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Abstract

Few-shot knowledge graph completion
(FKGC) has become a new research focus in
the field of knowledge graphs in recent years,
which aims to predict the missing links for re-
lations that only have a few associative triples.
Existing models attempt to solve the problem
via learning entity and relation representations.
However, the limited training data severely
hinders the performance of existing models.
To this end, we propose to solve the FKGC
problem with the data augmentation technique.
Specifically, we perform data augmentation
from two perspectives, i.e., inter-task view and
intra-task view. The former generates new
tasks for FKGC, while the latter enriches the
support or query set for an individual task. It
is worth noting that the proposed framework
can be applied to a number of existing FKGC
models. Experimental evaluation on two
public datasets indicates our model is capable
of achieving substantial improvements over
baselines.

1 Introduction

Knowledge graphs (KGs) are structured seman-
tic knowledge bases used to describe concepts
and their interrelationships in the physical world
in symbolic form. Many KGs in the real world,
such as Freebase (Bollacker et al., 2008), YAGO
(Suchanek et al., 2007), WordNet (Miller, 1992),
Wikidata (Vrandecic and Krötzsch, 2014) and
NELL (Mitchell et al., 2018), consist of triple facts
in the form of (head entity, relation, tail entity), e.g.,
(Paris, capitalOf, France) indicates that Paris is the
capital of France. KGs have been introduced into
various downstream tasks of NLP, such as ques-
tion answering (Saxena et al., 2020), dialogue sys-
tems (He et al., 2017) and information extraction
(Hoffmann et al., 2011), etc. The integrity of KG
promotes the performance of downstream tasks.

∗ Corresponding author: Zhao Zhang and Chao Li.

However, KGs in the real world are far from com-
plete and comprehensive. Therefore, it is necessary
to complete KGs by inferring new triple facts.

To complete KGs, most existing embedding-
based KG completion models require adequate
triples for each relation as training data, such as
TransE (Bordes et al., 2013), RotatE (Sun et al.,
2019) and ConvE (Dettmers et al., 2017). However,
in reality, the number of triples for each relation
conforms to a long-tail distribution (Xiong et al.,
2018), i.e., only a small number of relations oc-
cur frequently, while most relations only occur a
few times in a KG. This phenomenon hinders to
learning reliable representations for infrequent re-
lations and further degrades the KG completion
performance.

This has motivated an emerging research topic
named few-shot knowledge graph completion
(FKGC), where one task is to predict the tail en-
tity t in a query (h, r, ?) given only a few entity
pairs of the task relation r. GMatching (Xiong
et al., 2018) is the first study on the FKGC task,
which proposes the basic framework and problem
formulation. FSRL (Zhang et al., 2020) and FAAN
(Sheng et al., 2020) further improve the attention
mechanism of the GMatching framework. MetaR
(Chen et al., 2019) and GANA (Niu et al., 2021)
adopt the meta-based paradigm in meta-learning as
the basic architecture. Although the above methods
achieve promising results for the FKGC problem,
they still suffer from the limited training data for
each relation. To this end, we propose to allevi-
ate the above issue using the data augmentation
technique.

Specifically, as shown in Figure 1, we aim to
augment the data of each task within its own dis-
tribution, and densify the task distribution by pro-
viding interpolated tasks. Therefore, we propose
to augment data from a hierarchical perspective.
The inter-task view generates new tasks for the
FKGC model. And the intra-task view provides
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Figure 1: Motivations behind data augmentation for FKGC. (a) Two tasks are sampled from the task distribution;
(b) Intra-task augmentation methods that augment each task within its own distribution; (c) Inter-task augmentation
densifies the task-level distribution by performing cross-task level interpolation or inversing task.

entity pairs for each individual task. This setting is
capable of enriching luxuriant data and densifying
the data distribution for FKGC models, which is
beneficial to achieving better performances. We
propose two data augmentation methods for each
view to enhance the existing FKGC model. Particu-
larly, the proposed technique is general and can be
applied to a number of existing FKGC models. To
the best of our knowledge, this is the first work to
solve the FKGC task using the data augmentation
technique. Finally, experimental results validate
the effectiveness of the proposed method.

In a nutshell, we highlight our main contribu-
tions as follows,

• To solve the problem of limited training data,
we propose to use the data augmentation tech-
nique for the FKGC problem. To the best
of our knowledge, this is the first work that
utilizes data augmentation for FKGC.

