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Abstract

Essay exams have been attracting attention as
a way of measuring the higher-order abilities
of examinees, but they have two major draw-
backs in that grading them is expensive and
raises questions about fairness. As an approach
to overcome these problems, automated essay
scoring (AES) is in increasing need. Many
AES models based on deep neural networks
have been proposed in recent years and have
achieved high accuracy, but most of these mod-
els are designed to predict only a single overall
score. However, to provide detailed feedback
in practical situations, we often require not only
the overall score but also analytic scores corre-
sponding to various aspects of the essay. Sev-
eral neural AES models that can predict both
the analytic scores and the overall score have
also been proposed for this very purpose. How-
ever, conventional models are designed to have
complex neural architectures for each analytic
score, which makes interpreting the score pre-
diction difficult. To improve the interpretabil-
ity of the prediction while maintaining scor-
ing accuracy, we propose a new neural model
for automated analytic scoring that integrates a
multidimensional item response theory model,
which is a popular psychometric model.

1 Introduction

Rapid changes in society in recent years have led
to an increased need for cultivating and assessing
not only knowledge and skills but also practical
abilities, such as expression skills, logical thinking,
and creativity (Erguvan and Aksu Dunya, 2020;
Uto, 2021a). Essay exams are one of the test for-
mats that aim to evaluate these abilities, and conse-
quently, they have been used in various educational
and assessment settings (Erguvan and Aksu Dunya,
2020; Hussein et al., 2019). However, essay exams
have two considerable drawbacks in the time and
monetary costs required to grade them (Taghipour
and Ng, 2016). Furthermore, it is difficult to ensure

consistently fair and reliable evaluation due to sub-
jective influences on the part of the rater (Uto and
Ueno, 2020; Saal et al., 1980). Automated Essay
Scoring (AES) has been attracting attention as a
method for resolving these difficulties (Dong and
Zhang, 2016; Taghipour and Ng, 2016).

Conventional AES systems can be broadly clas-
sified into two categories (Hussein et al., 2019):
those that take a feature-engineering approach and
those that take a neural approach. The feature-
engineering approach, which has traditionally been
the greater used of the two, utilizes a statistical
or machine learning model with pre-defined hand-
crafted features (e.g. Attali and Burstein, 2006;
Chen and He, 2013; Phandi et al., 2015; Dascalu
et al., 2017; Hastings et al., 2018; Yao et al., 2019).
The neural approach, on the other hand, which
has become popular recently, uses deep neural
networks to extract features automatically from
texts (e.g. Alikaniotis et al., 2016; Taghipour and
Ng, 2016; Dong and Zhang, 2016; Tay et al., 2018;
Dong et al., 2017; Farag et al., 2018; Jin et al.,
2018; Uto et al., 2020; Rodriguez et al., 2019; Uto
et al., 2020; Ridley et al., 2020; Uto, 2021c). In
this study, we focus on the neural approach because
of the high accuracy it has achieved in many prior
studies.

Most neural AES studies have focused on holis-
tic scoring (Ridley et al., 2021; Ke and Ng, 2019),
which provides a single overall score for each essay.
However, to provide richer feedback, especially
when essay exams are used for educational pur-
poses, we often require not only the overall score
but also analytic scores corresponding to various
aspects of the essay, such as content, organization,
and word choice (Hussein et al., 2020). Several
AES models that can predict these analytic scores
along with the overall score have recently been pro-
posed for this purpose (Mathias and Bhattacharyya,
2020; Hussein et al., 2020; Mim et al., 2019; Ridley
et al., 2021). From here on, we will refer to such
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models as analytic AES models.
Mathias and Bhattacharyya (2020) proposed an

early neural analytic AES model that took the sim-
ple approach of separately applying a conventional
holistic scoring model (Dong et al., 2017) to each
analytic score. Then, Hussein et al. (2020) pro-
posed a multi-output model in which the output lay-
ers are branched by the number of analytic scores
and the other layers are shared. One of the more
recent models is a multi-output model proposed
by Ridley et al. (2021) that has a complex deep
neural architecture as the output layer for each ana-
lytic score. Although this model produces state-of-
the-art accuracy, it has some problems in terms of
interpretability.

