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Abstract

Semantic Role Labeling (SRL) aims at recog-
nizing the predicate-argument structure of a
sentence and can be decomposed into two sub-
tasks: predicate disambiguation and argument
labeling. Prior work deals with these two tasks
independently, which ignores the semantic con-
nection between the two tasks. In this paper,
we propose to use the machine reading com-
prehension (MRC) framework to bridge this
gap. We formalize predicate disambiguation
as multiple-choice machine reading compre-
hension, where the descriptions of candidate
senses of a given predicate are used as options
to select the correct sense. The chosen pred-
icate sense is then used to determine the se-
mantic roles for that predicate, and these se-
mantic roles are used to construct the query
for another MRC model for argument label-
ing. In this way, we are able to leverage both
the predicate semantics and the semantic role
semantics for argument labeling. We also pro-
pose to select a subset of all the possible se-
mantic roles for computational efficiency. Ex-
periments show that the proposed framework
achieves state-of-the-art or comparable results
to previous work. Code is available at https:
//github.com/ShannonAI/MRC-SRL.

1 Introduction

Semantic Role Labeling (SRL) aims at recogniz-
ing the predicate-argument structure of a sentence.
The classic PropBank-style SRL includes two tasks:
predicate disambiguation and argument labeling.
Predicate disambiguation determines the specific
meaning of a predicate in a given context and ar-
gument labeling identifies the arguments of the
predicate and assign them with the corresponding
semantic roles, where each argument is a text span
in the sentence. PropBank defines two types of
semantic roles for argument labeling: core roles
and non-core roles (Bonial et al., 2010). Core roles
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The stock has been beaten down for two days.
[ A1 ] [beat.02][ A2 ] [ TMP ]

sense id beat.02
sense push, cause motion

A0 causer of motion
roles A1 thing moving

A2 direction, destination

Figure 1: An example of SRL. A0, A1 and A2 are
semantic roles for the sense id “beat.02”. The meanings
of A0, A1 and A2 are respectively “causer of motion”,
“thing moving” and “direction, destination”.

are required roles that are in a close relation to the
main verb in a sentence, such as agent and patient.
There are seven core roles in PropBank: A0-A5 and
AA. Non-core roles are modifiers, such as location
(LOC) and time (TMP). The specific meanings of
predicates and core roles are defined in the frame
files. For example, for the sentence in Figure 1, the
sense id of the predicate “beaten” is “beat.02”, and
its three arguments span are “The stock”, “down”
and “for two days”, whose roles are respectively
A1, A2, TMP. We can get the meaning of sense la-
bel “beat.02” and roles A1 and A2 from the frame
file.

In traditional methods, predicate disambiguation
and argument labeling are usually solved as two
independent tasks. These works usually rely on
feature-based methods (He et al., 2018b; Roth and
Lapata, 2016; Che and Liu, 2010b)) for predicate
disambiguation, and use span-based (Ouchi et al.,
2018; He et al., 2018a; Li et al., 2019b) or BIO-
based (He et al., 2017; Strubell et al., 2018; Shi and
Lin, 2019) methods for argument labeling. These
methods treat different predicate senses and argu-
ment roles as different class categories, and then
solve them through classification. However, since
these approaches ignore the semantic information
of both predicate senses and argument roles, they
are unable to establish the semantic connection be-

https://github.com/ShannonAI/MRC-SRL
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Input Sentence
The stock has been < p> beaten </p> down for
two days.

Multiple-Choice MRC for Predicate Disam-
biguation
Question: What is the sense of predicate
“beaten”?
A. (Cause) pulsating motion that often makes
sound
B. push, cause motion
C. win over some competitor
Answer: B

Extractive MRC for Argument Labeling
Question for A0: What are the arguments with
meaning "causer of motion"?
Answer: No Answer
Question for A1: What are the arguments with
meaning "thing moving"?
Answer: the stock
Question for A2: What are the arguments with
meaning "direction, destination"?
Answer: down
Question for TMP: What are the time modifiers
of predicate “beaten”?
Answer: for two days

Figure 2: An illustration of our MRC framework for
Semantic Role Labeling. The meanings of predicate
senses and argument roles are used for multiple-choice
and extractive MRC, respectively.

tween the two tasks, i.e., argument roles are defined
under predicate sense via the frame files. Some
works (Cai et al., 2018; Conia and Navigli, 2020)
jointly deal with these two tasks, but still cannot es-
tablish the semantic connection. We bridge this gap
with an MRC framework, and we hope that the re-
sults from predicate disambiguation will contribute
to argument labeling.