• To provide adequate data for the FKGC mod-
els, we propose to conduct data augmentation
from hierarchical perspectives, i.e., intra-task
perspective and inter-task perspective.

• Experimental results on benchmark datasets
show the proposed method can be applied to
various existing FKGC models and achieve
substantial improvements over baselines com-
petitors.

2 Background

In this section, we provide problem formulation
and the settings of FKGC.

2.1 Problem Formulation

A Knowledge graph G is represented as a collec-
tion of triples {(h, r, t)} = E × R × E , where E

and R are the entity set and relation set, respec-
tively. The task of knowledge graph completion
falls into two categories: predicting the unknown
relation r between the head entity and the tail en-
tity (h, ?, t), and predicting the missing entity t
or h based on the head/tail entity and the relation
(h, r, ?) or (?, r, t). In this paper, following pre-
vious FKGC work, we aim to predict the miss-
ing term in a given query (h, r, ?). Unlike tradi-
tional knowledge graph completion task that re-
quires abundant triples for the query relation during
training, FKGC is only accessible to a few train-
ing triples when predicting the tail entity. Specif-
ically, the goal of FKGC is to rank the true tail
entities ttrue higher than other candidate entities
Cr. Each relation r corresponds to a candidate en-
tity set, which is constructed based on entity type
constraints (Xiong et al., 2018; Toutanova et al.,
2015). In the test phase, the corresponding can-
didate entities are ranked, and the groud truth tail
entity is supposed to rank first among the candi-
dates.

2.2 FKGC Settings
FKGC follows the standard few-shot learning set-
tings, and the training data consists of a series of
tasks. In FKGC, each task corresponds to a relation
in KG r ∈ Rf , whereRf is the few-shot relation
set, and the rest of the relations in KG are back-
ground knowledge graph relationsRb, which con-
sist of high-frequency relations,Rf ∪Rb = R and
Rf ∩Rb = ϕ. The triples corresponding to each re-
lation in Rb form the background knowledge graph
G′, which is mainly used for pre-training the rep-
resentations of the entity set E and background
knowledge graph relations Rb. The head and tail
entity pairs {(hk,i, tk,i)} of a few-shot relation con-
stitutes a task. Each task Tk corresponds to one
support set Sk and one query set Qk, and a part of
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the task is selected to form the meta-training set
Tk ∈ Ttrain.
Train Prase: The goal of FKGC is to rank all enti-
ties in the candidate entity set with Sk as reference,
and the ground truth tail entity tk should be higher
than the other false entities tfalse. We formulize
the ranking loss function as Lθ and θ denotes the
model parameters, and the loss function is set to
reflect the rank of the true tail entities in Qk given
Sk. The objective of training the FKGC model is
defined as:

minθ
1

|Tt|
∑

T t
k∈Tt

∑
(hk,i,tk,i)∈Qk

Lθ(tk,i|hk,i, Sk)

|Qk|

(1)
where |Tt| denotes the number of tasks in Ttrain

and the T t
k is sampled from the meta-training set

Ttrain.
Test Prase: When training is complete and tail
entity completion is performed, FKGC models will
sample new tasks from the meta-test set Tk′ ∈ Ttest

for prediction. Meta-test set Ttest also has the
support set Sk′ and query set Qk′ , which are de-
fined in the same way as in meta-training. Sim-
ilarly, each task corresponds to a relation in the
meta-test relations rt ∈ Rtest that does not appear
in the training phase: Rtest ∩ Rtrain = ϕ and
Rtrain ∪ Rtest = Rf . These new relations only
need to be predicted for tail entity (tk′,i|hr′,i, Ck′)
in Qk′ with K triples of as Sk′ a reference.

3 Related Work

3.1 Data Augmentation Strategy

Data augmentation has been widely used to prevent
deep neural networks from over-fitting to the train-
ing data (Bishop, 1995). Most of the traditional
augmentation methods generate new data accord-
ing to the mixed application transformation of data
types or proposed target tasks (Cubuk et al., 2019),
which can be independently applied to various data
types and tasks, improving the generalization and
robustness of deep neural networks. Input mixup
(Zhang et al., 2017) linearly interpolates between
two input data, and trains the model using mixed
data with corresponding soft labels. Following this
work, a variety of mixup methods for data aug-
mentation have been proposed. Manifold mixup
(Verma et al., 2018) applies the mixup strategy in
the hidden feature space, and CutMix (Yun et al.,
2019) proposes an image mixup method based on
spatial copy and paste. Puzzle Mix (Kim et al.,

2020) proposes a mixup method based on saliency
and local statistics of the given data. MixSKD
(Yang et al., 2022) incorporates Mixup with self-
knowledge distillation into a unified framework
to regularize the two image views. Most of these
methods aim at the field of image processing. In
this paper, we specially tailor the mixup strategy
for the FKGC task.