1. It has a complex neural architecture for each
analytic score, decreasing the interpretability
of the prediction.

2. In general, analytic scores are designed to
measure latent abilities in examinees that a
test developer wishes to evaluate (Uto, 2021b).
However, this model ignores the existence of
an ability scale, further restricting the inter-
pretability of the score prediction.

To resolve these problems, we propose to extend
a conventional analytic AES model by integrating
it with an item response theory (IRT) (Lord, 1980)
model, a well-known psychometric model. Specifi-
cally, we extend the multi-output model of Ridley
et al. (2021) by replacing the complex output layers
for each analytic score with a multidimensional IRT
model (Yao and Schwarz, 2006). The advantages
of the proposed model are as follows.

1. The output IRT layer is explained by only
three types of parameters: the discriminatory
power and difficulty corresponding to each
analytic score and the latent ability of each
examinee. These allow us to better interpret
the reasoning behind score predictions.

2. Investigating an optimal number of ability di-
mensions in the multidimensional IRT model
layer and analyzing the estimated parameters
allows us to interpret the ability scale implied
by the multiple analytic scores.

In this study, we used benchmark datasets that
have been widely used in analytic AES research to
conduct experiments that evaluated the effective-
ness of our model. They showed that our model

offers reasonably interpretable parameters without
significantly degrading scoring accuracy. Further-
more, an interesting finding from our experiment
was that, although the benchmark dataset consisted
of many analytic scores for each essay, only one or
two latent abilities were measured by those multi-
ple scores.

Note that a similar AES framework combining
deep neural networks and IRT was recently pro-
posed (Uto and Okano, 2021). However, they used
IRT to improve the quality of training data by miti-
gating rater effects, so their research objective was
completely different from the one we focus on in
this study.

2 Conventional analytic AES model

This section introduces the conventional analytic
AES model proposed by Ridley et al. (2021), which
we use as a baseline model. The architecture of
this model is displayed on the left side of Figure 1.

This model takes in an essay from examinee
n and outputs multiple analytic scores {ŷnm |
m ∈ {1, 2, . . . ,M}}, where ŷnm is the m-th ana-
lytic score and M is the total number of analytic
scores. An essay from examinee n is defined as
a word sequence {wnsl | s ∈ {1, 2, . . . , S}, l ∈
{1, 2, . . . , ls}}, where wnsl is the l-th word in the
s-th sentence of examinee n’s essay, S is the num-
ber of the sentences in the essay, and ls is the num-
ber of words in the s-th sentence. Note that in our
paper, we regard the overall score as one of the
analytic scores.

The model consists of two types of layers: a
shared layer and an item-specific layer. The shared
layer receives the word sequence in each sentence
and produces a sentence-level distributed represen-
tation through an embedding layer, a convolutional
layer, and an attention pooling layer (Dong et al.,
2017). The sequence for the sentence-level dis-
tributed representation is used in the item-specific
layer.

The item-specific layer consists of the same num-
ber of heads as the number of analytic scoring
items, which are evaluation items corresponding
to analytic scores, such as content, organization,
and word choice. An item-specific layer for an
analytic scoring item receives the sequence of the
sentence-level distributed representation and pro-
duces a score value for the corresponding scoring
item. Specifically, the input sequence is first pro-
cessed through a recurrent neural network (RNN),
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Figure 1: Architecture of a conventional analytic scoring model (left) and our model (right).

one in which the long short-term memory (Hochre-
iter and Schmidhuber, 1997) was used as the RNN.
Then, an output sequence from the RNN layer is ag-
gregated into a fixed-length hidden vector through
an attention pooling layer (Dong et al., 2017). The
hidden vector is concatenated with a manually de-
signed feature vector Fn, and the concatenated vec-
tor hnm is input to the trait attention layer. For cap-
turing the relation between analytic scoring items,
the trait attention layer is defined as

anmt =
exp(hnm · hnt)∑M
t=1
t̸=m

exp(hnm · hnt)
, ∀t,∀m, t ̸= m

(1)

xnm =
M∑
t=1
t̸=m

anmthnt (2)

x̃nm = Concat(xnm,hnm). (3)

Finally, a linear layer with the sigmoid activation
maps x̃nm, a trait attention output vector, to the
prediction score ŷnm:

ŷnm = σ(Wmx̃nm + bm), (4)

where σ is the sigmoid function, Wm is a weight
vector, and bm is a bias value. Note that this model
uses a sigmoid function to predict scores, so ŷnm
takes values between 0 and 1. Thus, in the score

prediction phase, the output scores must be linearly
transformed to the original score scale.