For PropBank-style semantic role labeling, al-
though the specific meanings of predicate senses
and argument roles are provided in the frame files,
this information is seldom used due to its huge num-
ber and lack of effective ways to utilize it. Inspired
by recent success in formulating non-MRC NLP
tasks as MRC tasks (Levy et al., 2017; Li et al.,
2020c), we propose an MRC framework for SRL,
which can effectively utilize the semantic informa-
tion provided by frame files. First, we transform
the predicate disambiguation task into multiple-
choice machine reading comprehension, where the

descriptions of candidate predicate senses are used
as options to select the correct sense. Then, we
use the result of predicate disambiguation (i.e., the
predicate sense) to determine the meaning of each
core role with respect to the predicate. Lastly, we
transform argument labeling into extractive ma-
chine reading comprehension, where the descrip-
tion of each semantic role is used to construct the
query to extract the answer span within the input
sentence, which serves as the argument we want.
In addition, we also propose an additional mod-
ule to select a subset of all possible semantic roles
to improve computational efficiency. We provide
an example (Figure 1) of the MRC framework in
Figure 2.

We conduct experiments on CoNLL2005 (Car-
reras and Màrquez, 2005), CoNLL2009 (Hajič
et al., 2009), and CoNLL2012 (Pradhan et al.,
2013) benchmarks. Experimental results show that
our model can achieve SOTA or comparable results
to previous works on the three benchmarks.

2 Related Work

2.1 Semantic Role Labeling

Early semantic role labeling methods focused on
feature engineering (Zhao et al., 2009; Pradhan
et al., 2005). Recently, neural network based mod-
els have been studied and achieved promising per-
formance. Collobert et al. (2011) proposed a uni-
fied neural network architecture and can avoid task-
specific engineering. Zhou and Xu (2015) proposed
to use BiLSTM as an end-to-end system for SRL.
Tan et al. (2018) applied self-attention (Vaswani
et al., 2017) mechanism to directly draw the global
dependencies of the inputs. Shi and Lin (2019) pre-
sented a BERT (Devlin et al., 2019) based model
for semantic role labeling. Jindal et al. (2020)
propose a parameterized neighborhood memory
adaptive method for SRL. Kalyanpur et al. (2020);
Paolini et al. (2021); Blloshmi et al. (2021) cast
SRL to a generative translation problem. Zhou
et al. (2019); Marcheggiani and Titov (2020) incor-
porates syntactic information into SRL.

Some works also show that predicate disam-
biguation is helpful for argument labeling. Che
et al. (2010) incorporated a word sense feature
to improve the SRL performance. Che and Liu
(2010a); Cai et al. (2018); Conia and Navigli (2020)
jointly dealt with predicate disambiguation and ar-
gument labeling. These methods are different from
ours and cannot use this semantic information of
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the sense label and role label.

2.2 Machine Reading Comprehension

According to the type of the answer, machine read-
ing comprehension can be divided into the follow-
ing four categories: extractive (Rajpurkar et al.,
2016), multiple-choice (Lai et al., 2017), close
style (Onishi et al., 2016), and free-form (Nguyen
et al., 2016). Related to our work are extractive
and multiple-choice MRC. For extractive reading
comprehension such as SQuAD (Rajpurkar et al.,
2016), the answer is a span in the text, and the
MRC model (Seo et al., 2017) gets the answer by
predicting the probability that the word is start or
end. Some datasets such as DROP (Dua et al.,
2019) have answers that include multiple spans,
and the answers can be obtained by using BIO
tagging (Segal et al., 2019). For multiple-choice
reading comprehension where the answer is one of
several options, a method (Pan et al., 2019) is to
calculate the score for each option and then select
the option with the highest score.