3.2 FKGC models
Existing FKGC approaches fall into two categories:
metric learning-based methods and meta learner-
based methods. We outline the main structures of
these two methods and describe them separately in
the following
Metric learning-based methods. GMatching is
the first research work on FKGC (Xiong et al.,
2018), and it utilizes metric learning-based meth-
ods as the backbone and divides the model into
three subparts: neighbor encoder, entity pairs en-
coder, and matching processor. Neighbor encoder
is designed to enhance the representation of each
entity with its local connections in the knowledge
graph (one-hop neighbors).

Gmatching directly sums all neighbors on aver-
age, FSRL (Zhang et al., 2020) uses the attention
mechanism (Veličković et al., 2017) to encoding
neighbors, and FAAN (Sheng et al., 2020) lever-
ages the relation in task Rf to introduce the adap-
tive attention network. The embedding of entities
h, t ∈ Rd are then fed into the entity pairs encoder
Fr:

rqk,i = Fr(hq
k,i, tqk,i), rsk,. = Fr(Sk) (2)

where (hq
k,i, tqk,i) ∈ Qk, the query relation rqk,i ∈

Rd and support set relation rsk,. ∈ Rd are
then compared by matching processor function:
Score(rqk,i, rsk,.) = M(rqk,i, rsk,.), since rqk,i and
rsk,. represent the same task realtion rk, their score
should be as high as possible.
Meta learner-based methods. MetaR (Chen et al.,
2019) is the first model to use the Meta learner-
based method as backbone. In contrast to the stan-
dard gradient-based meta-learning, MetaR defined
two kinds of meta information which are shared
between support set and query set. It can be viewed
as a bi-level optimization problem.

Formally, the bi-level optimization process can
be formulated as:

θ∗ ← argminθ

∑
Tk∈Ttrain

[Lθ(rmeta
k,. , Qk)]
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s.t. rmeta
k,. = rsk,. − η▽rs

k,.
Lθ(rsk,., Sk) (3)

Where rsk,. is obtained by Equation 2; Lθ and η de-
note the knowledge graph loss function and inner-
loop learning rate. GANA (Niu et al., 2021) shares
a similar idea with MetaR, but learns the relation-
specific hyper-plane parameters to model complex
relations.

4 Methodology

The section describes the details of the data aug-
mentation for FKGC. It falls into two data augmen-
tation methods from the task perspective: intra-
task augmentation and inter-task augmentation.
inter-task augmentation generates new tasks for
the FKGC model, and the intra-task augmentation
provides entity pairs for each individual task. We
will describe how each of these data augmentation
methods is applied to metric learning-based meth-
ods and meta learner-based methods.

4.1 Intra-Task Augmentation

Intra-task augmentation only enlarges the pool of
triples to be sampled during training within each
individual task, not the number of tasks. Since all
entity pairs under the same task have the same rela-
tion, FKGC uses entity pairs to model few-shot re-
lationsRf . Assume rk,i is the relation embedding
vector modeled by the i-th entity pair (hk,i, tk,i) in
the k-th task Tk, and since both rk,i and rk,j be-
long to the same task, rk,j ≈ rk,i. We consider the
combination of different modeling vectors of the
same relation can still represent this task relation:
(rk,i, rk,j) ≈ rk,j . Therefore mixing different en-
tity pairs in the task after the entity pairs encoder
can generate a new modeling vector. It is worth
noting that what is generated is a new modeling vec-
tor belonging to this task relation instead of a new
triple. In detail, the mixing strategy follows Mani-
fold Mixup (Verma et al., 2019) where inputs and
hidden representations are mixed up. A task con-
tains a query set and a support set: Tk = (Qk, Sk),
so two types of intra-task augmentation can be de-
rived according to the differences in augmenting
settings:

4.1.1 Query Augmentation
Query augmentation enlarges the pool of evalua-
tion data to be sampled during training. Since the
structure of the two mainstream FKGC models is
different (details in Section 3.2), we will introduce

Algorithm 1 The Process of Intra-Augmentation

Require: Meta-training set Ttrain, model param-
eter θ, outer-loop learning rate φ, inner-loop
learning rate η, candidate set C.

