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Abstract
Most attempts on Text-to-SQL task using
encoder-decoder approach show a big problem
of dramatic decline in performance for new
databases. Models trained on Spider dataset,
despite achieving 75% accuracy on Spider de-
velopment or test sets, show a huge decline be-
low 20% accuracy for databases not in Spider.
We present a system that combines automated
training-data augmentation and ensemble tech-
nique. We achieve double-digit percentage im-
provement for databases that are not part of the
Spider corpus.

1 Introduction

Text-to-SQL is a task to automatically translate
a given a natural language question into an SQL
formula for a specific database (DB).

In 2018, Spider dataset (Tao et al., 2018) was
released as a large-scale complex and cross-domain
semantic parsing and Text-to-SQL dataset. Since
then numerous models have been developed and
evaluated using Spider dataset. Although there is
a large increase in accuracy, growing from 20%
to 70 + % between 2019 and 2021 of top ranked
systems, later studies (Suhr et al., 2020a; Shi et al.,
2020; Zhong et al., 2020), show that the accuracy of
these models drops significantly, in some cases well
below 20%, for databases outside Spider dataset.

In this paper, we present various experiments
for Text-to-SQL task using DB schemas that are
inside and outside of Spider dataset. We identify
systematic types of errors and analyze their possi-
ble causes. From our error analysis, we propose
solutions to address the limitations of the underly-
ing encoder-decoder architecture and of the Spider

dataset. We use training data augmentation tech-
nique in order to create a series of models for the
same DB schema. By coupling each model SQL re-
sult with the information extracted from the query
at the NLP step, we interpolate a final SQL formula
via Ensemble technique. The system achieves very
good results compared to its individual components
and can be run on any new DB schema, in or out-
side of the Spider dataset, even when there exists
a set of very limited number of training examples,
on the order of several tens.

This paper is organized as follows. In Section 2,
we review studies that defined a "standard" encoder-
decoder architecture for Text-to-SQL. In Section
3, we define the problem of encoder-decoder ap-
proach based on declined performances on new DB
schemas and new types of questions, that leads to
the challenge of achieving good accuracy. Next, we
describe our system in Section 5. The experiment
results in Section 6 and conclusions in Section 7.

2 Related Work

The Text-to-SQL task is not a new task in NLP and
there are many references on its complexity and
achievements obtained recently (Navid et al., 2017;
Popescu et al.; Yao et al., 2010). In (Tao et al.,
2018), the Spider corpus with thousands of training
examples was introduced in 2018. The Spider chal-
lenge has been introduced as well, where any team
can have their system evaluated on an unknown
corpus, which is a part of the Spider corpus, but
not publicly available.

In (Cai et al., 2018; Gehring et al., 2017; Yin
et al., 2016; Rabinovich et al., 2017), among others,
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a sequence-to-sequence approach was introduced,
opening the way for this type of architecture. In-
stead of translating into SQL, (Guo et al., 2019;
Zhang et al., 2019; Bogin et al., 2019), the system
translates into a representation that captures the
semantics of the query, called Intermediate Repre-
sentation (IR). From IR to SQL is a deterministic
process: a context free grammar is used to convert
one into another. The authors build on the work
of (Sun et al., 2019; Cheng et al., 2019) that used
Abstract Syntax Tree (AST).

A system that uses the the IR approach, but ex-
tends the context free grammar to include values, is
Valuenet(VL) (Brunner and Stockinger, 2021). The
code is available from (Brunner, 2021) . Valuenet
obtained an accuracy of 60% on Spider develop-
ment corpus, which put it among the best systems
in the Spider challenge in 2020.

The RAT system (Wang et al., 2019) is based
on the relation-aware self-attention mechanism, to
address schema encoding, schema linking, and
feature representation within a Text-to-SQL en-
coder. They augmented their system with BERT
(Devlin et al., 2018), showing that using transform-
ers brings a significant increase in the accuracy.
But, most importantly, they also showed that "...
all the known information about the schema, it is
insufficient for appropriately encoding a previously
unseen schema in the context of the question...". In
(Suhr et al., 2020b), a detailed analysis of systems
that performed well on Spider corpus confirmed a
large drop in accuracy for DB schemas outside of
the Spider corpus.