2.3 Formalizing Non-MRC Tasks as MRC

Previous studies achieved great performance boost
by applying the MRC framework to NER, de-
pendency parsing and other non-MRC tasks. He
et al. (2015) introduced the task of question-answer
driven semantic role labeling without predefining
an inventory of frames. Levy et al. (2017) showed
that relation extraction can be reduced to answering
simple reading comprehension questions. McCann
et al. (2018) framed ten tasks as question answer-
ing. Li et al. (2020c) proposed to formulate named
entity recognition as an MRC task. Other examples
include joint entity relation extraction (Li et al.,
2019a), coreference resolution (Wu et al., 2020),
event extraction (Li et al., 2020a), entity linking
(Gu et al., 2021), dependency parsing (Gan et al.,
2021), text classification (Chai et al., 2020), etc.

Our approach to formalizing argument labeling
as extractive MRC is similar to QA-SRL (He et al.,
2015), but we focus on improving the performance
of the model on Propbank-style SRL, while He
et al. (2015) aims to provide a new SRL annotation
paradigm, and He et al. (2015) neither uses the
predicate sense definitions nor the argument role
definitions provided in the frame files.

Algorithm 1 MRC framework for SRL

Input: sentence x = {x1, ..., xn} with marked
predicate p, frame files, annotation guidelines

Output: predicate sense ŝ, arguments A
1: Get the lemma l of p using SpaCy
2: Get all the predicate senses Sl of l and the

corresponding descriptions Ds
l from the frame

files
3: for si in Sl do
4: Get the description dsi of sense si from Ds

l

5: Concatenate dsi and x to get the input for
RoBERTa

6: Compute the score of si as the answer with
Eq.(1)

7: end for
8: Select the highest scoring ŝ ∈ Sl as the predi-

cate sense of p
9: Get the candidate argument roles Rp of p from

the role prediction module
10: for ri in Rp do
11: if ri is core role then
12: Get the description dri of role ri from the

frame files with ŝ
13: else
14: Get the description dri of role ri from the

annotation guidelines
15: end if
16: Construct query qi using dri and p
17: Concatenate qi and x to get the input for

RoBERTa
18: Calculate the probability that each word in

x belongs to the BIO tags
19: end for
20: Decode with non-overlap constraint to get the

arguments A of p
21: return ŝ, A

3 Method

3.1 Overview

An overview of our model is shown in Algorithm
1. Given a sentence x = {x1, ..., xn} and the pred-
icate p, the predicate disambiguation task is to de-
termine the predicate sense s ∈ S of p, where
S is the set of all predicate senses, and the ar-
gument labeling task is to find all the arguments
A = {a1, ..., ak} of p, where ai ∈ A is a text
span in x, and assigning them the corresponding
semantic roles.

Our framework consists of three modules: predi-
cate disambiguation, role prediction, and argument
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labeling, all of which use RoBERTa (Liu et al.,
2019) as the backbone and use two special symbols
< p> and </p> to mark the predicate p in the input
sentence x. The predicate disambiguation module
is intended to obtain the predicate sense of the pred-
icate p. Note that we do not use the predicate sense
for argument labeling directly, but only use it to get
the meanings of the argument roles in the frame
files. The role prediction module is to obtain the set
of candidate roles for the predicate, and the main
purpose of this module is to reduce the number of
questions that need to be constructed when solving
the argument labeling problem via an extractive
MRC. The argument labeling module is used to
obtain the arguments of the predicate, which is the
core module in the whole framework.