This model is trained through a back-
propagation algorithm using the Mean Squared
Error (MSE) as a loss function. This is given by

LMSE =
1

NM

N∑
n=1

M∑
m=1

(ŷnm − ynm)2, (5)

where N is the number of essays and ynm is the
gold-standard score of examinee n for the m-th
analytic scoring item. The gold-standard scores
ynm must be linearly transformed into the range
between 0 and 1.

Note that Ridley et al. (2021) input the part-of-
speech (POS) tags instead of the words themselves
when applying the model to cross-prompt scoring
tasks. However, we use word sequences as input
because they are expected to be more accurate for
the prompt-specific scoring tasks used in this study.

As previously mentioned, this model has a com-
plex architecture for each analytic score, making it
difficult to interpret the score prediction. Our main
focus is to use IRT to increase the interpretability
of score prediction.

3 Item Response Theory

IRT (Lord, 1980) is a popular psychometric model
that has been widely used for making measure-
ments in educational and psychological research.
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Typical IRT models define the probability that an
examinee will receive a certain score on a test item
as a function of the examinee’s latent ability and
the item’s characteristic parameters, such as the
discrimination and difficulty parameters. Of the
various existing IRT models, we employ a multi-
dimensional generalized partial credit model (M-
GPCM) (Yao and Schwarz, 2006), a representative
multidimensional polytomous IRT model that can
be applied to ordinal score data and can examine
multidimensional latent abilities for each exami-
nee.

If we regard IRT parameters for test items as
those for analytic scoring items following the ap-
proach in previous studies (Uto, 2021b), then M-
GPCM defines the probability that examinee n will
receive score k for the m-th analytic scoring item
as

Pnmk =
exp(kαT

mθn +
∑k

u=1 βmu)∑Km
v=1 exp(vα

T
mθn +

∑v
u=1 βmu)

, (6)

where θn = (θn1, θn2, . . . , θnd) is the d-
dimensional latent ability of examinee n, αm =
(αm1, αm2, . . . , αmd) is a d-dimensional discrimi-
nation parameter for analytic scoring item m, βmu

is a step parameter denoting the difficulty of the
transition between scores u − 1 and u in item m,
and Km is the number of possible scores for the
m-th item. Here, βm1 = 0 : ∀m is assumed for
model identification.

All of these model parameters, θn, αm, and βmu,
can be estimated from a collection of observed
scores. These parameters are clearly interpretable,
as will be explained in sections 4.3 and 5.3.

4 Proposed Model

We propose an analytic AES model that incorpo-
rates the M-GPCM mentioned in the previous sec-
tion. The architecture of this model is displayed on
the right side of Figure 1.

As Figure 1 shows, our model and the conven-
tional model share the same layers from the input
to the concatenate layer. Specifically, in both mod-
els, each sentence in an essay is fed to the embed-
ding layer, convolution layer, and attention pooling
layer, and then a sequence of the sentence-level dis-
tributed representation vectors is transformed into
a fixed-length vector through the recurrent layer
and the attention pooling layer. Finally, the con-
catenate layer creates an essay-level vector hn by

combining the output from the attention pooling
layer and the handcrafted feature vector Fn.

The main differences between the models occur
after the concatenate layer. Given the essay-level
vector hn, our model obtains the latent ability vec-
tor θn, which is used in the subsequent M-GPCM
layer, by applying a dense layer given by

θn = Whn + b, (7)

where W is a weights matrix and b is a bias vec-
tor. The latent ability θn is input to the M-GPCM
defined in Eq. (6) to obtain the score probabilities
for each analytic scoring item m. Our model then
uses the obtained probability Pnmk to predict the
analytic scores.

4.1 Model Training

We train our model using the following Categorical
Cross-Entropy (CCE) as a loss function:

LCCE = − 1

NM

N∑
n=1

M∑
m=1

Km∑
k=1

ynmk log(Pnmk).

