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Abstract

Text rewriting with differential privacy (DP)
provides concrete theoretical guarantees for
protecting the privacy of individuals in tex-
tual documents. In practice, existing systems
may lack the means to validate their privacy-
preserving claims, leading to problems of trans-
parency and reproducibility. We introduce
DP-Rewrite, an open-source framework for
differentially private text rewriting which aims
to solve these problems by being modular, ex-
tensible, and highly customizable. Our system
incorporates a variety of downstream datasets,
models, pre-training procedures, and evalua-
tion metrics to provide a flexible way to lead
and validate private text rewriting research. To
demonstrate our software in practice, we pro-
vide a set of experiments as a case study on the
ADePT DP text rewriting system, detecting a
privacy leak in its pre-training approach. Our
system is publicly available, and we hope that
it will help the community to make DP text
rewriting research more accessible and trans-
parent.

1 Introduction

Protecting the privacy of individuals has been
gaining attention in NLP. One particular setup is
text rewriting using local differential privacy (DP)
(Dwork and Roth, 2013), which provides proba-
bilistic guarantees of ‘how much’ privacy can be
lost in the worst case if an individual gives us their
piece of text that has been rewritten with DP. For
instance, given a text “I want to fly from Newark
to Cleveland on Friday”, the system may rewrite
it as “Flights from Los Angeles to Houston this
week”. Only a few recent works have touched
on this challenging topic. For example, Krishna
et al. (2021) proposed ADePT: A text rewriting
system based on the Laplace mechanism. However,
it turned out that their DP method was formally
flawed (Habernal, 2021). We also see another
recent approach, DP-VAE (Weggenmann et al.,
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2022), which shows results that look surprisingly
good for the level of guaranteed privacy. How-
ever, neither ADePT nor DP-VAE published their
source codes, so the community has no means
to perform any empirical checks to validate the
privacy-preserving claims. Therefore, the lack of
transparency and reproducibility is the main ob-
stacle to the accountability of DP text-rewriting
systems.

We asked whether an open, modular, easily ex-
tensible, and highly customizable framework for
differentially private text rewriting could help the
community gain further insight into the utility and
potential pitfalls of such systems. We hypothesize
that by integrating various downstream datasets,
models, pre-training procedures, and evaluation
metrics into one software package, we improve the
transparency, accountability, and reproducibility of
research in differentially private text rewriting.

Our main contributions are twofold. First, this
demo paper presents DP-Rewrite, an open-
source framework for differentially private text
rewriting experiments. It includes a correct reimple-
mentation of ADePT as a baseline, integrates pre-
training on several datasets, and allows us to easily
perform downstream experiments with varying pri-
vacy guarantees by adjusting the privacy budget ¢.
Second, DP-Rewrite allows us to easily detect
another privacy leak in the approach proposed in
ADePT, namely in the pre-training strategy of the
autoencoder, with the system memorizing the input
data. We demonstrate this in detail as a use case of
DP-Rewrite in Section 4.!

2 Related Work

Although the problem of simple data redaction is
a widely researched field with several promising
approaches (Hill et al., 2016; Lison et al., 2021),

'Our project is available at https://github.com/
trusthlt/dp-rewrite.
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the related problem of private text transformation
is still largely unexplored.

We only briefly sketch the main ideas of local
differentially private algorithms in text rewriting.
For a longer introduction to DP see, e.g., Haber-
nal (2022); Senge et al. (2021); Igamberdiev and
Habernal (2022). Let x, 2’ € X be two data points
such as texts or vectors, each belonging to a dif-
ferent person. In DP terminology, = and x’ are
neighboring datasets, as they differ by one person
(Desfontaines and Pejd, 2020). A (local) DP al-
gorithm M : X — ) is a function that takes any
single data point x € X and produces its ‘priva-
tized’ version y € ) which might be an arbitrary
object, such as a text or a vector. Privatization is
achieved by introducing randomness in M. As a
result, (g, 0)-local DP guarantees that for any two
neighboring datasets x, 2’ and any output y

In

Pr(M(z) = y)
P =)=

where ¢ is the privacy budget; the lower, the better
privacy is guaranteed. If a text rewriting algorithm
satisfies the local DP, it limits the probability of re-
vealing the true text x after observing the privatized
text y.