1: while not converge do
2: Randomly sample a task Tk from Ttrain

3: if Metric Learning-Based Methods then
4: if Query Augmentation then
5: θ = θ − φEr

newq
k
▽θ Hθ(r

newq

k,i , rsk,.).
6: else if Support Augmentation then
7: θ = θ − φErqk

▽θ Hθ(rqk,i, rnews
k,. ).

8: end if
9: else if Meta Learner-Based Methods then

10: if Query Augmentation then
11: θ = θ − φ▽θ Lθ(rmeta

k,. , Qnew
k ) .

12: s.t. rmeta
k,. = rsk,.−η▽rs

k,.
Lθ(rsk,., Sk).

13: else if Support Augmentation then
14: θ = θ − φ▽θ Lθ(rmeta′

k,. , Qk) .

15: s.t. rmeta′
k,. = 1

|Sk|
∑|Sk|

i=0 rmeta′
k,i .

16: end if
17: end if
18: end while

how query augmentation is applied to these two
types of models.

Metric Learning-Based Methods try to learn gen-
eralizable metrics and the corresponding matching
functionsM(·, ·) from a set of training tasks. As-
sume that rnewq

k,i denotes a new modeling vector of
query set, we can formulate this change onM as:

M(rqk,i, rsk,.) :=M(rnewq

k,i , rsk,.)

s.t. rnewq

k,i = λrqk,i + (1− λ)rqk,j (4)

Where rqk,i and rqk,j are obtained by Eqn.2 and
λ ∈ [0, 1] is sampled from a Beta distribution
Beta(α, β). Then we construct a set of negative
queries Qneg

k = {(hk,i, t−k,i)} by randomly corrupt-
ing the tail entity, where the false tail entity belongs
to the task entity candidate set: t−k,i ∈ Ck. The loss
function is formally defined as:

Hθ(r
newq

k,i , rsk,.) = [γ +M(rnewq

k,i , rsk,.)−M(rneg
k,i , rsk,.)]+

(5)

where [x]+ = max(0, x) is standard hinge loss,
and γ is a margin separating positive and negative
queries.

Meta learner-based methods are a bi-level op-
timization process; query augmentation for meta
learner-based methods can improve the outer-loop
optimization. Like metric learning-based methods,
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we also construct a new query set, but due to the
outer-loop optimization process does not encode
the entity pairs of the query set into the relation
vector, we directly mix up the original entity pair:

Qnew
k = {(λhq

k,i+(1−λ)hq
k,j , λtqk,i+(1−λ)tqk,j)}

(6)
where (hq

k,i, tqk,i), (h
q
k,j , tqk,j) ∈ Qk and the Eqn.3

is reformulated as:

θ∗ ← argminθ

∑
Tk∈Ttrain

[Lθ(rmeta
k,. , Qnew

k )] (7)

4.1.2 Support Augmentation
Support augmentation enlarges the pool of triples
to be sampled for the support set, not to increase
the value of K = |Sk|.

Metric Learning-Based Methods. Like the sup-
port augmentation, We also randomly sample two
relation modeling vectors for mixup to generate a
new support set and the Eqn.4 is reformulated as:

M(rqk, rsk,.) :=M(rqk, rnews
k,. )

s.t. rnews
k,i = λrsk,i + (1− λ)rsk,j (8)

where the rnews
k,i is obtained by aggregating all

rnews
k,i to represent the new support set relation

and the loss function of support augmentation for
metric learning-based methods is reformulated as:
Hθ(rqk, rnews

k,. ).
Meta Learner-Based Methods. Support augmen-

tation can be applied to support set in the inner-loop
to fine-tuning the relation vector rsk. This strategy
enlarges the pool of fine-tuning data. Since both
rsk,i and rsk,j represent the same task relation, their
fine-tuning gradients with respect to the task rela-
tion should be consistent, Therefore, we mix the
respective fine-tuned gradients of the two relation
vector and apply the resulting gradient to rsk,i.

rmeta′
k,i = rsk,i − [λG(rsk,i) + (1− λ)G(rk,j)]

s.t. G(rk,j) = ▽rs
k,i
Lθ[rsk,i, (hs

k,i, tsk,i)] (9)

where entity pair (hs
k,i, tsk,i) ∈ Sk and the rmeta′

k,. =
1

|Sk|
∑|Sk|

i=0 rmeta′
k,i will be used as the relation vector

of all entity pairs in the query set (hq
k,i, rmeta′

k,. , tqk,j),
thus participating in the outer optimization of the
model parameters. Changing rmeta

k,. in Eqn.3 to
rmeta′
k,. is the outer-loop optimization process of

support augmentation for meta methods.