(8)
We use this because the output IRT layer gives the
probability distribution over score categories Pnmk.
Note that during the training process, our model si-
multaneously estimates the IRT parameters, namely
θn, αm, and βm = (βm1, βm2, . . . , βmKm), and
the parameters in the other layers in an end-to-end
manner.

The hyper-parameters in our model are the
same as those in the conventional model (Rid-
ley et al., 2021), and we use the RMSProp Op-
timizer (Dauphin et al., 2015) with a learning rate
of 0.001. Furthermore, since IRT generally as-
sumes a normal distribution for θn, we apply an L2-
regularization for θn so that its distribution closes
to a normal distribution with mean zero.

4.2 Score Prediction

We have the following two options for predicting a
score based on the output score probabilities Pnmk.

• Argmax score: argmaxk Pnmk.

• Expected score:
∑Km

k=1 kPnmk.

We compare these two options in the experiments
discussed in section 5.2.
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Table 1: Summary of the ASAP and ASAP++ dataset: Org refers to organization, WC to word choice, SF to
sentence fluency, Conv to conventions, PA to prompt adherence, Lang to language, and Narr to narrativity.

Prompt Num Essays Mean Length Analytic Scoring Items Score Range
Overall Analytic

1 1783 350 Overall, Content, Org, WC, SF, Conv 2-12 1-6
2 1800 350 Overall, Content, Org, WC, SF, Conv 1-6 1-6
3 1726 150 Overall, Content, PA, Lang, Narr 0-3 0-3
4 1772 150 Overall, Content, PA, Lang, Narr 0-3 0-3
5 1805 150 Overall, Content, PA, Lang, Narr 0-4 0-4
6 1800 150 Overall, Content, PA, Lang, Narr 0-4 0-4
7 1569 250 Overall, Content, Org, Conv, Style 0-30 0-6
8 723 650 Overall, Content, Org, WC, SF, Conv, Voice 0-60 2-12

4.3 Interpretability of our model

As explained in section 3, the M-GPCM consists
of three types of trainable parameters: both the
discrimination parameters αm and the difficulty
parameters βm for each analytic scoring item and
the latent examinee ability parameter θn.

The discrimination parameter αm provides in-
formation on how well each analytic scoring item
distinguishes examinee ability, whereas the diffi-
culty parameter βm reflects how difficult exami-
nees find each score category for the m-th analytic
scoring item to be. The examinee ability parameter
θn represents the ability level of each examinee.
Section 5.3 shows an example of the interpretation
of these parameters.

Furthermore, our model enables us to perform
an analysis of the optimal number of ability dimen-
sions assumed under multiple analytic scores by
comparing its performance with different numbers
of dimensions. For example, if the score prediction
performance of our model is maximized when two
ability dimensions are assumed, then we can inter-
pret this as indicating that the given analytic scoring
items measure a two-dimensional latent ability of
examinees. We can also interpret what each ability
dimension measures by analyzing the multidimen-
sional discrimination parameter αm. Section 5.3
gives an example of how the ability dimension can
be interpreted.

Our model predicts the scores by using the out-
put IRT layer with the IRT parameters mentioned
above. Thus, interpreting these parameters allows
us to understand how the model determines ana-
lytic scores for a given essay.

5 Experiments

In this section, we discuss how the effectiveness
of our model was evaluated through experiments
using real-word data.

5.1 Real-word data
In our experiments, we used real-word data from
the Automated Student Assessment Prize (ASAP)1

and the ASAP++ (Mathias and Bhattacharyya,
2018).

The ASAP was introduced in the Kaggle com-
petition and has since been widely used in AES
research. The ASAP dataset consists of examinees’
essays for eight different prompts and scores for
them. Only an overall score is given for prompts 1
through 6, while some analytic scores are given
in addition to the overall score for prompts 7 and
8. The ASAP++, a dataset designed to supple-
ment ASAP, offers analytic scores for prompts 1
through 6.

Table 1 gives a summary of the ASAP with the
ASAP++ dataset.