Given that creating a new training is an expen-
sive process, an important part of research for Text-
to-SQL task has been dedicated to improving the
training methods, in order to reduce this cost. Para-
phrasing (Ronak Kaoshik, 2021), dialog (Artzi and
Zettlemoyer, 2011; Gur et al., 2018), or a combina-
tion of these (Herzig and Berant, 2019) were used
to cope with this problem.

(Kalajdjieski et al., 2020) surveyed a series of
methods to automatically create training corpora.
Some of these models are pretrained using the
Masked Language Modeling (MLM) task by ei-
ther masking tokens from the utterance input or
tokens from the schema input (Deng et al., 2021).
This work demonstrated that jointly pre-training on
utterances and table contents (e.g., column names
and cell values) can benefit downstream tasks such
as table parsing and semantic parsing. In (Xu

et al., 2017) a general method, which avoids the
dependency of order in deep learning system, is
presented.

Figure 1: Accuracy for Spider vs. non Spider DB
schemas

Our own observation aligns very well with the
observations in the previous papers, and confirms
the difficulty to cope with new unseen DB schema
only by means of unique training corpus and/or
model. However, our solution differs from what
has been been proposed so far. The systems that
used general pretraining methods, like RAT+GAP,
did not show that the same performance is observed
for out of Spider schemas, but only for the ones in
Spider corpus. The systems that confronted the sys-
tematic errors that are produced in the case of new
DB schemas, took a different path from ours, like
(Suhr et al., 2020b), and did not exploit systemati-
cally the relationship between values and filters as
a means to control the correctness of SQL formula.
Their line of research assumed that this state of fact
is due only to the lack in training. However, our
experiments support the idea, that, while indeed
some errors are traceable to the particularities of
a certain training corpus, one important cause of
many errors is ignoring the way the DB schema re-
lationships could be expressed in natural language,
see Section 3. By explicitly providing the link-
age between values and schema definition, coupled
with specific training generation, and interpolating
over an ensemble of different models, our system
shows improvement for DB schemas that are inside
or outside of the same corpus.

3 Problem Definition

While the overall results for top performers on the
Spider corpus are high, the variation for individ-
ual DB in the testing corpus can be large. How-
ever, when the same system is applied to the DB
schemas outside of the Spider corpus we obtain
a different distribution, Figure 1. The Spider his-
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togram shows that accuracy for majority of test
DB schemas fell into the range of 40-90%. The
data was obtained running the default VL, system
trained on the Spider training corpus and tested on
the Spider development corpus. The non Spider
general come from (Suhr et al., 2020a). None of
these DB schemas have an accuracy above 50%.
The non Spider custom refers to the training and
test corpora for our own databases, described in
section 4. For these databases, the accuracy is in
the same category as for the lowest for non Spider
general, namely below 20%. This category con-
tains just one DB schema for the Spider corpus.
Looking at what percentage of schemas are in three
main categories, which roughly correspond to bad,
ok, good, the difference between Spider vs. non
Spider DB schemas is very large. This shows that
indeed there is a very strong skew in the distribu-
tion towards the left intervals of accuracy for new
DB schemas.

The reason for this skew for new DB schemas
that is exemplified above was pointed out in (Suhr
et al., 2020b) and (Zhong et al., 2020). Without
proper reference to the linkage between query to-
kens to specific table/columns, based only on the
examples seen in training, the deep learning model
is not able to discern between similar queries in
the context of a new DB schema. In Section 4 we
provide details on these types of errors and their
causes.

4 Baseline and Error Analysis

Spider dataset (Tao et al., 2018) is a large-scale
cross-domain semantic parsing and Text-to-SQL
annotated dataset. ValueNet (VL) (Brunner and
Stockinger, 2021) is an open source deep learning
system built using an encoder-decoder architecture.
The Valuenet trained on Spider dataset represents
our baseline.

Our outside Spider DB schemas are HR, WH and
BI (reference to articles kept anonymous for now).
For each of these schemas we have from 70 to 200
training examples.These training examples are split
into two different corpora ANS - for training, and
(2) nANS - for test.

VL obtained an accuracy of about 60% on the
Spider development, but much lower results for the
new DBs. In table Table 1 we present the results ob-
tained by the baseline for the new DBs, separately
for what we are going to us as training (ANS) and
for test respectively(nANS).