Krishna et al. (2021) proposed ADePT, a DP text
rewriting system. It consists of an auto-encoder that
learns a compressed latent representation of text,
and a DP rewriter that uses the trained auto-encoder,
adds Laplace noise to the latent representation vec-
tor, and generates the privatized text. Due to a for-
mal error in the scale of the Laplace noise, ADePT
violated differential privacy (Habernal, 2021).

Bo et al. (2021) proposed a text rewriting ap-
proach that generates words from a latent repre-
sentation while adding DP noise. However, unlike
holistic text rewriting with DP, perturbing text only
at the word level does not protect against privacy
attacks (Mattern et al., 2022).

Even more current, Weggenmann et al.
(2022) proposed an end-to-end approach to text
anonymization using a DP autoencoder, claiming
to produce coherent texts of high privacy standards.
However, several key aspects of the experiments
lack a detailed description, while their results look
surprisingly good. Since the code base is not pub-
lic, we cannot reproduce or reimplement their ap-
proach, and we cannot prove or refute our suspi-
cions.

3 Description of software

The goal of our system is to provide a seamless way
to perform differentially private text rewriting, both
on existing and custom datasets. A user can either
load a dataset that we provide out-of-the-box, or
use a custom one. In addition, we want to make it
fast and convenient to run experiments for existing
methodologies in DP text rewriting (e.g. ADePT),
as well as the ability to integrate novel approaches.
For this, we have a general autoencoder class based
on which out-of-the-box and custom models are
built. In this sense, our software is designed to
be open and modular, where the researcher can
swap out existing components to run a variety of
experiments, as well as use the software for one’s
own privatized text rewriting needs.

The core architecture of our system can be seen
in Figure 1. We divide the experiments into three
distinct modes, pre-training, rewriting, and down-
stream. For all three, the pipeline begins with a dat-
aloader which can either be a dataset provided in
the framework, or a custom dataset specified by the
user. Additionally, a rewritten dataset can be loaded
for downstream experiments. The loaded dataset
is then preprocessed according to user-specified
parameters and the user’s selected model, split
into different procedures depending on the model
type (e.g. RNN-based, transformer-based). The
model is then initialized, optionally from an ex-
isting checkpoint. At this point, the main experi-
ment is run based on the specified mode, either (1)
pre-training the autoencoder, (2) using an existing
checkpoint to rewrite the dataset, or (3) running
a downstream model on an original or rewritten
dataset. For each mode, a variety of evaluations are
available, such as BLEU (Papineni et al., 2002) and
BERTScore (Zhang et al., 2019) for pre-training
and rewriting, and various classification metrics
(e.g. I score) for downstream experiments. The
differential privacy component is incorporated dur-
ing the rewriting phase for systems such as ADePT,
although our framework also allows to incorporate
it during the pre-training stage.

4 Case study

We present here a case study that demonstrates
the process of using our framework and provides
insights into the ADePT system, for which we
provide an implementation in the software. Our
goal is to investigate the difference in rewritten
texts and downstream evaluations when we pre-
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Figure 1: Overall structure of DP-Rewrite. Colors represent groupings of similar components. Blue: Experiment
mode. Grey: Dataset preparation. Green: Datasets (original/rewritten). Orange: Model-related components. Red:
Main experiment loop. Yellow: Additional experiment outputs.

train an autoencoder on one dataset and use this
to rewrite another dataset. If we notice a lot of
tokens from the dataset used for pre-training in the
rewritten dataset, as well as comparatively higher
downstream scores when pre-training and rewrit-
ing on the same dataset, then we can be certain of
another form of privacy leakage in ADePT.