3.2 Multiple-Choice MRC for Predicate
Disambiguation

For the predicate disambiguation task, determin-
ing the sense label of the predicate involves two
steps: identifying the lemma of the predicate, and
determining the sense index of the predicate under
this lemma. We use spaCy (Honnibal et al., 2020)
to identify the lemma of the predicate. If the rec-
ognized lemma is not in the frame files, we use
the lemma with the smallest edit distance of the
predicate. After identifying the lemma, we can find
all the senses defined under this lemma from the
frame files, and then we choose the correct sense
through multiple-choice reading comprehension.

Specifically, let Sl be all possible senses for the
detected lemma. For each sense si ∈ Sl, the cor-
responding sense description is dsi . We treat dsi as
option, and the input for the RoBERTa is the con-
catenation of dsi and x. The confidence score of si
as the correct sense is calculated by:

P (si = 1|dsi , x, p) = sigmoid(FFNp(h
d)) (1)

where hd is the context representation of the first
input token from RoBERTa and FFNp is a single
layer feedforward neural network. We train the
model using the binary cross-entropy loss function.
1 During inference, we choose the sense with the
highest probability score among all the sense op-
tions as the answer.

1We also tried to use softmax to get the probability of
all senses, and then use the multi-class cross entropy loss
for training, but we found the loss is unstable and hard to
optimize.

3.3 Role Prediction

In semantic role labeling, most semantic roles do
not have corresponding arguments given a specific
input sentence. For example, in the CoNLL2005
dataset, there is a total number of 20 roles, but
on average there are only 2.5 roles per predicate.
Therefore, we use a role prediction module to avoid
asking questions about impossible roles at the next
argument labeling stage, reducing the amount of
calculation required when using the MRC-based
method.

Let R be the set of all semantic roles (in CoNLL
2005 the size of R is 20), the purpose of role pre-
diction is to predict a set of possible roles Rp ⊆ R
for the predicate p. The input to RoBERTa is the
sentence x with the marked predicate p. Let hr

be the context representation of the first token of
the input sequence from RoBERTa, and ri ∈ R is
the i-th role of R. We use the sigmoid function to
calculate the probability that the predicate p has a
role ri:

P (ri = 1|x, p) = sigmoid(FFNri(h
r)) (2)

where FFNri is a single layer feedforward neural
network. We use the binary cross entropy loss func-
tion to train the model. During inference, we only
keep up to λN roles with the highest probability
score, where N is the number of predicates in the
dataset. 2 Note that here we select the roles with
the top λN probability scores on the whole dataset,
not on the input sentence. And in the argument
labeling module, we use the predicted roles from
the role prediction module instead of the gold roles
for training.

3.4 Extractive MRC for Argument Labeling

We formalize argument labeling as extractive read-
ing comprehension, where the meaning of argu-
ment role is used to construct the query, and since
the answer may contain multiple spans, we use BIO
tagging to extract the arguments. 3 In ProbBank-
style SRL, a role may be a norm role, a reference
role, or a continuation role. A norm role is a stan-
dard role defined in the annotation guidelines, a

2An alternative strategy is to use a fixed threshold, which
performs similarly to ours. But our strategy can directly get
the number of argument roles, which helps to analyze the
amount of computation needed in argument labeling.

3For dependency semantic role labeling, since pre-trained
language models such as BERT split a word into multiple sub-
words, which is similar to span, BIO tagging is also applicable.
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reference role is a reference to some other argu-
ments, and a continuation role is a continuation
phrase of a previously started argument. For exam-
ple, role A1 may be N-A1 or R-A1, or C-A1. Since
the subcategories of N/R/C do not contain semantic
information, we do not encode such information
into the query of the MRC model. We use BIO
tagging to get the arguments of the predicate, and
the set of BIO tags is

T = {B, I} × {N,R,C} ∪ {O} (3)

We use templates to construct the query of the MRC
model. For core roles, our template is “What are
the X arguments of predicate Y with meaning Z?”,
where X is the role type, Y is the predicate, and Z
is the description of role X in the frame files. For
non-core roles, our template is “What are the W
modifiers of predicate Y?”, where W is the specific
meanings of non-core roles defined in the annota-
tion guidelines.