5.2 Evaluation of our model
Using the ASAP with the ASAP++ dataset, we eval-
uated the scoring accuracy of our model while vary-
ing the number of ability dimensions from 1 to 3
and compared the results to those from the conven-
tional baseline model described in section 2. The
scoring accuracy was independently evaluated for
each prompt through a 5-fold cross validation using
the Quadratic Weighted Kappa (QWK), which is
used in AES studies. Concretely, we evaluated the
QWK score for each analytic scoring item and then
calculated the average QWK score for each prompt.
We examined two input types in this experiment: a
word sequence and a POS tag sequence. We used
Glove (Pennington et al., 2014), a pre-trained word
embedding, in the embedding layer for models us-
ing word sequences as inputs. Furthermore, in our
model, we evaluated the two types of prediction
scores, the argmax scores and the expected scores,
explained in section 4.2.

Table 2 and Table 3 show the results obtained
when the expected scores and the argmax scores

1https://www.kaggle.com/c/asap-aes



2922

Table 2: QWK scores for our model with the expected scores and the conventional model.

Input Model Prompts p-value
1 2 3 4 5 6 7 8 Avg. 1dim 2dim 3dim

POS

Conventional 0.688 0.632 0.610 0.680 0.686 0.684 0.694 0.548 0.653 0.460 0.169 0.767
Proposed-1dim 0.662 0.605 0.623 0.663 0.693 0.670 0.640 0.542 0.637 - 1.000 1.000
Proposed-2dim 0.671 0.627 0.608 0.657 0.680 0.669 0.669 0.555 0.642 - - 1.000
Proposed-3dim 0.678 0.629 0.615 0.643 0.691 0.677 0.682 0.544 0.645 - - -

Word

Conventional 0.685 0.655 0.660 0.720 0.706 0.750 0.694 0.568 0.680 0.009 0.699 0.014
Proposed-1dim 0.656 0.617 0.620 0.713 0.689 0.731 0.638 0.549 0.652 - 0.180 0.378
Proposed-2dim 0.666 0.631 0.637 0.722 0.699 0.732 0.704 0.576 0.671 - - 1.000
Proposed-3dim 0.679 0.633 0.642 0.704 0.698 0.734 0.696 0.553 0.667 - - -

Table 3: QWK scores for our model with the argmax scores and the conventional model.

Input Model Prompts p-value
1 2 3 4 5 6 7 8 Avg. 1dim 2dim 3dim

POS

Conventional 0.688 0.632 0.610 0.680 0.686 0.684 0.694 0.548 0.653 0.253 0.469 0.420
Proposed-1dim 0.651 0.616 0.620 0.670 0.682 0.685 0.619 0.480 0.628 - 0.053 0.755
Proposed-2dim 0.661 0.608 0.629 0.670 0.679 0.675 0.620 0.445 0.623 - - 1.000
Proposed-3dim 0.636 0.633 0.634 0.656 0.685 0.694 0.636 0.471 0.631 - - -

Word

Conventional 0.685 0.655 0.660 0.720 0.706 0.750 0.694 0.568 0.680 0.080 0.100 0.090
Proposed-1dim 0.641 0.625 0.646 0.718 0.690 0.737 0.637 0.464 0.645 - 1.000 1.000
Proposed-2dim 0.636 0.620 0.656 0.721 0.692 0.736 0.675 0.486 0.653 - - 1.000
Proposed-3dim 0.656 0.630 0.656 0.712 0.696 0.734 0.687 0.472 0.655 - - -

Figure 2: Confusion matrices between gold-standard scores and the expected scores from our model for prompt 1.

were used in our model, respectively. Note that the
results for the conventional model are the same in
both of these tables, and the highest QWK scores
for each setting are shown in bold.

At first, comparing the input types suggests
that the word input shows higher averaged per-
formances in all settings. Ridley et al. (2021)
used the POS tag input assuming cross-prompt
tasks, as noted in section 2, whereas our exper-
iment suggests that the word input is better for
prompt-specific tasks.

Next, comparing Tables 2 and 3 shows that us-
ing the expected scores with our model tended to
produce better results than when the argmax scores
were used. Figure 2 shows the confusion matrices
between the gold-standard scores and the expected

scores given by our model for all of the analytic
scoring items associated with prompt 1. According
to this figure, the diagonal components of the ma-
trices are responsive, indicating that the scores are
predicted relatively well.