4.2 Inter-Task Augmentation
Inter-task augmentation increases the number of
tasks by creating new relations r′k to enlarge the
task pool of meta-training set Ttrain. To enlarge the
value of |Ttrain|, we devise two task augmentation
methods: inverse augmentation and interpolation
augmentation.

4.2.1 Inverse Augmentation
FKGC models represent few-shot relationRf us-
ing entity pairs, which consist of head and tail enti-
ties. Intuitively, flipping the head and tail entities
to represent another relation can enrich the dataset,
e.g., the triple (Elon Musk,SonOf, Errol Musk) can
be flipped as (Errol Musk, ParentOf, Elon Musk),
where the entity pair (Errol Musk, Elon Musk)
can represent a new relation ParentOf. When we
generalize this augmentation to all tasks in the
meta-training set, a new reversed meta-training
set can be generated: T ′

train = {T ′
1 , · · · , T ′

N},
where N is the number of tasks in Ttrain and
T ′
k = {(tk,i, , hk,i)}|Tk|. Merge the two meta-

training sets to get a new larger meta-training set:
Tnew
train = T ′

train ∪ Ttrain. Therefore, the number
of tasks of T ′

train is twice that of the original train
set Ttrain, and finally T ′

train will replace Ttrain to
participate in the training process.

4.2.2 Interpolation Augmentation
We think that the combination of two different
relations can generate a new relation, such as
father+mother = grandma. We adopt a mixup
strategy for linear addition rather than direct combi-
nation: T ′

mixi,j
= λTi + (1− λ)Tj , which adjusts

the weight of the two task relations in the new rela-
tion by λ. Since λ is obtained by sampling from the
beta distribution Beta(α, β), the number of tasks
in the meta-training set tends to be infinite in theory.
When λ = 0.5, the mixup strategy is equivalent to
a direct combination.

Metric Learning-Based Methods. Input the en-
tity pairs of task i: Ti and task j: Tj into Eqn.8
respectively to obtain their corresponding relation
modeling vectors, and mix up the relation vectors
in these two tasks to generate a new task r′mixi,j

.
We can formulate this process as follows:

rq
′

mixi,j ,k
= λrqi,k + (1− λ)rqj,k

rs
′
mixi,j ,k

= λrsi,k + (1− λ)rsj,k (10)

Then we pass rq
′

mixi,j ,k
and rs′mixi,j ,k

through match-
ing processor function to calculating the similarity
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Algorithm 2 The Process of Inter-Augmentation

Require: Meta-training set Ttrain, inner-loop
learning rate φ, Beta distribution parameters
α, β, candidate set C.

1: if Inverse Augmentation then
2: minθET ′

k

∑
(hk,i,tk,i)∈Q′

k

Lθ(tk,i|hk,i,S
′
k)

|Q′
k|

3: s.t. T ′
k ∈ Tnew

train = T ′
train ∪ Ttrain

4: else if Interpolation Augmentation then
5: while not converge do
6: Sample two tasks Ti, Tj from Ttrain.
7: if Metric-Based Methods then
8: θ = θ − φ▽θ Hθ(rq

′

mixi,j ,k
, rs′mixi,j ,k

).
9: else if Meta-Based Methods then

10: θ = θ−φ▽θ Lθ(rmeta′
mixi,j ,k

, Q′
mixi,j

) .

11: s.t. rmeta′
mixi,j ,k

= λrmeta
i,k +(1−λ)rmeta

j,k .
12: end if
13: end while
14: end if

score of them:M(rq
′

mixi,j ,k
, rs′mixi,j ,k

). Since they
represent the same new task relation r′mixi,j

, their
score should be as high as possible.