Table 1: Accuracy for Default Valuenet+Spider corpus

DB #ANS acc #nANS acc

HR 121 24% 81 19%
WH 87 20% 42 15%
BI 109 4% 112 2%

4.1 Error Analysis

4.1.1 EA1. Absence of certain types of
query/SQL in training

For questions having more than one value such
as Who bought most Apple products
in Bestbuy?, or In which year did
Mary shop in both Bestbuy and
Radioshack?, many times the VL model
misses one of the values, or creates an incorrect
filter relationships in the final SQL.

4.1.2 EA2. Limitations on Complexity
Queries having compound logical operators, such
as (filter1 OR filter2) AND
filter3, are not present in the corpus. When in-
put questions need to generate queries like this, the
Spider code cannot represent such type of queries
correctly, it outputs a truncated representation, so
the SQL is never correctly inferred.

4.1.3 EA3. Temporal questions
Currently, time is a string in Spider corpus,
so the training examples contains like oper-
ator. However, time operations, like differ-
ence, conversion etc., are needed for queries
like ... after 7 days... or ... two
days after April 1st ...

4.1.4 EA4. Pre-processing information
By default, VL uses a Google API for NLP pre-
processing of the query. As such, only general in-
formation about values, which is outside the scope
and definition of the schema, is fed to the network.
For example, for the token Apple, which in the
context of that DB refers to the name of the manu-
facturer, the information provided is the web page
describing this company, which does not help a lot
in inferring the correct SQL.

4.1.5 EA5. Linking Values and Schema
Crucial relationship between values to the underly-
ing schema is missing as input to the VL encoder-
decoder. For instance, using the fact that the token
Apple is related to the table Manufacturers
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and the column name significantly increases the
chances that the inferred SQL is correct.

4.1.6 EA6. Checking the consistency of SQL
vs. syntax restrictions

English syntax provides hard restrictions on the
constituency of phrases that are translated into
SQL. A determiner, such as an adjective, has
to be applied in the SQL formula to the value
representing the head of the English phrase.
For a query like what is the age of pet
of the youngest owner, the correct SQL
links age to a column of the table pets while
youngest is an aggregation function on the table
students, not vice versa. Many times the incor-
rect SQL is generated by the network because of
inconsistency of SQL operators association.

5 Hybrid System (HS)

We created a new system that processes and ex-
tracts the relevant information from the input ques-
tion and links tokens to specific tables and columns
from the corresponding DB schema. We replaced
Valuenet’s pre-processing and Name Entity Recog-
nition (NER) modules with our Disambiguation
Dictionary Module (DDM) to provide crucial in-
formation of the relationship between values and
schema. We also introduced an ensemble of neural
network models to improve the performance of the
inferred SQL queries. From the original Valuenet
architecture we kept only the encoder-decoder for
IR with the semQL grammar.

The hybrid system has a different data flow from
Valuenet. First, an English query is processed by
our Natural Language Processing module (NLP).
In our approach, we correlate technologies that
increase the performance by double figure percent-
age: (i) we devise a seed training data augmentation
technique (STDA), that on the bases of the initial
training corpus, we call seeds, is able to generate
a larger training set. In a typical scenario, a few
tens of seed examples lead to several hundreds of
training examples; (ii) with different sets of auto-
matically created training data, we train different
models and use an ensemble technique to analyze
the output of each of these models.

5.1 DDM query rewriting
The DDM component from NLP module, de-
scribes the columns, values, relationships between
columns, and synonyms for columns and values,
(Vadim et al., 2018; Popescu et al., 2019; Vo

et al., 2019; Yeo et al., 2021). It creates a set
of schema-dependent lexical rules using the in-
formation from schema annotations and a set of
schema-independent template rules. From the set
of matched rules a set of structured data items
(DTI) is created. A DTI defines an item [table
name].[column name] with operators such
as select, filter, aggregation, etc., that
need to be applied to the corresponding item. Dur-

Figure 2: Rewriting of Queries in Hybrid System

ing the query processing process, a natural lan-
guage question is disambiguated, annotated, and
matched against the lexical rules. Using the infor-
mation from DDM’s output, and the input question
in English, a query representation following the
Spider format is created so it could be incorporated
as an input to the neural network. The user’s input
query undergoes a double rewriting before the text
goes to the network, as described below.