Finally, comparing variants of our model with
different numbers of ability dimensions shows that
the two- and three-dimensional models tended to
outperform the one-dimensional model, although
the differences are relatively small. Moreover, al-
though the conventional model had the highest aver-
age performance, the degradations in performance
of our model were small overall. We performed
Bonferroni’s multiple comparison test to quantita-
tively measure whether there were significant dif-
ferences in the average QWK scores among the
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Table 4: IRT parameters for analytic scoring items estimated by the one-dimensional variant of our model.

α1 β12 β13 β14 β15 β16 β17 β18 β19 β1 10 β1 11

Overall 1.15 -2.61 -3.32 -3.00 -3.79 -1.48 -2.14 0.85 0.87 2.47 2.84
Content 2.01 -4.71 -3.85 -0.56 2.02 4.20 - - - - -
Org 1.88 -4.45 -3.59 -0.32 2.25 4.75 - - - - -
WC 2.09 -4.71 -3.76 0.06 2.51 4.59 - - - - -
SF 2.06 -4.74 -3.71 -0.36 2.20 4.82 - - - - -
Conv 2.01 -4.66 -3.56 -0.36 2.29 5.01 - - - - -

Table 5: IRT parameters for analytic scoring items estimated by the two-dimensional variant of our model.

α11 α12 β12 β13 β14 β15 β16 β17 β18 β19 β1 10 β1 11

Overall 1.81 0.14 -2.56 -3.53 -3.26 -3.75 -1.59 -2.24 0.95 1.09 2.90 3.19
Content 1.54 1.38 -4.80 -3.98 -0.60 2.04 4.35 - - - - -
Org 1.23 1.41 -4.38 -3.58 -0.39 2.18 4.65 - - - - -
WC 1.38 1.63 -5.10 -3.87 -0.01 2.55 4.73 - - - - -
SF 1.10 1.90 -4.73 -3.93 -0.49 2.21 5.02 - - - - -
Conv 1.04 1.95 -4.93 -3.87 -0.54 2.36 5.29 - - - - -

Figure 3: Scree plot for prompt 1.

models. The results are given in the p-value column
of Table 2. The p-values indicate that there was
no difference at the 5% significance level between
the conventional model and our model with opti-
mal dimension. This result is surprising because
the scoring accuracy remains even though the item-
specific layers in our model are described by sig-
nificantly fewer parameters than the conventional
model. Thus, we can conclude that our model does
not lead to a significant decrease in the scoring
accuracy.

5.3 Interpretation of our model

In this subsection, we explain how we interpreted
the predictions from our model.

We first examined the optimal number of ability
dimensions. In IRT studies, principal component
analysis (PCA) is generally used for investigating
the optimal number of dimensions (Nunnally and
Bernstein, 1994; Bjorner et al., 2003). For this
reason, Figure 3 shows the eigenvalues obtained
by PCA for different numbers of dimensions in
prompt 1; the horizontal axis shows the number
of dimensions (component), and the vertical axis
indicates the eigenvalue. A significant decrease
in the eigenvalues occurs at the point where the
component number is 2, suggesting that the ability

dimension assumed under the data for the multiple
analytic scores in prompt 1 is only explainable with
a one-dimensional ability scale. Other prompts
yielded the same results. Note that, as explained
in the previous section, the one-dimensional model
shows slightly lower QWK scores than the two- or
three-dimensional models, so if prediction accuracy
is a priority, then the two-dimensional model may
be a better choice. Thus, we will now explain
the interpretation of our model when one and two
dimensions are assumed.

Tables 4 and 5 show the IRT-layer parameters
for the analytic scoring items estimated with the
one- and two-dimensional variants of our model,
respectively. Only the results for prompt 1 are
given here as an example.