Specifically, let qi represent the query corre-
sponding to the predicate p and the role ri ∈ Rp ,
the input of the MRC model is the concatenation
of qi and x. The context representation of x in
the input < qi, x > pair is hri = {hri

1 , ...,hri
n },

our goal is to predict yri = {yri1 , ..., yrin }. Each
yrij ∈ yri belongs to one tag in the tag set T . For
yrij , its probability distribution on BIO tag set is
calculated by a softmax layer:

P (yrij = t|x, p, ri) ∝ exp(Wth
ri
j + bt) (4)

where t ∈ T is a BIO tag, Wt and bt are the cor-
responding parameters. We use multi-class cross
entropy loss to train the model. And we use the
method in section 3.5 to get the argument.

Note that at this stage, we use the predicate sense
extracted at the predicate disambiguation stage to
find the sense of each role selected at the role pre-
diction stage. For example, suppose the predicate
sense is “beat.02” and the semantic role is A0 as
shown in Figure 1, we will immediately obtain
the role’s sense “causer of motion”. In this way,
the predicate sense can be leveraged for role sense
detection, and thus further for semantic labeling,
bridging the gap between the two tasks via a MRC
framework.

3.5 Constrained Decoding

There are many global constraints in semantic role
labeling (Punyakanok et al., 2008; Li et al., 2020b),

such as all arguments of the predicate cannot over-
lap and each core role should appear at most once
for each predicate. Our MRC approach does not
directly model these constraints and can not guaran-
tee that the obtained results satisfy these constraints.
For simplicity, we only consider the non-overlap
arguments constraint. The previous approach of
using BIO tagging (He et al., 2017; Shi and Lin,
2019) to extract arguments can naturally model the
non-overlap constraint, since each word in x can
only belong to one of the BIO tags, there will be no
overlapping words between the argument elements.
But in our MRC-based BIO tagging method, since
we have Rp roles, each word has at most Rp BIO
tags. We implement the non-overlap constraint
by mapping the local role-related BIO tag of each
word into a global BIO tag set.

Specifically, for the sentence x = {x1, ..., xn},
the goal of constraint decoding is to obtain the cor-
responding tag sequence y = {y1, ..., yn}, where
yj ∈ y belongs to the tag set Tp:

Tp = Rp × {B, I} × {N,R,C} ∪ {O} (5)

For tag tp ∈ Tp, when it is a BI tag, it can be ex-
pressed as ri-t, where ri ∈ Rp and t ∈ T . For BI
tags, we add a role tag directly before the original
BI tag. For example, the B-R tag of role A1 will be
converted to A1-B-R, and then the score of the new
tag is equal to the probability of the original tag:

s(yj = tp) = s(yj = ri-t)

= p(yrij = t)
(6)

where s(·) is the score function. For O tags, we
merge the O tags of different roles into one O tag,
and the score of O tag after merging is the product
of the O tag probabilities of all roles.

s(yj = O) =

|Rp|∏
i=1

p(yrij = O) (7)

During inference, for each word xi, its tag yj is the
highest scoring tag in the new BIO tag set Tp.

yj = argmax
tp∈Tp

s(yj = tp) (8)

And we use the BIO tag sequence y to get all the
arguments.

4 Experiments

4.1 Datasets
We conduct experiments on CoNLL2005 (Car-
reras and Màrquez, 2005), CoNLL2009 (Hajič



2193

Model Dev WSJ Brown

Shi and Zhang (2017) - 93.4 82.4
Roth and Lapata (2016) 94.8 95.5 -
He et al. (2018b) 95.0 95.6 -
Shi and Lin (2019)+BERT 96.3 96.9 90.6

Ours+BERT 96.3 97.2 91.9
Ours+RoBERTa 96.6 97.3 91.3
Ours-semantics 96.2 96.7 89.9

Table 1: Predicate disambiguation results on
CoNLL2009.