Meta Learner-Based Methods are different from
metric learning-based methods to generate a new
task; it not only needs to mixup the relation vec-
tor of the support set in the two tasks: rmeta′

mixi,j
=

λrmeta
i,. + (1− λ)rmeta

j,. , but also needs to generate
a corresponding query set:

Q′
mixi,j

= {(λhq
i,k + (1− λ)hq

j,k, λtqi,k + (1− λ)tqj,k)}i ̸=j

(11)

Substituting rmeta′
mixi,j

and Q′
mixi,j

into Eqn.3 is the
bi-level optimization process.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets.
We evaluate our augmentation methods on two pub-
lic benchmark datasets: NELL-One and Wiki-One1.
In these datasets, few-shot relationsRf that have
more than 50 but less than 500 triples are selected
to construct few-shot tasks. There are 67 tasks and
183 tasks in NELL-One and Wiki-One datasets re-
spectively. Correspondingly, the partition 51/5/11
of the 67 tasks and the partition 133/16/34 of the
183 tasks are used for training/validation/test. Fur-
thermore, the background knowledge graph G′ ex-
cept few-shot relations are used to pre-train entity

1https://github.com/xwhan/One-shot-Relational-Learning

vectors andRb vectors. The statistic details of both
datasets are shown in Table 2.

5.1.2 Comparison Methods.
In order to evaluate the effectiveness of our aug-
mentation methods, We conduct experiments on
three metric learning-based methods and two meta
learner-based methods: GMatching, FSRL, FAAN
and MetaR, GANA (model details in Section 3.2).
All the above methods use the original datasets for
training without data augmentation.

5.1.3 Implementation Details.
For all the models, we initialize the entity and rela-
tion embeddings by background knowledge graphs
pre-trained on TransE, released by GMatching. The
K-shot (K = 1, 5) support pairs are selected ran-
domly and experimented for all the models. For
a fair comparison, we run the official code and
adopt the default hyperparameters for each baseline.
GMatching and FSRL do not report the experimen-
tal results in the 5-shot case, but we can adopt the
results reported by FAAN for these two models in
the 5-shot case. Moreover, FSRL and FAAN do not
report the experimental results in the 1-shot case,
so we run their released code to get baseline results
in the 1-shot case. we re-implement the GANA
model to make a fair comparison. For MetaR, we
choose both pre-train setting and in-train setting
to evaluation our augmentation methods. We set
α = 2 and β = 2 in Beta(α, β) and the and the
neighborhood’s maximum size is fixed to 50 on
both datasets. For other hyperparameters, we adopt
the default value of their released code.

5.1.4 Evaluation Metrics.
To evaluate the performance of all models on our
augmentation methods, which aims to rank the
ground truth tail entity tqk,i for each query among
the task candidates Ck. We report two standard eval-
uation metrics on both datasets: MRR and Hits@N .
MRR is the mean reciprocal rank and Hits@N is
the proportion of the ground truth entities ranked
in the top N ; in our experiments, we set N = 1, 5,
10 and the few-shot size is set to K=1, 3.

5.2 Experimental Results and Analysis
The MRR results of FKGC models with all aug-
mentation methods on NELL-One and Wiki-One
are shown in Table 1, we can conclude that:

1. Our augmentation methods applied to all base-
line models improve their original MRR val-
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NELL-One Methods Shot Vanilla Intra-Task Inter-Task
Query Support Inverse Interpolation

Metric-based

Gmatching 1-shot 0.168 0.185+0.017 0.175+0.007 0.179+0.011 0.205+0.037

5-shot 0.176 0.191+0.015 0.180+0.004 0.196+0.020 0.211+0.035

FSRL 1-shot 0.148 0.172+0.024 0.164+0.016 0.157+0.009 0.179+0.031

5-shot 0.153 0.178+0.025 0.165+0.012 0.169+0.016 0.185+0.032

FAAN 1-shot 0.194 0.231+0.037 0.216+0.022 0.209+0.015 0.224+0.030

5-shot 0.279 0.304+0.025 0.282+0.003 0.284+0.005 0.294+0.015

Meta-based

MetaR (Pre-Train) 1-shot 0.164 0.204+0.040 0.227+0.063 0.217+0.053 0.194+0.030

5-shot 0.209 0.224+0.015 0.240+0.031 0.233+0.024 0.217+0.008

MetaR (In-Train) 1-shot 0.250 0.308+0.058 0.319+0.069 0.254+0.004 0.266+0.016

5-shot 0.261 0.331+0.070 0.332+0.071 0.275+0.014 0.307+0.046

GANA 1-shot 0.254 0.278+0.024 0.291+0.037 0.286+0.032 0.261−0.007

5-shot 0.314 0.326+0.012 0.342+0.028 0.334+0.020 0.318+0.004

WiKi-One Methods Shot Vanilla Intra-Task Inter-Task
Query Support Inverse Interpolation