• DDM style question rewriting. The input
question is rewritten and augmented with
the information provided by the NLP mod-
ule, especially by the DDM module. The
rewritten question contains explicit, English,
references to tables and columns in the DB
schema. For instance, for the question how
much was invoiced for client
XYZ, we rewrite the question as follow:
the DDM’s output for this query explicitly
indicates that the token invoiced is a filter
containing two values, INVOICED_type1
and INVOICED_type2, from the table
billTable and the column status.
Also, a separate filter containing the value
XYZ from the same table, but from a
different column name is extracted. Two
sentences are created accordingly: bill
has status of INVOICED_type1
OR INVOICED_type2 and customer
has name of XYZ. In the original query
the values are replaced with their corre-
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sponding columns, how much amount
was bill to customer and the
three sentences are adjoined in order to
create the query that will be fed to the
network: how much amount was
invoiced to customer; bill has
status of INVOICED_type1 OR
INVOICED_type2 ; customer has
name of XYZ.

The DDM rewriting of the user query adds
the schema information into simple English
sentences. In this way, the encoder-decoder
have explicitly access the connection between
the English tokens and their correspondent in
the DB table and columns. See first two boxes
in Figure 2.

• pseudo-values for logically compound fil-
ters. The SQL corresponding to the initial
query in Figure 2 exemplifies a case where
the priority of logical operators is taken into
account. The Spider code does not properly
handle these types of SQL constructs. We
found two ways to automatically rewrite the
SQL query such that this problem is handled
properly. (1) to rewrite the SQL and the En-
glish question as a series of sub-questions
such that each question in the query does
not contains filters that need to be distributed
into several logical conditions. Thus, we
combine the individual results of the indi-
vidual SQL conditions into a single result
corresponding to the original SQL query;
or (2) to use the pseudo-values to represent
composite SQL conditions in the WHERE
clause. Since some queries have values that
are part of a composite filter, we can use a
new pseudo-value representing the compos-
ite filter instead. For instance, for the query
shown in Figure 2, we used the pseudo-value
invoiced_INVOICED to represent the fil-
ters on both values present in the query for the
same column. In the rewritten SQL instead of
a compound filter we use this pseudo-value fil-
ter, which is linked through the AND operator
to the other independent filter from the query,
customer_name=’XYZ’. See last box in
Figure 2.

The DDM style question rewriting and the
pseudo-values are applied both during training and
inference time. During training, the neural network

Figure 3: Replacing Values for Training Data Augmen-
tation

has access to the gold SQL query, and the SQL is
rewritten using pseudo-values, if necessary. During
inference, only the English question is rewritten,
and the SQL is inferred. If the SQL is correct,
this SQL will have the same form as the gold SQL
query, and a rewritten procedure that replaces the
pseudo-values back to the original value is applied
to obtain the final SQL.

The HS, by rewriting the queries before the IR
is generated, is an effective solutions for the issues
discussed in Error Analysis section 4.1.

5.2 Seed Training Data Augmentation
(STDA)

The number of training examples for a given
schema has a large impact on the accuracy of the
trained deep learning model. However, for each
DB schema only a small number of training exam-
ples is available, usually on the order of tens to a
couple of hundreds at most. We call this small set
of training examples the seeds set. To increase the
number of training examples, we apply a data aug-
mentation mechanism in which we take the seeds
set, and automatically replace the corresponding
values, in queries having multiple values, with al-
ternative values from the same table and column
as in the original example. We replace values in
both the English question and the SQL query for
training. In Figure 3 we show an example of how
using a seed example, we can create a new training
example.

Table 2: Seed Training Data Augmentation

Schema Size of seeds Size of STDA

HR 90 1500
WH 80 2000
BI 100 3300
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Figure 4: Hybrid System Architecture

5.3 Ensemble

We used the technique described in subsection 5.2
to create different training subsets from the origi-
nal seeds training data for each DB schema. We
created overlapping subsets, each one containing
between 80 and 90 percent of the data available in
the seeds set. We created a series of distinct models
by training the deep learning model on the concate-
nation of the original Spider training set and each
of the new generated training datasets for each DB
schema.