CoNLL09 WSJ CoNLL09 Brown

Model P R F1 P R F1

syntax-aware
Cai and Lapata (2019) 91.7 90.8 91.2 83.2 81.9 82.5
Kasai et al. (2019) 90.3 90.0 90.2 81.0 80.5 80.8
Zhou et al. (2019)+BERT 91.2 91.2 91.2 85.7 86.1 85.9
Chen et al. (2022)+BERT 92.3 91.8 92.1 87.0 86.0 86.3
syntax-agnostic
Li et al. (2019b) 89.6 91.2 90.4 81.7 81.4 81.5
Conia and Navigli (2020)+BERT 92.5 92.7 92.6 - - 85.9
Shi and Lin (2019)+BERT 92.4 92.3 92.4 85.7 85.8 85.7
Jindal et al. (2020)+BERT 90.0 91.5 90.8 83.5 86.5 85.0

Ours+BERT 93.3 92.7 93.0 87.5 86.6 87.0
Ours+RoBERTa 93.5 93.1 93.3 87.7 86.6 87.2

Table 2: Argument labeling results on CoNLL2009.

et al., 2009) and CoNLL2012 (Pradhan et al.,
2013) datasets. The CoNLL2005 and CoNLL2012
datasets are span-based SRL, where the arguments
are constituents (spans) in the sentence, and the
CoNLL2009 dataset is dependency-based SRL,
where the arguments are syntactic heads. The
CoNLL2005 dataset consists of sections of the Wall
Street Journal part of the Penn TreeBank, where
section 2-21 is used for training, section 24 is used
for development, and section 23 is used for eval-
uation. In addition, it also includes three sections
of the Brown corpus to test the robustness of the
systems. The CoNLL2009 dataset uses the same
corpus as CoNLL2005, but uses NomBank to ex-
tend the annotations. The CoNLL2012 dataset is
extracted from the OntoNotes v5.0 corpus. The
frame files are available as official resources in the
three datasets and can be used by all systems.

4.2 Experiment Setup

For data preprocessing we follow (Li et al., 2019b).
We use RoBERTa Large as the base encoder and we
use two special symbols < p> and </p> to mark the
predicate of the input sentence. We adopt Adam
as optimizer, and the warmup rate is 0.05, the ini-
tial learning rate is 1e-5, the maximum number of
epochs is 20, the number of tokens in each batch

is 2048. λ is tuned on development set to ensure
that the recall of the predicted roles is higher than
99%. All the experiments were conducted on a
Tesla V100 GPU with 16GB memory.

During the parsing of the raw frame files, we
found that there may be multiple sense and role
definitions corresponding to one sense id, which
may be caused by predicates with different part of
speech or other reasons. For simplicity, we directly
concatenate these different definitions, so that the
final definition contains all possible cases and can
be regarded as a more coarse-grained definition.

Predicate disambiguation is evaluated using ac-
curacy, and argument labeling is evaluated using
micro F1. The evaluation of argument labeling
in CoNLL2009 also includes the results of predi-
cate disambiguation, where the predicate sense is
treated as a special kind of argument of a virtual
root node.

4.3 Main Results

Predicate Disambiguation We evaluate the per-
formances of predicate disambiguation on the
CoNLL2009 dataset as previous work on the
CoNLL2005 and CoNLL2012 datasets did not con-
sider predicate disambiguation. The error of lemma
recognition is also included in the final results. In
Table 1, we report the experimental results of our
method when using BERT and RoBERTa as en-
coders. The model using RoBERTa achieves the
best results on the development set and on the in-
domain test set (WSJ), and the model using BERT
achieves the best results on the out-of-domain test
set (Brown). The performances of BERT and
RoBERTa on the development and brown test sets
are opposite, which indicates that the evaluation
on the development set does not fully reflect the
model’s generalization ability.

To investigate the impact of the sense descrip-
tion provided by the frame file, we also give the
experimental results without using this semantic in-
formation in Table 1 (“-semantics”). In this setting,
we also use RoBERTa, but the predicate sense de-
scription is replaced by the corresponding numeric
label (e.g., “02” in “beat.02”). The experimental
results show that the model performs worse when
this semantic information is not available, espe-
cially in the out-of-domain Brown test set, where
the accuracy decreases by 1.4%.