4.1 Datasets

As in Krishna et al. (2021), we use the ATIS
(Dahl et al., 1994) and Snips (Coucke et al., 2018)
datasets to conduct experiments on an intent classi-
fication task in English. For both datasets, we use
the same train/validation/test split provided by Goo
et al. (2018), with 4,478 training, 500 validation
and 893 test examples for ATIS, and 13,084 train-
ing, 700 validation and 700 test examples for Snips.
There are a total of 26 intent labels in ATIS and 7
in Snips.

4.2 Implementation

We start our experiment pipeline by pre-training
two models, one on ATIS (1) and the other on
Snips (2), in both cases using the training split. For
pre-training, we set the vocabulary to the maxi-
mum number of words from the training set. As
in ADePT, we do not incorporate a differential pri-
vacy component during pre-training, although we
clip encoder hidden representations with a clipping
constant value of 5. We limit sequence lengths to a
maximum of 20 tokens, pre-training for 200 epochs
with a learning rate of 0.003. In contrast to ADePT,
we do not use the £5 norm for clipping due to issues
in privacy guarantees outlined by Habernal (2021)
and instead follow the suggested fix for the method
by clipping using the ¢; norm.

We then use these two models for rewriting,
applying both pre-trained models for rewriting
the training and validation partitions of ATIS and
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Snips, resulting in four rewriting settings in total.
For each setting, we rewrite using five € values,
00, 1000, 100, 10, and 1. We use the same clipping
constant value of 5 as in pre-training.

See Appendix B for details of the downstream
experiment setup.

4.3 Results and analysis

Our results can be seen in Figure 2. We observe
the main patterns as follows. First and most im-
portantly, datasets rewritten using a model that was
pre-trained on the same dataset generally show bet-
ter downstream results than datasets rewritten using
a model pre-trained on a different dataset. For in-
stance, at ¢ = 1, 000, rewritten Snips from a model
pre-trained on Snips has an F; score of 0.94, while
rewritten Snips from a model pre-trained on ATIS
has only 0.20. In fact, this is true even at € = 0o
(non-private setting), without any added noise (e.g.
0.94 F7 pre-trained Snips, rewritten Snips vs. 0.18
F pre-trained ATIS, rewritten Snips), since for the
latter case the model ends up rewriting the dataset
that was pre-trained on, having memorized many of
its examples. This can be seen in Figure 3, where
the rewritten sentences appear to have no resem-
blance to the original dataset used for rewriting, but
are very similar to the data used for pre-training.

Next, as expected, the results decrease for all
configurations as the privacy budget € decreases,
except for rewritten ATIS from a model pre-trained
on Snips, where results are low for all £ values,
probably due to the same reasons as shown in Fig-
ure 3. At the lower ¢ values of 10 and 1, perfor-
mance is very low for all configurations. Since
there is so much noise added to the encoder hidden
representations, the utility of ADePT’s rewriting is
severely diminished, for any data inputs.

Finally, compared to running downstream exper-
iments on the original dataset, Snips rewritten with
a model pre-trained on Snips shows about the same
results at high ¢ values (e.g. 0.94 F) pre-trained
Snips, rewritten Snips vs. 0.95 F} original Snips
for e = 00). ATIS rewritten with a model pre-
trained on ATIS shows lower results in this case
(e.g. 0.73 I pre-trained ATIS, rewritten ATIS vs.
0.87 Fy original ATIS for e = c0). We speculate
that since ATIS is a smaller dataset, there are less
data points to effectively pre-train ADePT for the
autoencoding task. We additionally report random
and majority baselines in Appendix A on the origi-
nal datasets for comparison.

We have thus shown that, despite fixing the
theoretical privacy guarantees of ADePT, the pre-
training procedure still results in privacy leakage,
with rewritten datasets exposing a lot of informa-
tion from the dataset used for pre-training. As a
result, downstream performance is inflated if the
datasets for pre-training and rewriting are the same.