A new query, that was not originally in the seeds
set, is tested with all trained models. Each model
infers an SQL that usually is not the same for all
trained models. We chose the SQL query that obeys
a set of hard coded restrictions created for each
query. The restriction is that the filters in the SQL
query observe the relationship between values and
the DB schema as seen by the output of the rule-
based system. These relationships consider val-
ues and numerical operators only, not the the body
of the SQL formula. Therefore, we control only
the compatibility between values in filters and the
schema definition, and not the actual form of the
SQL query e.g., join paths which inferred by the
neural network. Figure 5 shows the inferred output
from different models in the ensemble for the same
query, the query at the bottom of the figure is the
final selected SQL query.

Assembling the Output SQL. The ensemble
component selects one SQL query that complies

Figure 5: Interpolation over Multiple Models

Algorithm 1 Restrictions on Ensemble outputs

Require: Q . English user query
Require: M1,M2, ...,Mn . DL models
Require: RSet . Restriction Set, DDM output

while Mi do
Filter_Mi_sql . extract filters from SQL
Operator_Mi_sql . extract operators from

SQL
EnsembleFailure← True . ensemble

has no output
if Filter_Mi_sql not in RSet then

rewrite_filter
end if
if Operator_Mi_sql not in RSet then

rewrite_operator
end if
if Operator_Mi_sql = RSet and

Filter_Mi_sql = RSet then
EnsembleFailure← False
return M_i_sql

end if
end while
if EnsembleFailure then

return emptySQL

with the set of restrictions determined previously,
this is done by assembling the output from a set
of models created with the training datasets gen-
erated with STDA technique. The pseudo code
shown in Algorithm 1 describes the steps that lead
to the final SQL formula after interpolating the out-
put from the models in the ensemble, as described
above. In a nutshell, the algorithm considers the
SQL query from each model, Mi, which is checked
against the restrictions determined by DDM’s out-
put which are kept in RSet. The procedure consists
of checking filters, Filter_Mi_sql, and operators,
Operators_Mi_sql one by one, independently of
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one another.
The architecture of the hybrid system is pre-

sented in Figure 4.

6 Experiments and Results

In this section we present the experiments and
the results we obtained using the hybrid system
against the baseline obtained by the original Val-
uenet trained on the Spider corpus. Besides the
three schemas presented in Section 3, we also con-
sider here the following schemas from the the Spi-
der corpus: pets_1 and dog_kennels. We consid-
ered specifically these two DB schemas because
the default system scored less than median on them.
In Table 1, for the HR, WH, and BI DB schemas
the training was the ANS corpora, and nANS part
was kept for testing, see Section 4. That is, we
use the ANS corpus for direct training, or it was
subject to STDA as described in Section 6.2 which
led to creation of different models to which the
ensemble module described in 6.3 was applied. In
the latest case, we created a series of 5 models for
each schema by splitting the training into five parts,
in 4 : 1 ratio (each model was using 80% of the
original seeds for training augmentation) The eval-
uation of the accuracy considers the result of the
SQL from our system vs. the result of the gold
SQL formula. A system inferred SQL is consid-
ered correct only if all values and only those ones
are returned by the gold SQL as well (execution
accuracy) In all the tables , # represents the size of
corpus, acc represents the accuracy, HS is our sys-
tem with DDM module, STDA is the seed training
module and ens, the ensemble module. The train-
ing for our schema was always combined with the
Spider training corpus to obtain a model. So, a a
model for a new DB having 100 training examples
is actually build from 7000(Spider)+100 examples.

In Table 3 we present the results of the HS sys-
tem without STDA, that is, we used 100% of the
seeds training.

Table 3: Accuracy of hybrid system no STDA

DB #train acc

HR 121 36%
WH 87 26%
BI 87 38%

Pets_1 30 32%
Dog_kennels 62 48%

The results for pets_1 and dog_kennels are dif-
ferent than the ones reported in Section 4, because
in this experiment these schemas were removed
from Spider development corpus.

We also carried out a cross validation experi-
ment on the 5 models obtained for each schema via
STDA. The results are in Table 4. The results are
very high for each 5th part used for testing, but still
low for the actual test, nANS, as seen in the second
column of Table 5 .