Argument Labeling Table 2 shows the results
for dependency SRL, and Table 3 shows the ex-
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CoNLL05 WSJ CoNLL05 Brown CoNLL12 Test

Model P R F1 P R F1 P R F1

syntax-aware
Zhou et al. (2019)+BERT 89.0 88.8 88.9 81.9 81.0 81.4 - - -
Mohammadshahi and Henderson (2021)+BERT 89.1 88.7 88.9 83.9 82.5 83.2 - - -
Xia et al. (2020)+RoBERTa 88.4 88.8 88.6 83.1 83.3 83.2 - - -
Marcheggiani and Titov (2020)+RoBERTa 87.7 88.1 88.0 80.5 80.7 80.6 86.5 87.1 86.8
syntax-agnostic
Li et al. (2019b) 87.9 87.5 87.7 80.6 80.4 80.5 85.7 86.3 86.0
Conia and Navigli (2020)+BERT - - - - - - 86.9 87.7 87.3
Blloshmi et al. (2021)+BART - - - - - - 87.8 86.8 87.3
Shi and Lin (2019)+BERT 88.6 89.0 88.8 81.9 82.1 82.0 85.9 87.0 86.5
Jindal et al. (2020)+BERT 88.7 88.0 87.9 80.3 80.1 80.2 86.3 86.8 86.6
Paolini et al. (2021)+T5 - - 89.3 - - 82.0 - - 87.7
Zhang et al. (2021)+RoBERTa 89.6 89.7 89.6 83.8 83.6 83.7 88.1 88.6 88.3

Ours+BERT 89.7 89.0 89.3 85.9 83.5 84.7 88.0 87.7 87.8
Ours+RoBERTa 90.4 89.7 90.0 86.4 83.8 85.1 88.6 87.9 88.3

Table 3: Argument labeling results on CoNLL2005 and CoNLL2012.

perimental results for span SRL. Since our method
is syntax-agnostic, we first compare it with the
syntax-agnostic methods. Compared with previ-
ous methods, our improvement on the in-domain
WSJ test sets of CoNLL2005 and CoNLL2009 is
0.4 and 0.7, respectively, on the out-of-domain
Brown test sets is 1.4 and 1.3, respectively, and
we achieve comparable results on the CoNLL2012
test set. The out-of-domain Brown test set is used
to test the robustness of the presented systems, and
our method achieves greater improvement on this
test set , which indicates that our approach is more
robust than previous syntax-agnostic approaches
because of the use of role semantics. The syntax-
aware method (Mohammadshahi and Henderson,
2021) also performs better on the Brown test set
compared to the syntax-agnostic methods (Shi and
Lin, 2019), a similar phenomenon to ours. How-
ever, unlike the syntax-aware approach, our ap-
proach is syntax-agnostic and utilizes the semantic
information provided in the frame files rather than
the syntactic information of the sentence, and out-
performs syntax-aware methods. This observation
demonstrates that leveraging semantic information
in frame files provides stronger robustness than
syntax-aware methods for SRL.

5 Ablation studies

5.1 Effect of Predicate Disambiguation

Our framework uses a pipelined approach to con-
nect the predicate disambiguation and the argument
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Figure 3: Experimental results on CoNLL 2005 de-
velopment set with different predicate disambiguation
accuracies, we use the argument labeling model trained
in the main results.

labeling task, so different predicate disambiguation
accuracies may affect the results of argument la-
beling. Here we analyze the performance of the
same argument labeling model with different pred-
icate disambiguation accuracies. We obtain the
results of different predicate disambiguation accu-
racies through randomly replacing part of the gold
predicate senses with other predicate senses. Then
we use the ordinarily trained argument labeling
model to make predictions under different predi-
cate disambiguation results. Figure 3 shows that
the model performs monotonically worse as the
predicate disambiguation accuracy decreases, so
an accurate predicate disambiguation model is re-
quired to achieve improved semantic role labeling
results
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Recall 0.90 0.93 0.96 0.99
F1 87.3 88.4 88.2 88.6

Table 4: Experimental results of different role prediction
recall scores on CoNLL2005 development set.

