the problem, we propose a
novel prefix-guided lightweight encoder with three
auxiliary strategies. Extensive experiments demon-
strate the effectiveness and efficiency of our method
in preventing catastrophic forgetting and encourag-
ing positive knowledge transfer across tasks.
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