Original Snips
Original ATIS

*

*

—— Pr. Snips, Rw. Snips
0.8 | -@- Pr. ATIS, Rw. Snips

-2~ Pr. Snips, Rw. ATIS

—&— Pr. ATIS, Rw. ATIS

1 10 100 1000 x
Privacy budget ¢

Figure 2: Downstream macro-averaged F results for
case study experiments with pre-trained and rewritten
Snips/ATIS datasets, as well as comparisons with results
on the original datasets (“Original Snips” and “Original
ATIS”). Lower € corresponds to better privacy.

Snips rewritten from ATIS ¢ = 1000

Original Snips doc. listen to westbam alumb allergic on google music

ATIS doc. similar how many people fly on a turboprop airport
ATIS rewritten from Snips £ = 1000

Original ATIS doc. what flights leave from phoenix

Snips doc. similar start playing my disney playlist

Figure 3: Sample rewritten texts showing memorization
by ADePT model when pre-training and rewriting on
different datasets. For a given document in the original
dataset (“Original Snips/ATIS doc.”), its rewritten ver-
sion by the model (“Rewritten Snips/ATIS doc.”) has
no resemblance to it, but is very similar to another doc-
ument from the pre-trained dataset (“ATIS/Snips doc.
similar”).

5 Conclusion

We introduced DP-Rewrite, an open-source
framework for differentially private text rewriting
experiments. We have demonstrated a sample use-
case for our framework, which allows us to detect
privacy leakage in the pre-training procedure of
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the ADePT system, an example of how the modu-
lar and customizable nature of the software allows
for transparency and reproducibility in DP text-
rewriting research. DP-Rewrite is continuing
to be under active development, and we are incor-
porating new datasets and private text rewriting
methodologies as they are released. We welcome
feedback from the community.
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A Detailed results of the case study

Pretr. Dat. Rewr. Dat. € ‘ Test I
Snips Snips oo | 0.94 (0.02)
Snips Snips 1,000 | 0.94 (0.02)
Snips Snips 100 | 0.91 (0.02)
Snips Snips 10 | 0.07 (0.01)
Snips Snips 1| 0.06 (0.00)
ATIS Snips oo | 0.18 (0.07)
ATIS Snips 1,000 | 0.20 (0.02)
ATIS Snips 100 | 0.19 (0.01)
ATIS Snips 10 | 0.06 (0.01)
ATIS Snips 1] 0.06 (0.01)
Snips ATIS oo | 0.51(0.01)
Snips ATIS 1,000 | 0.52 (0.03)
Snips ATIS 100 | 0.52 (0.03)
Snips ATIS 10 | 0.50 (0.01)
Snips ATIS 1| 0.50 (0.01)
ATIS ATIS oo | 0.73 (0.06)
ATIS ATIS 1,000 | 0.68 (0.09)
ATIS ATIS 100 | 0.62 (0.03)
ATIS ATIS 10 | 0.50 (0.01)
ATIS ATIS 1] 0.50 (0.01)
Snips Orig. 0.95 (0.01)
ATIS Orig. 0.87 (0.03)
Snips Rand. 0.14

ATIS Rand. 0.01

Snips Maj. 0.03

ATIS Maj. 0.13

Table 1: Downstream macro-averaged F} results for
case study experiments with pre-trained and rewritten
Snips/ATIS datasets. We additionally show results on
the original datasets, as well as random and majority
baselines. Test I} shown as “mean (standard deviation)”
over five runs with different random seeds. Lower ¢
corresponds to better privacy.

B Downstream experiment setup

For downstream experiments, we use a pre-trained
BERT model (Devlin et al., 2018), with an addi-
tional feedforward layer that takes the mean of the
last hidden states as input and predicts the output
label. We use the rewritten training and validation
sets for each configuration, and the original test
sets for final evaluation. We run each configura-
tion with five different random seeds and report the
mean and standard deviation.
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