Metric-based

Gmatching 1-shot 0.200 0.234+0.034 0.224+0.024 0.218+0.018 0.215+0.015

5-shot 0.245 0.278+0.033 0.263+0.018 0.261+0.016 0.256+0.011

FSRL 1-shot 0.128 0.157+0.029 0.155+0.027 0.136+0.008 0.147+0.019

5-shot 0.158 0.186+0.028 0.176+0.018 0.171+0.013 0.165+0.007

FAAN 1-shot 0.272 0.301+0.029 0.285+0.013 0.289+0.017 0.279+0.007

5-shot 0.341 0.358+0.025 0.349+0.008 0.353+0.012 0.348+0.007

Meta-based

MetaR (Pre-Train) 1-shot 0.314 0.328+0.014 0.335+0.021 0.325+0.011 0.319+0.005

5-shot 0.323 0.334+0.011 0.347+0.024 0.328+0.005 0.331+0.008

MetaR (In-Train) 1-shot 0.193 0.198+0.005 0.207+0.014 0.190−0.003 0.184−0.009

5-shot 0.221 0.232+0.011 0.239+0.018 0.227+0.006 0.209−0.012

GANA 1-shot 0.261 0.272+0.011 0.286+0.025 0.266+0.005 0.273+0.012

5-shot 0.322 0.338+0.016 0.342+0.020 0.331+0.009 0.327+0.005

Table 1: Evaluation MRR of FKGC models with all augmentation methods on NELL-One and Wiki-One.

Dataset #Ent. #Rel. #Triples #Tasks

NELL-One 68,545 358 181,109 67
WiKi-One 4,838,244 822 5,859,240 183

Table 2: Statistics of datasets. Each column respectively
represents the number of entities, relations, triples and
tasks.

ues on both datasets upon all metrics. The
experimental results indicate that our augmen-
tation methods are effective for improving the
existing FKGC models.

2. After support augmentation on NELL-One
data, MetaR (Pre-Train) has increased by
38.4% compared to the original model, which
is the largest increase. On WiKi-One data,
query augmentation improves the MRR value
of FSRL by 22.7%. The improvement on
NELL-One is larger than that on WiKi-One
because the Wiki dataset is more extensive, so
the improvement brought by data augmenta-

tion is limited.

3. On the NELL-One dataset, intra-task augmen-
tation is better than inter-task augmentation
on metric learning-based models, but the op-
posite is true on meta learner-based models.
On the WiKi-One dataset, intra-task augmen-
tation outperforms inter-augmentation on all
FKGC models. We conjecture the reason
lies in that the WiKi-One dataset has more
tasks than NELL-One, therefore increasing
the number of triples within a task is more
effective than increasing the number of tasks.

5.3 Combining Augmentations

After studying each mode of data augmentation
individually, we combine intra-task augmentation
and inter-task augmentation to understand the in-
terplay between these two levels of augmentation
methods. We select the best-performing FAAN
model among metric learning-based methods for
experiments. As shown in Table 4, the augmented
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Model: MetaR (Pre-Train)

NELL-One MRR Hits@10 Hits@5 Hits@1
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Vanilla 0.164 0.209 0.331 0.355 0.238 0.280 0.093 0.141

Intra-Task
Query 0.204 0.224 0.376 0.383 0.295 0.298 0.131 0.149

Support 0.227 0.240 0.380 0.376 0.303 0.323 0.161 0.157

Inter-Task
Inverse 0.217 0.233 0.375 0.359 0.289 0.296 0.156 0.172

Interpolation 0.194 0.217 0.379 0.359 0.284 0.289 0.100 0.158
Wiki-One 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Vanilla 0.314 0.323 0.404 0.418 0.375 0.385 0.266 0.270