5.2 Effect of Argument Role Semantics

We also study the performance of our MRC frame-
work in the case where the query does not contain
any semantics, and in this case, the query is re-
placed with a category label. We use RoBERTa-
Base for our experiments. When role semantics
is not considered, the F1 scores on the develop-
ment set and the out-of-domain Brown test set of
CoNLL2005 are 88.2 and 83.2, respectively. when
role semantics is considered, the F1 scores on the
development set and the out-of-domain Brown test
set of CoNLL2005 are 88.5 and 83.8, respectively.
The experimental results show that taking seman-
tics into account performs better than not taking se-
mantics into account, especially when the domains
of the training and test sets are different. And this
proves that the semantics of the argument roles is
useful in our framework.

5.3 Effect of Role Prediction

Since role prediction is an upstream task of argu-
ment labeling, missing potential argument roles
in the role prediction stage can lead to the error
propagation problem. We mitigate this problem by
ensuring that the recall of role prediction is higher
than 99% and training the argument labeling model
under the predicted roles. We use RoBERTa-Base
to train the model under different role recalls. Table
4 shows the influence of different role prediction re-
call scores on argument labeling. It can be seen that
when the recall is low, the F1 score of argument
labeling will decrease significantly – 87.3 when
recall is 0.90 versus 88.6 when recall is 0.99.

5.4 Low-Resource Scenarios

Our argument labeling model uses role semantic in-
formation, and this prior information may be help-
ful for model learning when the dataset is small,
so we study the effect of different training data
sizes. The baseline we compare is a naive BIO
tagging model based on RoBERTa, since our MRC
model can be seen as a simple BIO tagging model
incorporating role semantic information. We use
RoBERTa-Base, train on different percentages of
CoNLL2005 training set, and then evaluate on
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Figure 4: F1 score under different percentages of data
on CoNLL2005 development set.

CoNLL2005 development set. From Figure 4, we
can see that the MRC BIO model performs better in
low-resource scenarios than the naive BIO model
that does not use role semantics.

5.5 Computational Overhead

Our MRC framework performs better in robustness
and low-resource scenarios due to the use of label
semantic information provided in frame files, but
to utilize this information, we need to encode all
<label, sentence> pairs using a pre-trained model,
which can be computationally intensive if the num-
ber of labels is large, we mitigate this problem
by filtering impossible labels. 4 In predicate dis-
ambiguation, we use lemma to filter impossible
predicate senses, and in argument labeling, we use
an additional role prediction module to filter im-
possible roles.

Since the main computation in our framework
is spent on the argument labeling module, here we
give a rough analysis of the computational over-
head it requires. In section 3.3, we select the
λN roles with the highest probability scores in
the dataset, which are used in the argument label-
ing module to construct queries, so λN reflects the
amount of computation we need in the argument
labeling module. When λ = R, this approach is
equivalent to asking questions directly to all roles.
In CoNLL2005, CoNLL2009, and CoNLL2012,
the total number of semantic roles are 20, 20, 28,
respectively, and the actual λs in the role prediction
module are 5, 4.2, 5.5, respectively, which indicates
that our model achieves approximately 4x, 4.8x and
5.1x speedups in CoNLL2005, CoNLL2009, and
CoNLL2012 compared to asking questions directly
to all roles.

4We also tried to decouple the label and sentence encoding
to avoid encoding the same sentence multiple times, but it did
not perform as well as the simple filtering strategy.
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6 Conclusion

In this paper, we propose an MRC-based frame-
work for semantic role labeling. We formalize pred-
icate disambiguation as multiple-choice reading
comprehension and argument labeling as extractive
reading comprehension. Besides, we also propose
a role prediction module to reduce the computa-
tion caused by considering all roles in the dataset
for argument labeling. Experiments show that our
framework can effectively utilize the semantic in-
formation provided in frame files and achieve com-
petitive results.
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