Table 4: Accuracy for cross validation

DB #seed #STDA #acc 5th part

HR 90 1500 78%
WH 70 2000 72%
BI 80 3300 80%

Pets_1 30 1500 68%
Dog_kennels 66 1500 72%

Finally, we used the 5 models from the cross val-
idation for each schema with STDA with Ensemble
and we obtained the results shown in Table 5. The
ensemble gets significant improvement over the
individual models, see third column.

Table 5: Accuracy hybrid system+ensemble

DB HS+STDA acc HS+STDA+Ens acc

HR 50% 62%
WH 40% 48%
BI 62% 66%

Pets_1 35% 41%
Dog_kennels 55% 57%

Putting together the results obtained, We indi-
cate what is the average accuracy gain/loss for each
type of system and each schema, ANS and nANS in
Table 6.The benefit in using the STDA was in dou-
ble digit percent improvement for all schemas. The
ensemble brings an extra 5 to 10% improvement.
The ensemble was very precise, having more than
98% precision, with a recall of 47%.

In 4.1 we analyzed certain patterns of er-
rors. To see how much the hybrid system
can improve on EA1, we compiled a spe-
cific corpus for multivalue question/queries ex-
amples for HR DB schema. This corpus
has 64 questions that have more than one
value, such as What Apple product has
the largest stock in Bestbuy? The
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Table 6: Accuracy Gain over Baseline

DB BS HS STDA Ens

HR 22% +17% +43%
WH 17% +12% +29%
BI 3% +15% +63%

Pets_1 30% +6% +11%
Dog_kennels 45% +5% +12%

Table 7: EA1-multivalue queries improvement

system accuracy

defaul VL 13%
default VL+tr 16%
HS no STDA 38%
HS+STDA 54%
HS+STDA+ens 78%

training corpus for HR, consisting of 57 questions,
contained only 19 questions with multiple values.
The results we obtained applying the hybrid system
only on the multiple values corpus are in Table 7.
The default VL is the the out-of-the-box VL sys-
tem, default VL+tr is the same system trained on
the extra training, HS , STDA and ens stand for hy-
brid system, seed training data augmentation and
ensemble techniques respectively.

The ensemble algorithm works particularly well
for this type of corpus. It is because the majority of
wrong SQL had the wrong reference to table and
column, which makes them recoverable due to the
DDM information used in ensemble.

EA2 issue was related to the logically compound
filters. Because Spider code cannot correctly pro-
cess those types of SQL elements, it is not fair to
compare systems that employ any of our techniques
vs. a system does not have any mechanism for deal-
ing with compound logical operators. Currently,
we do not known of any other system that manages
this problem.

The efficiency of our solution is further proved
by the experiments using temporal questions.
The Spider corpus have a poor representation
of temporal questions, less than 8% in training
and less than 7% in dev, and, as pointed out in
EA3 the SQL associated contains string , not
date evaluation. We manually created a corpus
containing temporal questions for HR and WH.
This corpus contains questions with one data value,
like, how many products were sold on
2/2/2014, we refer to them as tmp_1v, and

Table 8: Temporal Questions corpus

temporal corpus #HR #WH

tmp_1v train 28 35
tmp_1v test 14 22

tmp_mv train 44 70
tmp_mv test 32 42

Table 9: EA3 - Temporal Questions Results

system HR tmp_1v WH tmp_mv

default VL 18% 0%
default VL+tr 24% 0%
HS+STDA+ens 58% 44%

questions that more than one data value, like
how many products are sold with
prices greater than 200 dollars
between 2017/01/01 and 2017/12/31,
we refer to as tmp_mv.

For temp_1v the baseline system had a perfor-
mance similar to the one for non temporal ques-
tions. However, for tmp_mv the situation change:
the baseline system achieved 0% accuracy, and
the situation did not improved when the available
temporal training was provided to the system to
build a new model. On the other hand, our system
HS+STDA+Ens obtained a good accuracy, see Ta-
ble 9. The fact that VL system obtains 0% is due to
the inability of the system to correlate a value with
DB table and column, which the technique intro-
duced here for STDA+ens remedies. In Appendix
we provided a sample of user’s questions and the
output from the baseline system vs. our system.