Intra-Task
Query 0.328 0.334 0.515 0.504 0.437 0.442 0.233 0.242

Support 0.335 0.347 0.509 0.507 0.447 0.451 0.235 0.256

Inter-Task
Inverse 0.325 0.328 0.499 0.513 0.433 0.436 0.233 0.237

Interpolation 0.319 0.331 0.500 0.509 0.426 0.444 0.223 0.235

Table 3: Evaluation results of MetaR (Pre-Train) with data augmentation on NELL-One and Wiki-One.

mode 1-shot 5-shot

FAAN 0.194 0.279
+Query, Inverse 0.240+0.046 0.307+0.028

+Query, Interp. 0.225+0.031 0.297+0.018

+Support, Inverse 0.221+0.027 0.288+0.009

+Support, Interp. 0.217+0.023 0.286+0.007

Table 4: MRR results of FAAN combining augmenta-
tions variants on NELL-One dataset. Interp. denote
interpolation.

model outperforms the original one under all set-
tings. Combined with Figure 2, we find the jointly
augmented models achieve better results than mod-
els using only one augmentation method. It shows
that the combination of inter-task augmentation and
intra-task augmentation is able to further improve
the results.

Figure 2: Visualization of relation vectors generated by
different augmentation methods

5.4 Hits@N for case study

MetaR improves the most with all augmentation
methods, and to get a complete picture of its perfor-
mance; we further analyze it using Hits@N, which
is summarized in Table 3. The augmentation meth-
ods bring the greatest improvement on Hits@5 and
Hits@10, indicating that the augmentation methods
mainly rely on the top-ranked recall to improve the
overall MRR value. The Hit@N of the WiKi-One
dataset is generally better than that of the NELL-
One dataset under the same settings, because the
former has more data to train.

5.5 Visualization

To better demonstrate the effectiveness of our aug-
mentation methods, we visualize the new relation
vectors generated by various augmentation meth-
ods in a 2-dimensional plane, i.e., using t-SNE
(Van der Maaten and Hinton, 2008) for dimension
reduction. As shown in figure 2, a new task is
generated using interpolation augmentation, which
can be well distinguished from other tasks and has
a small intra-task distance. Intra-task augmenta-
tion for existing tasks can generate more relational
vectors within the cluster. Therefore, the visualiza-
tion results validate the effectiveness of our data
augmentation method for FKGC.

5.6 Results on Different Relations

In addition to evaluating the augmented perfor-
mance of all models, we also conduct experiments
with FSRL on the NELL-One test data to evalu-
ate the performance of each task relation. Table 5
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reports the original performance of FSRL and the
MRR after our augmentation methods. It can be
seen from the table that no matter which augmenta-
tion method is used, the variance of the results is
high in different task relations. The main reason
for this is that the number of candidate entities is
different, and large candidate sets make prediction
difficult. Nonetheless, our augmentation methods
outperform the baseline results on all relations, es-
pecially the interpretation augmentation method
performs best on the FSRL model, indicating that
our augmentation methods are robust to different
task relations.

R-ID Vanilla Intra-task Inter-task

Query Support Inver. Interp.

1 0.975 0.982 0.980 0.982 0.983
2 0.064 0.072 0.068 0.070 0.085
3 0.472 0.601 0.602 0.595 0.610
4 0.005 0.008 0.007 0.008 0.011
5 0.210 0.242 0.232 0.268 0.272
6 0.045 0.048 0.047 0.049 0.063
7 0.141 0.163 0.149 0.156 0.231
8 0.118 0.121 0.123 0.133 0.128
9 0.561 0.562 0.550 0.566 0.586
10 0.009 0.011 0.010 0.012 0.023
11 0.373 0.397 0.378 0.394 0.427

Table 5: FSRL mrr results with 5-shot reference decom-
posed over different relations in NELL-One test dataset.
R-ID denote relation id, Inver. and Interp. denotes In-
verse augmentation and Interpolation augmentation.

6 Conclusion

To alleviate the limited data problem in the FKGC
task. In this paper, we propose to utilize the data
augmentation technique to enrich the training set
for FKGC models. Specifically, we design the
data augmentation method from hierarchical per-
spectives. The inter-task perspective generates new
tasks for the FKGC task, while the intra-task per-
spective provides more entity pairs for each task.
Furthermore, in order to fully perform data aug-
mentation, we design two augmentation methods
for each perspective, i.e., inverse augmentation and
interpolation augmentation for the inter-task view,
query augmentation and support augmentation for
the intra-task view. Experimental results validate
the effectiveness of the proposed method.
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