The discrimination parameters provide informa-
tion for interpreting how well the analytic scoring
items measure examinees’ abilities and what each
ability dimension measures. For example, accord-
ing to Table 4, the overall item has a lower dis-
crimination value than the other analytic scoring
items, suggesting that the overall item is relatively
inaccurate for measuring a one-dimensional latent
ability constructed by the multiple analytic scoring
items. This also suggests the possibility that the
ability measured by the overall item might differ
from that of the other items, something that can
be confirmed from the discrimination parameters
in the two-dimensional model shown in Table 5.
Specifically, the overall item in Table 5 has a large
discrimination value in the first dimension but an
extremely small value in the second dimension,
whereas the other analytic scoring items have large
discrimination values in the second dimension. Fur-
thermore, taking a closer look at the other analytic
scoring items, we can see that the content item
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Table 6: Examples of examinees’ latent abilities and the predicted scores estimated by our model.

Examinee n Ability θn
Predicted Scores

Overall Content Org WC SF Conv Avg.
4 0.14 8 4 4 4 4 4 4.67

27 2.21 11 6 5 6 5 5 6.33
31 -2.01 6 2 2 2 2 2 2.67
916 -4.19 2 1 1 1 1 1 1.17

1651 3.40 12 6 6 6 6 6 7.00

Figure 4: ICCs for the overall score.

Figure 5: ICCs for the content score.

is like the overall item in that it has a higher dis-
crimination value for the first dimension than for
the second dimension, while the other items have
higher discrimination values for the second dimen-
sion. These results suggest that the first ability
dimension measures the overall ability relating to
the skills for enriching content in an essay, while
the second dimension measures the ability shared
among organization, word choice, sentence fluency,
and convention, which would make it a technical
writing ability.

Furthermore, the difficulty parameters show how
the score categories are obtained for each ana-
lytic scoring item. For instance, Figures 4 and
5 show item characteristic curves (ICC), which il-
lustrate the probabilistic curve based on Eq. (6),
for the overall and content items under the one-
dimensional setting. In these figures, the horizontal
axis indicates the latent ability of the examinees,
and the vertical axis indicates the probability Pnmk.
Note that the horizontal axis shows values for abil-
ity θ around zero because, as was explained in
section 4.1, the distribution of the ability estimates
follows a normal distribution with zero mean. Fig-
ures 4 and 5 show that examinees with a higher

ability have a greater probability of obtaining a
high score. Moreover, scores of 2, 6, 8, 10, 11,
and 12 for the overall item are likely to be used
while scores of 3, 4, 5, and 7 tend to be avoided. In
the content item, a score of 2 tends to be avoided
slightly. It is in this way that the difficulty param-
eters enable us to make an interpretation of how
the score categories are used for the analytic scor-
ing items. Note that although we highlighted the
one-dimensional model results here, the difficulty
parameters in the one- and two-dimensional mod-
els are similar and, thus, provide similar interpreta-
tions.

Our model predicts analytic scores based on
these characteristics of the analytic scoring items
and on estimations of the examinees’ abilities. Ta-
ble 6 shows examples of examinees’ latent abilities
and the predicted analytic scores estimated by the
one-dimensional variant of our model. Table 6
indicates that our model tends to provide higher
scores for essays written by examinees with higher
abilities. Furthermore, comparing Table 6 with Fig-
ures 4 and 5, we can confirm that the predicted
scores for the overall and content items follow the
ICCs reasonably well. For example, examinee 4,
who had a nearly zero value of θn, obtained an
overall score of 8 and a content score of 4. The
ICCs show high response probabilities for these
scores around θn = 0.

These results demonstrate that our model enables
us to interpret predictions that are based on the IRT-
layer model parameters.

6 Conclusions

In this study, we proposed a new neural-based
analytic AES model that incorporates a multidi-
mensional IRT model. Through experiments us-
ing the well-known benchmark datasets ASAP and
ASAP++, we demonstrated that, compared to the
latest conventional model, our model succeeds in
improving interpretability without significantly los-
ing performance.

Our experiments also suggested that one- or two-
dimensional abilities can sufficiently explain the
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multiple analytic scores, including the overall score.
This is an important finding suggesting that the
analytic scoring items in the dataset may fail to
measure multiple aspects of ability. This is unde-
sirable because the objective of analytic scoring is
to evaluate multiple aspects of ability.

Future studies will be required to evaluate our
model using various datasets, including other
benchmark datasets. Moreover, another challenge
to address in future work is to develop an extension
of our model for cross-prompt tasks.
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