7 Conclusion and Further Research

In this paper we present a hybrid system for the
Text-to-SQL task. The architecture of this system
was driven by seeking solutions to a problem that
we found when we tried to run an encoder-decoder
system with out-of-the-box configuration, namely
a large drop in accuracy for our DB schemas. The
problem was reported in the results published by
other teams as well. Our solution was to construct
a system that does schema linkage and employs a
training data augmentation technique. The system
showed a good accuracy for DB schemas in and out
of the Spider corpus. We obtained a double figure
improvement of the accuracy, in some cases close
to 30%, and not less than 9%. The lowest increase
was for a schema that was considered difficult in
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the Spider corpus.
Our experiments strongly suggests that a perfect

training corpus cannot be built such that the accu-
racy on any new schema will be high. However, by
implementing schema linkage and specific training,
automatically created, one can realize a high jump
in accuracy for deep learning networks.

Our future research will focus on further improv-
ing the training with queries that are not properly
represented in the Spider corpus and on the method-
ology for training data augmentation.

8 Appendix

Here we show examples of the questions and in-
ferred SQL for the HR and WH schemas, respec-
tively. For each question we present the result of
the default VL system, first SQL, vs. the result
of our system, HS+STDA+Ensemble, the second
SQL. For each question, we show the error made
by the default system and the name of the system
that inferred the correct SQL. The questions are
shown exactly as they were written by users.

8.1 WH DB schema examples of inferred
SQL.

• who manufactured iphone : wrong table; cor-
rection via Ensemble

– SELECT T1.name FROM manu-
facturers AS T1 JOIN products
AS T2 ON T1.manufacturer_id =
T2.manufacturer_id WHERE T1.name =
’IPHONE’

– SELECT T1.name FROM manu-
facturers AS T1 JOIN products
AS T2 ON T1.manufacturer_id =
T2.manufacturer_id WHERE T2.type =
’IPHONE’

• what did Richard buy : wrong path; correc-
tion via STDA

– SELECT T1.name FROM customers AS
T1
WHERE T1.customer_id = Richard and
T1.name = ’Richard’

– SELECT T1.type FROM products
AS T1 JOIN sales_details AS T13
ON T1.product_id = T13.product_id
JOIN sales AS T14 ON T13.sales_id
T̄14.sales_id JOIN customers AS T2

ON T14.customer_id = T2.customer_id
WHERE T2.name = ’Richard’

• who bought at bestbuy : wrong path, wrong
column; correction via STDA+Ensemble

– SELECT T1.name FROM customers
AS T1 JOIN sales AS T13 ON
T1.customer_id = T13.customer_id
JOIN sales_details AS T14 ON
T13.sales_id = T14.sales_id JOIN
products AS T2 ON T14.product_id
= T2.product_id WHERE T2.price =
BESTBUY

– SELECT DISTINCT T1.name FROM
customers AS T1 JOIN sales AS T13
ON T1.customer_id = T13.customer_id
JOIN shops AS T2 ON T13.shop_id =
T2.shop_id WHERE T2.name = ’BEST-
BUY’

• what is sold at bestbuy : wrong column, cor-
rection via Ensemble

– SELECT T1.name FROM vendors
AS T1 JOIN sales AS T13 ON
T1.vendor_id = T13.vendor_id JOIN
sales_details AS T14 ON T13.sales_id
= T14.sales_id JOIN products AS T2
ON T14.product_id = T2.product_id
WHERE T2.price = BESTBUY

– SELECT distinct T2.type FROM
shops AS T11 JOIN sales AS T22
ON T11.shop_id = T22.shop_id JOIN
sales_details AS T1 ON T22.sales_id =
T1.sales_id JOIN products AS T2 ON
T1.product_id = T2.product_id WHERE
T11.name = ’BESTBUY’

• show me apple product names : wrong table,
correction via STDA+Ensemble

– SELECT T1.name FROM manufacturers
AS T1 WHERE T1.name = ’APPLE’

– SELECT T1.type FROM prod-
ucts AS T1 JOIN manufacturers
AS T2 ON T1.manufacturer_id =
T2.manufacturer_id WHERE T2.name =
’APPLE’
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